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Welcome. 

Over the past eight to nine lectures we have seen many aspects related to thermodynamic 

properties of pure fluids. It might be worthwhile reviewing whatever we have seen so 

far, so that the learning is better. Let us spend today in reviewing the thermodynamic 

properties of pure fluids that we have covered so far. 
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We first looked at what a fluid was – it is either a gas or a liquid – that we all know. And 

then we said, we were going to look at easy to measure thermodynamic properties, which 

are essentially P, V, T, of gases. Then we said, we would extend it, as appropriate, to 

liquids; first gases and then to liquids. And then we said that, we would express the other 

thermodynamic properties such as Internal Energy, Entropy, Enthalpy, Helmholtz free 

energy and Gibbs free energy, as well as, let us say, the fugacity coefficient in terms of 



the more easily measurable P, V, and T. That was the whole scheme of things for this 

module. 
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And we first looked at an ideal gas, which you are already familiar with from your earlier 

classes. So, we will not spend much time on that.  We know that the relationship between 

P V and T for an ideal gas is P V equals R T for 1 mole of an ideal gas, or molar volume 

considered here. And these results, when there are no interactions between the molecules 

of the gas – that is when a gas would be ideal. And so, it happens that some gases, some 

noble gases do follow the equation of state for ideal gas. This is called an equation of 

state. Any relationship between P, V and T is an equation of state.  And this is where we 

brought in things specific to our course. 
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We said it in terms of the chemical potential, we will define or we have already defined 

the ideal gas as something that follows mu equals mu naught plus R T ln P.  In fact, we 

have defined, what a chemical potential is earlier. We are defining what an ideal gas is, 

in terms of the chemical potential, in this module.  We said mu equals mu naught plus R 

T ln P. One that satisfies this equation is an ideal gas. Where mu naught is a function of 

temperature alone, and it is quite easy to see here. You know this can be considered of 

the form y equals some m into x plus c – straight line equation. Therefore, if you plot y, 

which is mu here, versus ln P, which is x here, then you should get a straight line with 

this as the intercept. 

Therefore, the ideal gas is one whose chemical potential at constant temperature is a 

linear function of the logarithm (the natural logarithm or whatever logarithm that one 

takes) of its pressure. 
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Then, we started looking at non-ideal or real gases which of course, most gases are real 

or non-ideal. Or in other words they do not follow the equation of the state P V equals R 

T. And to describe them, we brought in the variable fugacity.  In terms of the chemical 

potential that we have seen, fugacity can be given as mu equals mu naught plus R T ln f. 

This is for a real gas or all gases, you know when it is a real gas, it should also include 

ideal gases. Or a real gas formulation should include an ideal gas formulation. And 

therefore, mu equals mu naught plus R T ln f instead of R T ln P should be able to define 

all gases that is what we said. And this is not complete without stating that f by P will 

tend to 1 as the pressure goes to 0. 

Therefore, quite easy to see under limiting conditions, when f by P goes to 1, the fugacity 

is actually equal to the pressure. So, it is fine for ideal gases also. f by P, we defined as 

something called a fugacity coefficient, which is unique to a particular pure substance. It 

is quite easy to realize that we need more mathematical, more accurate mathematical 

representations, because P V equals R T is not going to the job anymore. And the first 

complication, that we saw, or the first improvement that we saw in the equation of state 

to represent real gases is the virial equation of state.. 
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To know what is the virial equation of state is, which is written in terms of what is called 

the compressibility factor (Z). Compressibility factor is nothing but, P V by R T; it is 

defined as P V by R T, and the Z is the one that is expressed in terms of a power series in 

P, and that is called a virial expansion. For example, Z equals 1, plus B 2 P, plus B 3 P 

squared, plus B 4 P cubed, plus B 5 P power 4, and so on. This is a virial expansion in 

pressure for the gas. Here B 2, B 3 are called the virial coefficients; the second virial 

coefficient, B 2, third virial coefficient, B 3, and so on. 
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And we also said that, virial coefficients are actually they represent the interactions 

between the molecules comprising the gas and therefore, they can actually be found from 

theory – statistical mechanics. For example, B 2 represents interactions between 

molecules taken 2 at a time; B 3 represents interactions between molecules taken three at 

a time and so on. 
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And also for low enough pressures, say about a few bar, just the first two or three terms 

of the virial expansion is good enough to give an acceptably accurate representation of 



the gas behaviour. But higher the pressure, more terms are needed to accurately represent 

the behaviour.   

