Lecture 1 - Introduction
Lecture 2 - Setting up R
Lecture 3 - Basic functions in R
Lecture 4 - Basic data structures in R
Lecture 5 - Data structures and File I/O
Lecture 6 - Basic statistical tests with R
Lecture 7 - Correlation Analysis
Lecture 8 - Analysis of Variance (ANOVA)
Lecture 9 - Basic data visualization techniques
Lecture 10 - Data visualization
Lecture 11 - Visualization with vioplot and ggplot2
Lecture 12 - R packages for plotting and data organization
Lecture 13 - Data transformation in R
Lecture 14 - Bioconductor packages
Lecture 15 - Flow cytometry data analysis in R/Bioconductor
Lecture 16 - Gene expression analysis and co-expression network
Lecture 17 - WGCNA package and Data Download
Lecture 18 - WGCNA hands-on: Data preprocessing
Lecture 19 - WGCNA hands-on: Soft-threshold
Lecture 20 - WGCNA: Module gene expression
Lecture 21 - Introduction to ChIP-seq
Lecture 22 - ChIP-seq data analysis
Lecture 23 - ChIP-seq data analysis: Peak calling
Lecture 24 - Peak calling and Visualization
Lecture 25 - ChIP-seq data analysis: bigWig/bw files
Lecture 26 - Regression models on Biological data
Lecture 27 - Predictive models with linear regression
Lecture 28 - Multicollinearity
Lecture 29 - Lasso regression
Lecture 30 - Non-linear regression
Lecture 31 - Dimensionality reduction
Lecture 32 - Principal Component Analysis (PCA)
Lecture 33 - PCA analysis hands-on
Lecture 34 - PCA analysis using ‘PCAtools’
Lecture 35 - UMAP analysis
Lecture 36 - Classification of biological samples
Lecture 37 - Penalized and Stepwise Logistic regression
Lecture 38 - Decision trees
Lecture 39 - Classification and Regression trees
Lecture 40 - Random Forests