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Equations of State-Virial Equations 

 After review of some concepts that we have already seen earlier, in the earlier classes, 

courses, in the first module, we looked at some relationships that would be fundamental 

to thermodynamics and their interrelationships in module number two. In this module, 

module three, we will look at thermodynamic properties of pure fluids. 
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Fluid as may be known is either a gas or a liquid. And, let us continue the theme that we 

looked at in the later part of the previous module here also. First: easy to measure 

thermodynamic properties P, V, T of gases, we will look at. And then, we will do an 

extension, as appropriate, to liquids. Initially, it will be that of gases and then to liquids. 

And later, express other thermodynamic properties such as internal energy, U, entropy, 

S, enthalpy, H, Helmholtz free energy, A, and Gibbs free energy, G in terms of the more 

easily measurable pressure, specific volume and temperature. 
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We all know what an ideal gas is. And, let us state it here for completeness. The 

relationship between P, V and T for the so-called ideal gases must be very familiar. It is 

P V equals R T. Let us register this as equation 3.1 here; because we will need to refer to 

this in the later parts of the module, or may be later too. R as may be known is the 

universal gas constant; the value of which in these set of units is 8.314 joule per mole per 

Kelvin. V is the molar volume or volume per unit mole of the gas that we have already 

seen.  

And, this may or may not be known. In an ideal gas, we get such a simple relationship, 

because at the molecular level, … we consider no interactions between the molecules or 

the particles to make it general that comprise the gas.  That is what led to the ideality of 

the gas – no interactions. 
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Now, take a look at this. In terms of the chemical potential mu that we defined in module 

two, we can write the ideal gas or we can define the ideal gas as mu equals a certain mu 

naught plus R times T temperature times the natural log of the total pressure P. We will 

call this equation 3.1 a. Here, mu naught is a function of temperature alone. This mu 

naught is a function of temperature alone. 

And therefore, another way of looking at this equation, interpreting this equation, is that 

ideal gas is one, whose chemical potential mu at constant temperature, which means this 

will be a constant – R T can be taken as a constant at constant temperature, is a linear 

function of the logarithm of its pressure, the natural logarithm of its pressure. It is one of 

the ways of interpreting the ideal gas in terms of the chemical potential. This may also be 

known that the noble gases such as argon, the krypton, xenon approximate well to ideal 

gases. 
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Most gases are non-ideal, or they can also be called as real gases. So, what is the 

formulation that we could use effectively for real gases? Also, … as may be apparent, if 

it is a real gas, it is not going to follow the ideal gas equation or in other words for real 

gases, P V is not going to be R T, equal to R T, or the chemical potential mu of an ideal 

pure gas cannot be expressed as mu naught plus R T ln P. 

Therefore, we need another variable and that variable happens to be called fugacity f, 

which is used for real gases. The fugacity of a gas … in fact fugacity is a little general.  

If you are going to define it for real gases, it should be applicable to the ideal gas in the 

limiting case. That is always a case.  Whenever you generalize, it should also take care of 

a special case. 

Therefore, the fugacity of a gas, either ideal or real, is defined as, or it can be obtained 

from this … expression: the chemical potential mu equals mu naught plus R T ln f. Note 

that, for an ideal gas it was mu equals mu naught plus R T ln P. Here instead of P, we are 

using this fugacity here. This is not the complete definition. We should also add that f, 

fugacity, by total pressure, P, tends to 1 as the pressure tends to 0. This is the complete 

definition of a real gas, or of a gas; whether real or ideal. Let us call this equation 3.1 b. 