And we also saw that the virial expansion can be written in terms of molar volumes. Of 

course, since it is a direct function of pressure, this has to be an inverse function of 

volume. Therefore, Z equals 1, plus C 2 by V, plus C 3 by V squared, plus C 4 by V 

cubed, plus C 5 by V power 4, and so on and so forth. And C 2, C 3, …  can also be 

calculated from theory. 
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We did an example, where we looked at how to use the virial equation to calculate some 

properties of interest.  In this case, I think, we did the volume of the vessel. We will not 

go through the example again. 
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If you are interested, you can go back to the part of lecture and look at it again. 

(Refer Slide Time: 08:17) 

 

Since, some of you may have looked at an iterative solution for the first time, … let me 

just run through it again here. An iterative solution comes about, … especially when you 

have higher order equations – polynomial expressions.  Here, we had a cubic equation. 

Therefore, we set it up of the form –  you know we had Z equals 1 plus C 2 by V plus C 

3 by V squared, but we knew that we were looking for V. 



Therefore, if we set up the equations such that we have V on the left hand side and V on 

the right hand side, we can do an iterative process to get at the solution.  And to do that, 

we replaced Z by P V by R T, which is the definition of Z.  And thus, we got V on the 

left hand side and this on the right hand side.   

To solve iteratively for V the procedure was to guess a certain value of V and substitute 

it into the right hand side to find the value of the right hand side. Then compare that 

value to the guessed value; or in other words take the difference. If the calculated value 

was close enough to the guessed value – close enough is, I said, was the operative word 

here –  close enough to the guessed value, then the guessed value was the needed value. 

Otherwise the calculated value is put back into the right hand side.  Rather it is used as 

the second guess that is put back into the right hand side to calculate a third value. Then, 

that is compared with the second value. This process is continued till a certain 

convergence, as it is called.  In other words, the difference between the calculated value 

and guessed value is small enough compared to the value of V itself. For example, in this 

particular case, if it is less than, let us say about 1 or 2 percent it should be acceptable for 

most of our needs. These are the details of the solution; we will not get into that in the 

review. 

(Refer Slide Time: 10:28) 

 

Let me also mention this, that it is easiest to do these iterations, iterative calculations by 

using a program. To write it in a form, that can be converted into a program for easy 



calculations, we write it as V n plus 1 equals R T by P into 1 plus C 2 by V n plus C 3 by 

V n squared. Therefore, V 0 could be the guessed value, and V 0 would result in V 1. 

Then if V 1 minus V 0 is small enough then, we stop the iterations there.  Otherwise, V 1 

is substituted here to get V 2 then the comparison is made. And if it is small, if the error 

is small enough, the difference is small enough, we terminated there.  Otherwise, … we 

keep going on.  So, it is easy to write a program, if we represent the equation in this 

form. 

(Refer Slide Time: 11:34) 

 

… I think I will mention it here itself – … the ideal gas volume is a good first guess 

value for the gas volume, usually. 
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… Then we looked at cubic equations of state.  Before that, we considered whatever we 

did till then.  We … considered equations that describe the gas phase alone well. And 

then, we looked at the … rather, we will be looking at cubic equation of state, which 

would represent both the gas and the liquid behaviour reasonably well. And one of the 

cubic equations you may have already encountered in your higher secondary class or in 

your first year courses, which is the VanderWaals equation of state. It goes as P equals R 

T by V minus b minus a by V squared. And a and b are constants for a given pure 

substance. 

(Refer Slide Time: 12:38) 

 



We said that the a and b can be calculated from critical pressure and critical temperature 

values. 
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This might be worthwhile.  So, let me go here, and recall our P V diagram here. You 

know P-V, the variation between pressure and specific volume for a pure substance. Let 

us focus on this curve alone.  There are very many parts to this diagram. In other words, 

these are pressure – specific-volume combinations or specific-volume – pressure 

combinations, where the different phases exist. We said under this dome you have the 

saturated phase, which is a mixture of liquid and vapour. And the top point of this is the 

critical point. Beyond this, you have critical behaviour where the properties are very 

different; we said that we are not going to look at the properties of the critical phase in 

this particular course. So, this is the critical point, just to recall. 

