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Welcome back! 

In this lecture, let us review whatever we did in module 5 under phase equilibrium. As 

you know, there could be various phases - the three major phases that we are looking at 

in this particular course are the solid, liquid, and the vapour phase. 
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… If they exist in equilibrium or any two phases existing in equilibrium or all three 

phases exiting in equilibrium with each other – how do we handle such situations, is 

what we are going to look at … or what is the formalism for handling such situations is 

what we are going to look at in this course. 



We had initially seen the P T diagram, the pressure versus temperature diagram for a 

pure substance to set the base for the kind of systems that we will be interested in.   We 

said that in this region, you know region essentially means the combinations of 

temperature pressure, T comma P, is each point here; the combinations of temperature 

and pressure in which the solid would exist, in which the liquid would exist here, and 

here the vapour exist. This is the sublimation curve across which the solid to vapour 

transition takes place, which means along these combinations of temperature and 

pressure, you have solid co existing with vapour. 

This is the vaporization curve which is easier to imagine.  We have the liquid co exiting 

with the vapour across this line or across the pressures and temperature conditions that 

are given by this line.  And, this is the fusion curve across which or on which you have 

coexistence of both the solid phase, and the liquid phase. We also said that beyond or 

above the critical pressure critical pressure – critical temperature critical pressure point is 

this.  Above the critical temperature here, and above the critical pressure we have the 

supercritical phase which we are not going to consider in this particular course. 
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The same information can also be obtained in a P versus V diagram, the pressure verses 

specific volume diagram.  This is again for a pure substance.  We saw that … the lines in 

the previous graph get represented somewhat as regions in this particular graph. Here we 

have the solid phase in these combinations of specific volumes, and pressure; in these 



combinations of specific volume and pressure, you have the liquid phase, and in these 

combinations of specific volume and pressure we have the vapour phase.  This is the 

critical point here, V C, P C. And in this region we have the coexistence of both the 

solid, and liquid phase; in this region we have the coexistence of solid and vapour phase, 

and underneath this dome in this region we have the coexistence of liquid and vapour 

phases. 

So, these are the kind of systems that we are looking at we have the coexistence of 2 or 

more phases together at the same time. … Initially we looked at the pure substance and 

then extended it to a multi component system . 
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The take home message from this particular module is this exact slide – the conditions 

that thermodynamics provides with … as criteria for different phases to exist in 

equilibrium. As we had seen … before we look at the conditions, we need to understand 

that it is a dynamic equilibrium, which means that there are changes occurring at the 

micro scale.  … Those changes occurring at the micro scale balance each other, so that 

there is no change at the macro scale. We had given the example of a substance going 

from the liquid phase to a vapour phase. 

For example, water, just pure water, going from the liquid phase, H2O that we know of, 

to the vapour phase; we said that there is a rate at which the water molecules move from 

the liquid phase to the vapour phase, and at the same time there is a rate at which the 



water molecules move from the vapour phase to the liquid phase. If the rate in 1 direction 

equals the rate in the other direction that is the condition of equilibrium that we are 

looking at.  What we mean by dynamic equilibrium is that these are taking place at all 

the time – it is just that the rates balance, so that we are not able to see any changes at the 

macro scale. 

We said that we are going to indicate phases by alpha, beta, gamma, and so on.  There 

could be multiple phases of the same kind such as 2 distinct liquid phases, and things like 

that. … Also the components we are going … to indicate by 1, 2, 3, and so on. 
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Now, we come to the criteria for thermodynamic equilibrium.  If a system is said to be in 

thermodynamic equilibrium, it needs to satisfy simultaneously the following equations. 

That is, T of the alpha phase must equal T of the beta phase must equal T of the gamma 

phase and so on.  Therefore, the temperatures in all the phases must be equal equation 

5.1.  This is the condition for thermal equilibrium.   

P in the alpha phase, the pressure in the alpha phase must equal P of the beta phase must 

equal P of the gamma phase and so on – the equality of pressures across the various 

phases, equation 5.2, the condition for mechanical equilibrium. This is thermal 

equilibrium, mechanical equilibrium, and the condition for the chemical equilibrium is 

given by all these equations that follow. Which is the chemical potential of any 



component in any phase must be equal.  Or, in other words, chemical potential of a 

certain component i, in all the phases must be equal. 