And as mentioned earlier, under limiting conditions it should become an ideal gas. And 

of course, it is quite evident that mu equals mu naught … plus R T ln f should become 

mu equals mu naught plus R T ln P.   And therefore, fugacity must equal pressure for the 



ideal gas. This f by P is an interesting quantity. And, let us define it as a separate quantity 

here, and indicate it by the letter phi. We will call this equation 3.1 c. And, phi is actually 

called the fugacity coefficient. f is fugacity; phi, which is the ratio of f to P is called 

fugacity coefficient. 
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We already saw that real gases are not going to follow P V equals R T. And therefore, 

we need more accurate mathematical representations or more accurate models of the 

simultaneous variation in P, V, specific volume, and temperature. In other words, we 

need more accurate equations of state. In fact, the interrelationships between pressure, 

volume and temperature are called equations of state; P V equals R T is a very simple 

equation of state. We need more complicated equations of state … to represent real 

gases.  Let us look at a few equations of state for real gas in this course. There are many, 

which have been developed over the past century or more. So, let us look at a few of 

them which are quite heavily used. 
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The first of those equations of state that we are going to look at is called the virial 

equation of state.  To get to know what virial equation of state is, let us first define P V 

by R T. You know P V was equal to R T for an ideal gas. Let us define P V … by R T as 

a certain Z … let us call this equation 3.2. And, this Z is called the compressibility factor. 

This Z can also be expressed as a power series in P. You would have learnt about power 

series expansions in your Mathematics classes. And, if it is expressed as a power series it 

is called a virial expansion. 

 We will … first look at the expansion as a power series in pressure. Z can be written as 

one, plus a coefficient B 2 times P, plus B 3 times P squared, plus B 4 times P cubed, 

plus B 5 times P power 4, and so on. This is the power series expansion in pressure. And, 

this is called the virial expansion or virial equation of state for the particular component, 

which is represent … the particularity of the gas, comes about through B 2, B 3 and so 

on, as I will explain in a little while. We will call this equation 3.3. B 2, B 3 and so on 

are called virial coefficients; B 2 is called the second virial coefficient, B 3 is called the 

third virial coefficient, and so on. 
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These virial coefficients represent the interactions between the molecules or the particles 

that comprise the gas; typically molecules. For example, B 2 represents the interactions 

between particles in a gas taken two at a time, considered two at a time. B 3 represents 

interactions between molecules taken three at a time, and so on. 

Therefore, the virial coefficients can be calculated from theory, which is actually 

Statistical Mechanics, which we will not be covering as a part of this course. But, 

Statistical Mechanics looks at the way of counting and way of accounting for a 

molecular… properties and so on, molecular doings and so on; and their relationship 

between two microscopic properties such as internal energy, entropy, and so on.  

So, from very basic theory we can calculate B 2 and B 3. Here, I am not going to show 

you those calculations. I am just going to probably present the expressions, may be later 

on. And as mentioned earlier, virial expansions with unique virial coefficients for each 

gas can be written. Therefore B 2, B 3, B 4 and so on are going to be different for 

different gases. 
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For low enough pressures, say until a few bar, few atmospheres, the first two terms of the 

virial expansion alone are good enough to give accurate enough results. As we increase 

the pressure, we need to add more and more terms for the accuracy. What do I mean by 

accuracy? How close is the calculated value to the very carefully conducted experimental 

value.  Higher the pressure; more the number of terms, more the number of virial terms 

needed for accuracy. 

The virial expansion as we said is nothing but a power series expansion. It can be written 

in terms of molar volumes also. For example, Z can be written as one, plus C 2 by V, 

plus C 3 by V squared, plus C 4 by V cubed, plus C 5 by V power 4 and so on. This is a 

power series expansion in V or 1 by V. And, we will call this equation 3.4. C 2, C 3 and 

so on can also be calculated from theory, similar to the calculation of B 2, B 3 and so on. 
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Now, we have looked at some new information. So, let us workout an example or an 

exercise to understand this and apply and gather the skills of application a little bit. This 

is example 3.1. Isopropanol or rubbing alcohol has many biological uses. It is used as a 

drying agent to prevent swimmers ear. It is also used in sterile pads to store biological 

specimens. And, even in certain laboratory procedures such as the one to extract 

chromosomes. So, it has very many applications. And, you will find that we will be using 

isopropanol as one of our model substances for presenting the applications in this course. 

We will use a quite heavily. 