And from that critical point, which is tabulated for pure substances – that tabulation is 

available in the appendix of your text book – we could get the values of a and b by these 

expressions; a was 27 R squared, Tc squared by 64 Pc, and B equals R Tc by 8 Pc. This 

is for the VanderWaals equation of state. 
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Then, another popular cubic equation of state, we saw as the Redlich-Kwong equation of 

state. Which is given as P equals R T by V minus b, minus of a by T power 0.5 V, into V 

plus b. And we said the a and b in the Redlich-Kwong equation of state … can also be 

calculated from the critical properties. a is given by 0.42748 R squared Tc power 2.5 by 

Pc, whereas, b was 0.08664 R Tc by Pc. Then, we also saw the basis for writing these a 

and b values in terms of Tc, Pc and so on. We have equivalent expressions for the 

Vander waals equation of state also. 
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And this was given as a home work and the basis for that is as follows. Let us go back to 

our P versus V diagram again.  If you look at this point here, at this point you have a 0 

slope, you know the slope changes sign. Therefore, dou P dou V … you know this is at a 

particular temperature. Therefore, dou P dou V at constant temperature equals 0 at the 

critical point.  Not just that; … it is also an inflection point, which means, if you look at 

the derivative, the sign of the derivative also changes at this point. And therefore, this 

becomes an inflection point.  Therefore, the second derivative dou squared P by dou V 

squared also becomes 0. 

We said we could use these two criteria or these two relationships … that become 

apparent to calculate the a and b values in terms of the critical constants. And this is 

actually available in your text book chapter 3.  If you want you can look at that. 
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And then, we went to the estimation of volumes using the equations of state. We said 

that the Redlich-Kwong equation can be used to estimate volumes of pure component. 

And since it is a cubic equation we need an iterative solution.  The initial guess of 

course, is important and so on, we said. 
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A good initial guess for vapour volumes is through the ideal gas equation.  A good initial 

guess for the liquid volumes is from the constant b. Because, remember that V minus b 

term either in the Vander Waals equation or in the Redlich-Kwong equation of state. … 



That gives you an idea that b represents the volume that is occupied by the molecules. 

When it is a gas, the molecules are farther apart and therefore, the fraction of volume that 

is occupied by the molecules is less. Whereas, in the liquid they are all close together and 

this value of b could be the first guess that one could make, when one is looking at liquid 

volumes.  It is quite easy to see that, you put all the molecules together, and you choose 

the total volume of the molecules. That should give you some value of the volume in the 

ball park of the liquid volume.  That is idea with which these are chosen. And to set up 

the Redlich-Kwong equation for the iterations itself, we went through a strategy.  We 

multiplied the Redlich-Kwong equation by V minus b by P, to get it of this form. 
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And to facilitate for vapour volumes, we had written it as R T by P plus b minus a into V 

n minus b divided by square root of T into P into V n by V n plus b. Therefore, you could 

do iterations with this for the vapour volumes. Whereas, we have a problem, if we 

consider the same form to do liquid volumes.  Why?  We said our initial gas was going 

to be b. Therefore, initial guess – if you substituted here, this entire term will go to 0. 

Therefore, we loose the information that is given by this term all together, and … either 

the values that we get will not be realistic or they may not be convergence at all. 
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Therefore, we need another form of the Redlich-Kwong equation, to estimate liquid 

volumes.  And that was obtained by writing the Redlich-Kwong equation. Expanding, 

you know … taking out common terms, multiplying, cross multiplying, and representing 

it as a polynomial expression in V. So, that was V cubed minus R T by P by V squared 

into V squared minus b squared plus b by b R T by P minus a P T power 0.5 into V 

minus a b P T power 0.5 equals 0. So, this does not pose the problem of … any term 

vanishing completely and thereby not contributing to the solution, or a meaningful 

solution of the volume. 

(Refer Slide Time: 20:13) 

 



So, this form can be used to iterate for liquid volumes.  … To do that iteration, we had to 

transpose that equation as V n plus 1 equals b squared plus b R T by P minus a by P T 

power 0.5. Remember, this was in the numerator here. So, this has to be in the 

denominator on the other side. In other words, we are dividing both sides by this to get 

rid of the term here. Therefore, this is to the power of minus 1 into the remaining terms 

that was there in the previous equation.  V n cubed minus R T by P V n squared minus a 

b by P T power 0.5. 
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We again worked out an example, where we had used the Redlich-Kwong equation to 

estimate the volumes of the saturated vapour and the saturated liquid of a very popular 

biological substance, ethanol. (No audio from 21:05 to 21:13) 
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Then we said that, we had seen ideal gas law, the equation of state applicable only to 

ideal gases. The virial equations those were applicable to a wider variety of gases, and 

cubic equations that are applicable either to a gas or the liquid states of the pure 

substance. And then we said that, we are going to come up with a formulation that is 

applicable to almost all gases. 