In other words, mu 1 alpha, which is chemical potential of component 1 in the alpha 

phase, must equal mu 1 beta, must equal mu 1 gamma, and so on.  We call this equation 

5.3. Mu 2 alpha equals mu 2 beta equals mu 2 gamma, and so on, you know this is 

chemical potential of component 2 in the various phases alpha, beta and gamma – they 

must all be equal; equation 5.4.  We wrote one more equation, and then we said we need 

to write as many equation as there are components. 

For the third component, mu 3 alpha equals mu 3 beta equals mu 3 gamma and so on.  

This was equation 5.5, and we could write as many equations as there are components. 

So, all these put together are the conditions that need to be simultaneously satisfied for 

chemical equilibrium.  Thermal equilibrium, mechanical equilibrium, chemical 

equilibrium – all three put together is thermodynamic equilibrium.  
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Then we derived what is called the phase rule for non reacting system.  There are no 

reactions in the system that we going to consider, and for such systems this phase rule 

will be valid. 
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And the bases for this was something like this: if the system contains pi phases, solid, 

liquid, vapour, and so on.  Or it could be liquid 1, liquid 2 and so on and so forth.  If the 

number of … or for simplicity, let us say solid, liquid, vapour phases, and the number of 

components in each phase is C.  Then we said that the number of variables needed to 

specify the state of the system is pi into C plus 1.  This is the number of variables. 
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And we saw that the number of equations between the variables by the arguments … we 

can go back and see the arguments again … is pi minus 1 into C plus 2. Therefore, the … 



number of equations between the variables is pi minus 1 into C plus 2.  And, the number 

of variables was pi into C plus 1.  We know that for a set of mathematical equations, if 

there are certain variables and certain equations, the number of variables is typically 

equal to or more than the number of independent equations between them for a 

meaningful solution to arise. If it is equal, fine, we have a unique set of solution.  If it is 

not equal, probably we need to supply some information, so that the number of variables 

becomes equal to the number of equations, and then we can get a unique solution. This 

was the basis for the phase rule, as follows.  
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This is the number of variables, pi into C plus 1, must be greater than the number of 

equations, pi minus 1 into C plus 2.  In other words, if you multiply, and then group 

these appropriately and transpose this, we saw that C minus pi plus 2 must be greater 

than or equal to 0.  If it is equal to 0 we get a unique solution set, if it is greater than 0 

then we need to supply that many variables, or we need to specify that many variables 

for a unique solution to arise. 
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… The number of variables that we needed to supply is what we designated as the 

number of degrees of freedom, or F; F equals C minus pi plus 2.  This is called the phase 

rule.  The number of separate variables that need to be specified to completely describe 

or completely specify this system or any given system is called the number of degrees of 

freedom of that particular system.  Typically, the variables that we choose are pressure, 

temperature, and the specific volume in that order of importance; or temperature, 

pressure, specific volume. 

This is worth repeating.  Application of the phase rule tells us that the number of in tells 

us the number of independent variables that are required to completely specify the state 

of a system, if the number of phases and components are known: pi phases and C 

components, F equals C minus pi plus 2.  And again, this is valid when there are no 

reactions that take place in the system.  Then we worked out an example to calculate the 

degrees of freedom in a couple of systems. 
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Then, we looked at the so-called, Clausius-Clayperon equation. To remind you, the 

Clausius-Clapeyron equation is valid for any two phases in equilibrium. It could be a 

solid-liquid phase, a liquid-vapour phase, solid-vapour phase and so on and so forth … 

these are three combinations that are possible. 
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… the vapour solid; the solid liquid and the solid vapour phase – there should be 2 

distinct phases actually. 
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We went about deriving the Clausius-Clapeyron equation by using the condition that 

those 2 phases are in equilibrium; and therefore, the chemical potentials have to be equal 

– that is where we started.  Then, we expressed the differentials of the chemical potential 

or equated the differentials of the chemical potential, and we expressed them as functions 

of temperature and pressure, because they are easily measurable. 
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Then we took a detour to essentially get expressions that are useful for the temperature 

derivative of the chemical potential, and the pressure derivative of the chemical potential 

at constant pressure, and temperature, respectively. 

We also got one more equation that was useful. This is the way we went about doing at.   