 In one of the steps that was experimented to optimize isopropanol production, it became 

necessary to heat pure isopropanol to 200 degrees Celsius and increase its pressure to 10 

bar. What is required here is, estimate the volume of the vessel necessary to maintain the 

above conditions for one mole of isopropanol. Compare the value … with that obtained, 

by considering isopropanol vapor to be an ideal gas. So, that would quickly give you 

what are the kind of variations that you would expect when something is real and you 

use an ideal gas expression to represent it. And to do that, we will need the virial 

coefficients for isopropanol. These are available in the appendix of your textbook at the 

back. For ease, let me present it here itself. C 2 is, … remember C the coefficients and 

the virial expansion with respect to V. So, C 2 equals minus 3.9 into 10 power minus 4 

meter cube mole; C 3 is minus 2.6 into 10 power minus 8 meter power six per mole 

squared. 



So, please go ahead and work this out. Take about ten minutes. After about ten minutes 

… to think through the problem, to see what is available, what is needed, how do you 

make the link between what is available and what is needed. Go through all your notes, 

the previous slides here. And then, I will start giving you some hints. And then, give you 

more time and then probably present the solution. Go ahead, ten minutes please. 
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Ok. Let me give you some hints to work out the problem. The first hint, which was quite 

obvious, once you thought through it is: consider a virial expansion in V. And the real 

hint is, take the first three terms. And, let me also give you the second hint and leave you 

for another ten minutes to work things out. And, that is the solution is not a very 

straightforward solution. It involves an iterative solution. So, set up an iterative solution 

process for V, or in terms of V; because the specific volume is what we are looking at.  

The volume of the vessel that will hold one mole of the substance, which is essentially 

the specific volume is what we are looking for. And, so set up an iterative solution 

process for the same. Go ahead, please take another ten minutes. 

Let me present a part of the solution and give you some more time because I am not very 

sure how comfortable you are with the iterative solution process. So, to get more 

comfortable with that, I probably need to give you more time. But, first let me present 

the initial part of the solution. 
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Let us begin with the first three terms on the right hand side of equation 3.4. 3.4, if you 

want you can go back and check your slides. It is nothing but the virial expansion in V, 

or the compressibility factor Z expressed in terms of the powers of V or 1 by V. Z equals 

one, plus C 2 by V, plus C 3 by V squared. Let us start with this. It will turn out to be 

decent enough. We are trying to find out the volume. And therefore, we need to express 

this in terms of the volume. Therefore for our purposes, it can be written as, … you know 

Z is nothing but P V by R T. Therefore, if you multiply both sides by R T by P we get V. 

V remains here, the remaining gets cancelled out. R T by P into one, plus C 2 by V, plus 

C 3 by V squared. Let us call this equation 3.4. I will check the numbering a little bit. 

The same; pretty much the same, with just three terms taken. 
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This is the equation and this can be solved iteratively for V. Let me give you the 

algorithm to do it; because we need to do very many calculations. And, once I present 

the algorithm, I would like you to take the remainder of this lecture, may be another ten 

minutes or eight minutes to work that out. Maybe you will need a little bit more time. It 

takes a few steps to converge. 

Let me present the algorithm first, or the procedure. First, guess a value for V. Substitute 

it into the right hand side to find a value … you know … in terms of C 2, C 3 and R T by 

P, and so on. Guess a value for V; substitute it here to get a value. And, compare that 

with the guessed value.  Remember that V was something that we guessed to begin with 

the first time, and then we substituted the same V here to find out this value. And now, 

compare the right hand side with the left hand side. 

 If the calculated value, the right hand side is close enough – you know the operative 

term here is close enough. You know, you might be working with 10 power minus 3 and 

so on and so forth. If all the values are in the range of 10 power minus 3, it does not 

really, it is not really close enough. Close enough to the guessed value. Then, the guessed 

value is the needed value. Otherwise, the calculated value is used as the guessed value 

for the next generation.  

Whatever you calculated here you put it here and then substitute back here to get another 

calculated value. And then, you check how close this is to the guessed value or the value 



in the previous step. The process is continued till the difference between the calculated 

and the assumed value becomes acceptably small. Please go ahead and do this. Try it 

doing for about five steps. That is the hint. So, try it doing for about five steps. And, 

when we begin the next class, I will give you the complete solution. 