So, this part of the module focussed on the P V T relationships in increasing degree of 

generality, in a certain sense. … Ideal gas law, a very narrow range of application.  Virial 

equations – a very wide variety of gases from some small number of gases. Then cubic 

equations could do both gas and a liquid.  And the generalized formulation could do a 

larger variety of gases, with lower input; essentially, the data that you need is only the 

critical constants.  You do not need pure substance specific constants. …That is the 

advantage while using generalized correlations as we had seen.  We will see again here. 
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So, the generalized correlations are written in terms of the reduced properties, and the 

reduced property was nothing but the ratio of the property to its critical value. For 

example, reduced pressure was Pr, which is defined as P by the critical pressure Pc. 

Similarly, reduced temperature and the reduced molar volume.  To write the Redlich-

Kwong equation in a generalized form, we did some manipulations to get it of this form: 

Z equals 1 by 1 minus h minus a by b R T power 1.5 into h by 1 plus h, where h was just 

a convenient combination of b by V, which can also be written as b P by Z R T. And 

then we could express a and b in terms of the critical constants, that we have already 

seen earlier.  … Therefore, if you put in substitute those expressions here for … a and b, 

… which are these we had already seen, then the generalized Redlich-Kwong expression 

turns out to be Z equals 1 by 1 minus h minus 4.934 divided by T r power 1.5 into h by 1 

plus h. 
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So, that is the Redlich-Kwong equation written in terms of reduced properties.  The 

advantage here is that you have only T r, the reduced temperature.  And h, of course, is 

given in terms of P r and T r. So, P r and T r relationships would be applicable in general 

and therefore, this expression – its applicability becomes a lot more general.   
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Not just that.  Any equation of state can be written in terms of the reduced form or the 

generalized form if it is written in terms of the compressibility factor and reduced 

properties. And to re-emphasize, the only data that is needed when, we use the 



generalized equation of state are the critical properties that are readily available for 

example, in the appendix of your text book. 
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Then we looked at a slightly abstract concept, which was the two parameter theorem. 

Theorem has a lot of power to it, you have tremendous confidence when you have it in a 

theorem form. You could apply it in many different situations. And the above 

development in fact, was formalized into a two parameter theorem, which said that all 

fluids have a approximately the same compressibility factor when compared at the same 

reduced temperature and pressure. In other words they all deviate from the ideal gas 

behaviour by the same extent. It was found that the two parameter theorem’s 

applicability was somewhat limited.  It could give good results for simple fluids, 

whereas, there were significant deviations for many other fluids. 
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To account for that, Pitzer and co-workers brought in the acentric factor, which was 

essentially … – I will not go through the development here; you can look at the notes or 

the presentation, … these slides in the presentation later. 
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The acentric factor is essentially the difference between the logarithm of the P r sat value 

at T r value of 0.7 and that value for simple fluids, which happens to be minus 1. 

Therefore, this in essence gives the deviation from the simple fluid behaviour of the 

other fluids. And therefore, this is taken as a single parameter.  And, this also is 



attractive, because it involves only one measurement at T r equals 0.7, the vapour 

pressure. So, it is a very simple measurement to find out the acentric factor. We do not 

have to do all that.  The values of the acentric factors of most substances that we would 

need are available in tables. Of course, … if and when one needs to generate that data, 

then you know how to; the basis for generating that data. 
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… This led to the three parameter theorem of corresponding states, which said that all 

fluids with the same value of the acentric factor, have the same compressibility factor 

when compared with the same reduced temperature and pressure. In other words, they all 

deviate from the ideal gas behaviour to the same extent. This was applicable to a wide 

variety of gases.  And the kind of equation of state that can be written in terms of … that 

can be a consequence of the three parameter theorem is Z equals Z 0 plus omega times Z 