We started with the equation 2. 15, we applied the reciprocity relationship between 2 of 

these things taken together.  I think we took these two first, and then these two to get dou 

mu i dou P at constant T n i as dou V T dou n i at constant T P n j, and this, by definition, 

became the partial molar volume of the component i.  And, dou mu i dou T at constant P 

n i, constant P n i became minus dou S T dou n i at constant T P n j which by definition 

is the partial molar entropy of the component i, the negative of that. 
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We got this, and then it is quite interesting when we went about the derivation.  And, this 

was the additional equation that we got.  dou mu i by T dou T at P, n i equals minus H i 

T hash by T squared this we will use later that is what we said. 
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And those were equations that are valid for multi components systems, and since we are 

looking initially at pure components while deriving the Clausius-Clayperon equation, we 

wrote equivalent expressions for the pure components.  dou mu dou P at constant T 

equals the partial molar volume becomes the molar volume here, V. dou mu dou T at 

constant P became the molar entropy minus S, or minus of the molar entropy minus S.  

And, this was the additional expression that we had, dou mu by T dou T at constant P 

equals minus H by T squared.  Using these, we substituted into the equality of the 

chemical potential differential expression. 
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… which is 5.10 … which is given here; dou mu alpha dou T at constant P d T plus dou 

mu alpha dou P at constant T d P equals dou mu beta dou T at constant P d T, and dou 

mu beta dou P at constant T d P. And then we substituted these, we could write this in 

terms of molar entropies, and molar volumes. 

(Refer Slide Time: 16:49) 

 

And just by rearranging that we could get d dT of P is the difference in entropies divided 

by the difference in specific volumes.  Then, we had utilized the condition or the special 

case that the transition between the 2 phases, between the liquid and vapour phase – that 

process can be considered to be a reversible process. … Therefore, we could apply the 

second law statement for writing entropies in terms of the heat interaction, Q reversible 

by T.  Since the only heat interaction is going towards the change of phase we could 

replace that with the change in enthalpy between the 2 phases, and which is nothing but 

the latent heat of the phase transition. In this case latent heat of the phase transition 

between alpha to beta given as L – L by T. 
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Therefore, we could write d P d T equals L divided by T delta V.   This was the 

Clausius-Clayperon equation where delta V, the volume change in the phase change, is V 

alpha minus V beta. And then as mentioned earlier, Clausius-Clayperon equation is valid 

for phase changes, for any phase change not necessarily liquid to vapour.  It is also valid 

for liquid to vapour phase change, and it can be interpreted as the change in pressure per 

unit change in temperature; that is needed to maintain phase equilibrium.  
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Then we brought in this approximation; that for vapour liquid equilibria, or vapour solid 

equilibria, the difference between the vapour volume, and the liquid or the solid volume 

or rather, I should say that the liquid volume or the solid volume is negligible compared 

to the vapour volume.  Therefore, the difference between those specific volumes is 

nothing but … that equal to the vapour volume itself. Therefore, delta V is 

approximately equal to … the vapour volume or V gas.  If we use an ideal gas 

relationship, we can write that as equal to R T by P.  If we do that, we get d ln P d T is 

approximately equal to L by R T squared, which is a good approximation to use for the 

Clausius-Clayperon equation as long as the vapour pressure, P, is not large; this is what 

we had said. 
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Then, we worked out a problem involving iso-propanol, our popular substance, which is 

going from the vapour phase to the liquid phase.  The solution was detailed.  … It was 

quite simple; we had to find d P dT, and we said that we could find that by using … the 

values of these variables – L and T, where given in the problem itself, and delta V was 

the one that we needed to find out.  Turned out to be a little lengthy, because it involved 

an iterative solution for both the volumes.  I had shown you how to set up an iteration in 

a standard spreadsheet, and go about getting the value.  It was very simple way of doing 

that.  Once you set it up, it’s simple.  It just takes time to describe it, but the process 

itself, if you do it yourself, is quite fast. 
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And, we saw that we had used different formulations of the Redlich Kwong equation to 

get estimates of first, the vapour volume, by starting with the ideal gas volume as the 

initial guess. Then, a different formulation for the liquid volume, in which we started 

with the value of b as the initial guess; the volume of molecules as the initial guess for 

liquid volumes.  
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Then, we started looking at the various equilibria or the specific governing equations for 

various equilibria.  We had looked at vapour liquid equilibrium in some detail. 
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The basis is quite simple: the temperatures, and pressures have to be equal, and the 

chemical potentials have to be equal.  We said we are going to take these as given – that 

is thermal equilibrium and mechanical equilibrium as given. And we will typically 

concentrate on the chemical equilibrium part is what we said.  mu v equals mu l is what 

arises as a part of writing the chemical equilibrium in the liquid vapour equilibrium case. 
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Then, we had if it is a pure substance, we said we could write mu v as mu naught plus R 

T ln f v, and mu l can be written as mu naught plus R T ln f l.  So, cancelling the terms, 



we could get f v, the fugacity of the pure component in the vapour phase, must equal the 

fugacity of the pure component in the liquid phase. And, we said that must say, equal f 

sat because saturated conditions exist when there is a liquid to vapour or a vapour to 

liquid transition. 
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… Using the fugacity coefficient, and the fact that the pressure would turn out to be the 

saturated pressure, we could write phi v which is the fugacity coefficient of the pure 

component, and the vapour phase times P v equals f sat.  Or, phi v is nothing but phi sat 

and P v as we said earlier was P sat; this can be written as equal to f sat. 
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… This was for a pure component, phi sat P sat equals f sat.  … For a multi component 

system, we used the equality of the chemical potentials of the component in the 2 phases, 

and we could write f i v hat equals f i l hat.  Then, using the detailed expressions of the 

chemical potentials, mu i equals mu i hash plus R T ln phi i y i, which could also be 

written as mu i naught plus R T ln phi i P y i.  This is for the vapour phase, and this is for 

the liquid phase, mu i equals mu i hash plus R T ln gamma i x i, which is mu i naught 

plus R T ln gamma i f i x i.  f i is the pure component fugacity. And we equate the two; 

then we could write phi i P y i equals gamma i f i x i.  This is the condition for 

equilibrium in the vapour liquid equilibrium case.  This was equation 5.30. 
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Then we worked out a problem which involved K L a, the volumetric mass transfer 

coefficient. 
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And the solution was quite simple – that is the chemical potential of oxygen in the 

vapour phase must equal the chemical potential of oxygen in the liquid phase under the 

conditions in the problem, which that of equilibrium. 
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Then we looked at using the vapour liquid equilibrium case, and estimating the fugacity 

coefficient from the P-V-T data at equilibrium, which is the vapour liquid equilibrium. 
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This was essentially a different method of getting the fugacity coefficient. We had 

derived this by starting out with some expressions in module 3.  We got R T d ln f equals 

V d P. 
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We had integrated that expression, and we had identified that the molar liquid volume V 

is a weak function of … pressure at temperatures below the critical temperature. And 

therefore, this V, molar volume, can be considered a constant in this integration.  It 

comes out, and that is a very good approximation.  If it comes out, then we could write ln 

of f by f sat equals V l, and then the integral will be the definite integral between P sat 

and P 1 – we are going to drop 1 – becomes P minus P sat by R T. 

(Refer Slide Time: 26:15) 

 



Or, f by f sat equals what we call the pointing factor, exponential of V l, the molar liquid 

volume, P minus P sat by R T. And then we had invoked equation 5.28, phi sat P sat 

equals f sat in the case of vapour liquid equilibrium. 
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And, we could write, by expressing one in terms of the other, and recognizing that phi is 

nothing but f by P, 
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we could write phi i P y i equals gamma i f i x i.  This is the condition for a equilibrium 

in a multi components systems. This was for the pure component; we could write 



fugacity as phi sat P sat exponential – this is the pointing factor. … Then, for a multi 

component system, this is valid, is what we saw earlier in equation 5.30. And when we 

used this expression for f i that we had developed – gamma i into f i which is given as 

phi i sat P i sat exponential of V i l P minus P i sat by R T.  This is f i times the mole 

fraction x i. 
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And we call this a fi - fi i P y i equals gamma i P i sat x i, this is the useful equation in 

this particular case for estimating the activity coefficient, where fi i, we had said, was 

nothing but phi i by phi i sat exponential of minus V i l P minus P i sat by R T.   We also 

recognized that for most biological systems at … pressures that are normal, this term 

pretty much becomes 1.  Therefore, fi i becomes phi i by phi i sat. And therefore, you 

could substitute it back under this to get gamma i from VLE data; VLE is vapour liquid 

equilibrium data. 