1 and it. It so happens that the value of Z 0 and Z 1 are available in tables.   In fact, that 

is the reason why we write in this form. So, that we can rather … we would use this form 

as written here, because the values are available to us. 
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They work well for most cases, when we use the Z equals Z 0 plus omega times Z 1 

formulation. The predictions are within 3 percent of the experimental value for non polar 

and slightly polar gases. Well, they do not work as well for highly polar gases or gases 

that associate or quantum gases, such as hydrogen, helium and neon. You could also get 

liquid properties from the generalized correlation.  Nevertheless, the importance … that 

one would associate to those values is needed to be a little less. The values are 

approximate … the liquid values are approximate; the gas values are very good. 
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Apart from the tables, there are analytical expressions for Z 0 and Z 1 that are also 

available.  If the table is not available to somebody, one can use these expressions which 

are reasonably accurate. Z 0 is given in terms of B 0, the virial coefficient, and B 0 is 

given in terms of T r; B 0 and B 1 are given in terms of T r. 
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Then we worked out an example where we applied the generalized correlation, and also 

compared it with the ideal gas and the virial correlations – the values obtained from 

those. 
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So, that was one major part of the module.  Then we went into the second major part of 

the module, which was estimation of the other thermodynamic properties, or more 

difficult to measure thermodynamic properties, in terms of P V T. For that, we needed a 

formulation and that formulation required what are called residual properties. 
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Residual property is nothing but the difference between the actual value and the ideal gas 

value. For example, the residual volume V R is nothing but the actual volume minus the 

ideal gas volume, which was written in terms of the compressibility factor for ease of 

use. It will turn out to be R T by P into Z minus 1.  And then, we said that we could write 

… the residual property for any extensive thermodynamic property. To write one for 

internal energy, for entropy, enthalpy, Helmholtz free energy or Gibbs free energy… 

And if that is represented as M, M R, the residual property, is M, the actual property 

minus the ideal gas property. 
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And then we showed why G by R T is considered the generating function, or G is 

considered as the generating function, because if we have the value of G you could get 

other values. Please go through this derivation again; it might be interesting.  … If we 

have G by R T, V by R T is nothing but dou by dou dou P of G by R T at constant 

temperature. H by R T is nothing but minus T dou dou T of G by R T at constant 

pressure. 
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And also U by R T was H by R T minus P V by R T, and S by R equals H by R T minus 

G by R T.  We are not looking at A, because we may not need it extensively in this 

course.  But, of course, you could write A too; it is not a problem. 
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Then we went and saw how to write residual properties.  It was a derivation; I am not 

going to go through that.   

V R by R T.  You could write it in the same fashion as earlier.  Earlier, it was for the 

actual values.  Here, you could write it for the residual values. V R by R T equals dou 

dou P of G R by R T at constant temperature. H R by R T was minus T dou dou T of G R 

by R T at constant pressure. 
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And then we said that, we had assumed constant temperature but we got it in terms of 

values … G R by R T is in terms of V R still V R by R T d P this is good but we wanted 

an easier way of estimating that. 
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Therefore, we wrote it in terms of Z. G R by R T equals integral of P reference to P 2, Z 

minus 1 d P by P. This makes it easy to evaluate. And we said that the value of P 

reference is usually taken as zero. 
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Then, we had expressions for the other thermodynamic residual properties in terms of 

measurable properties; this we have already seen. While deriving this we went through a 

situation, where we needed to differentiate an integral. For doing that, we use the 

generalized Leibniz rule, which gave us a means to differentiate or partially differentiate 

a definite integral.(No audio from 33:52 to 34:01) 
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… So, after doing all that, we ended up with H R by R T equals minus T integral of P 

reference to P 2, dou dou T of Z at constant P into 1 by P d P. 
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And then, we also noted that although the state variable values will not change with the 

path chosen, the experiments that are designed to evaluate these are path dependent.  

They need to be performed along a path. And therefore, we need appropriate conditions, 

experimental conditions, or appropriate mathematical expressions. 
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Then these are the other residual properties in terms of G R by R T and other things that 

we know. And in terms of the easily measurable values, S R by R was minus T integral 



of P reference to P 2 dou dou T of Z at constant P into 1 by P d P, minus integral of P 

reference to P 2 Z minus 1 d P by P. 
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We said that – this is quite obvious – once we have the residual value the actual value is 

nothing, but the residual value plus the ideal gas value. Therefore, if you have the ideal 

gas value, then you could find the actual value.  Or for a process, when you are going 

between points or states 1 and 2, M 2 by minus 1 M or delta M equals delta M R plus 

delta M ideal gas.  We also noted that the thermodynamics properties are state functions. 

Thus the experimental conditions employed, say constant temperature, are irrelevant to 

the actual values. The values depend only on the state and not on the path followed or the 

experimental conditions employed between the states. But also note that the values are 

with respect to a particular reference state, and must be explicitly defined. 
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Then we came up with ways to get the ideal gas values, because we said the residual 

value plus the ideal gas values is actual value.  We spent a good amount of time getting 

the residual value first. And then we looked at how to get the ideal gas values. Without 

spending too much time here … we have derived all these. 
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This was the expression. d S was C p ideal gas d T by T minus R by P d P. Therefore, by 

integrating that you could get the ideal gas value for S. And for process values between 

points 1 and 2, the differences in values. 
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We first wrote them and then wrote them in terms of the easily measurable P, V, T, and a 

few others, C p and so on. 
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Delta H was integral of T 1 to T 2, C P ideal gas d T plus H 2 R minus H 1 R. And delta 

S was integral of T 1 to T 2 C p ideal gas d T by T, minus R ln P 2 by P 1 plus S 2 R 

minus S 1 R. 
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We said that the above equations for the other thermodynamic properties can also be 

written in terms of the reduced properties.  We had looked at only two or three. And the 

reduced properties … when the reduced properties are used the equations become 

generalized, they become applicable to say all gases. And therefore, we need not look at 

specific P V T data to estimate thermodynamic properties. That was the advantage that 

we saw. 
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There are generalized correlations for residual properties also and the advantage is that, 

we just mentioned. We went ahead and derived those generalized correlations.  Let me 

just present these generalized correlations.  These are the correlations in terms of the 

actual properties. 
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And we had substituted to get equations 3.47, 3.48 and 3.49 in terms of reduced 

properties. G R by R T c T r was integral of P r reference to P r 2, Z minus 1 d P r by P r. 

H R by R T C was minus T r squared integral of P r reference to P r 2, dou dou T r of Z 

at constant P r d P r by P r. And S R by R was minus T r integral of P r reference to P r 2, 

dou dou T r of Z at constant P r d P r by P r, minus … integral of P r reference to P r 2, Z 

minus 1 d P r by P r. And the same way that we took P reference as zero, we also take P r 

reference as zero … as a lower limit of integration. 
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We said that, we could write these equations in the generalized form. Also in terms of Z 

naught and Z 1 because then we can use the tables that are available to us.  … The 

explicit form was H R by R T c equals H R 0 by R T c plus omega times H R 1 by R T c. 

And S R by R was S R 0 by R plus omega times S R 1 by R. 

(Refer Slide Time: 39:30) 

 

And the values are available – the groups, the 0 group and the 1 group – the values are 

available in tables E 5 to E 12 in appendix e of your text book. 



(Refer Slide Time: 39:46) 

 

Then we worked out an example to look at how to use the correlation, the generalized 

correlation in terms of the reduced properties, to get at useful values. Please take a look 

at that whenever you have the time.  The last thing that we saw was the estimation of the 

fugacity coefficient for a pure substance. 

(Refer Slide Time: 40:12) 

 

And to do that, we started out with the definition of the chemical potential for a species.   

We went into the interpretations of the chemical potential; please take a look at it –  it is 

very interesting.  I would not do it again now. And we went into writing the definition 



for a pure substance, and writing down equations for a closed system in terms of the 

chemical potential for a pure substance. 

Then we went ahead with the derivation (No audio from 40:56 to 41:04) to get to this 

particular expression, which is the penultimate expression.  Ln of phi 1 – this is the 

fugacity coefficient at point 1 – is the integral from 0 to P 1, V by R T minus 1 by P d P. 

And, in terms of the compressibility factor, this can be written as integral of 0 to P 1, Z 

minus 1 by P d P.  … Since we know so many ways to get at the Z value, that we have 

seen so far in the module, we could use all those methods here to get also at the phi 1 

value.  Then we worked out this example. This example was a slightly more complicated 

one in terms of needing slightly higher level skills of integration, which we saw not very 

difficult. But it only that it needs a higher level skill from what was required to solve the 

previous set of problems. And we went through solving the problem to get at the fugacity 

co-efficient of isopropanol. 

So, that was all that we did in module 3. When we start the next class, we will start with 

module 4 and look at solutions. You know, this was pure substance, we mix pure 

substances together we get solutions, and we  will look at properties of solutions. See 

you then. 