(Refer Slide Time: 28:38) 

  

And we also saw that phi can be estimated from the second virial coefficients. We did 

not derive this. I said that I am just going to give you expressions, so that you … could 

use this if these values become available in terms of tables, and so on.  
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Then, we went about deriving the governing equations for solid-liquid, liquid-liquid and 

solid-liquid equilibria.  In fact, you derived this and we just checked it. … The basal 

equations that we used were the conditions of thermal equilibrium, mechanical 

equilibrium and chemical equilibrium, predominantly chemical equilibrium. 
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We had seen where this becomes relevant; in the case of liquid-liquid equilibrium, we 

said that you could have two different liquid phases – one being hydrophobic, the other 

one being hydrophilic, or both could be hydrophilic. The hydrophobic-hydrophilic pair is 

used in say, antibiotic extraction.  The hydrophilic-hydrophilic pair – two distinct 

hydrophilic phases – is used in the extraction of proteins to maintain their activity by 

maintaining their conformation. … If l 1 and l 2 are the 2 liquid phases in equilibrium, 

and for each component we could write the equality of chemical potentials. 
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… From this expansion comes the equality of the fugacities of the component i between 

these two phases.  Utilising equation 4.8 in module 4, you could write the fugacity in 

terms of pure component fugacity; gamma i, activity coefficient in the l 1 phase, f i the 

pure component fugacity times the mole fraction of i in the l 1 phase, must equal gamma 

i in the l 2 phase, pure component fugacity, times x i in the l 2 phase. So, this is the 

governing equation for liquid-liquid equilibrium. We had also worked out a problem 

after this, an example that of ampicillin extraction. 
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And the ratio of the activity coefficients in those two phases.  Then, we looked at solid 

liquid equilibrium in some sort of hurry.  We said that you could have a solid phase and a 

liquid phase, and let us say a component distributing between the solid phase and liquid 

phase in equilibrium. I had given some examples such as biosorption.  For example, 

when there are toxic trace metals that are present in say an effluent, one of the ways by 

which they can be removed effectively is by contacting the liquid phase with the metal –  

you contact this liquid phase with the metal, with another solid phase into which the 

metal can partition. 

Therefore, there is a huge reduction in the volume that contains the metal, and therefore 

better processing capabilities later. The solid phase could be let us say dried self cells; 

dried cells from even brewing industries could be used as the material which can be 

utilized to remove the toxic trace metals such as chromium, copper, cadmium; chromium 



as you all know is quite toxic – chromium’s VI is very toxic, and so on. So this can be 

used to remove all such things.  Bioleaching is a similar phenomenon, where there is 

contact between a solid and a liquid phase and there is a distribution of a metal say, 

between these 2 phases. … Even in some analytical steps you come across situations 

where a solid is contacted with a liquid, and there is distribution of a certain component 

or some components.  In such cases, we could utilize the same arguments for equilibrium 

– equations 5.1 to 5.5, and so on, need to be valid in any case.  They are basal conditions 

of equilibrium.   

Even if we concentrate from 5.3 onwards – we are going to take thermal and mechanical 

equilibrium as given – the chemical equilibrium, the equality of chemical potentials of 

each component across the phases … of a certain component across phases.  … If we use 

that then, we come across the condition that the chemical potential of the component i in 

the solid phase must equal the chemical potential of the same component in the liquid 

phase. This could be for example, chromium or cadmium that is distributing between the 

waste water, and the bio sorbent that is used to remove this particular metal. So mu i in 

the solid phase equals mu i in the liquid phase. 
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And if we take that into account, and expand it in terms of the fugacities, the terms will 

cancel, and what we are left with is the fugacity of the component i in the solid phase, f i 

s hat, equals the fugacity of the component in the liquid phase, f i l hat. And, in terms of 



the activity coefficients, we can write for the solid phase, gamma i s, the activity of the 

component i in the solid phase, the pure component fugacity in the solid phase, times the 

mole fraction in the solid phase, z i, equals the activity coefficient in the liquid phase, 

times … the pure component fugacity, times the mole fraction in the liquid phase.  

… This becomes the governing equation for equilibrium in the solid-liquid case.  z i and 

x i are mole fractions of component i in the solid and liquid phases, respectively. So, we 

had essentially seen the conditions of equilibrium - chemical equilibrium particularly, 

and then phase rule, and then we had taken up specific cases of vapour-liquid 

equilibrium, VLE, liquid-liquid equilibrium, LLE, and solid-liquid equilibrium, SLE.  

We had also shown one of the ways of estimating the activity coefficient from the 

conditions of vapour-liquid equilibrium.  That is essentially what we did in module 5, 

and when we come to the next class, we will start out the last module of this particular 

course, module 6 on reaction equilibrium. See you then. 

 


