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Lecture 30: Maximally Informative Dimensions
Welcome. So we have covered the basic concepts of information theory, the

definitions of mutual information, entropy, KL distance or relative entropy. We
have conditional entropy and shown how mutual information is a way to quantify
dependence between two random variables that are not necessarily linearly depen-
dent but can be dependent in some other way. And in fact could be even for cases
where the random variables are not really continuous or parameterizable and can
have discrete kind of elements as their values. So in going forward using to use
this in terms of understanding the stimulus response relationship of neurons, we
would like to talk a little bit about what we exactly mean by this dependence. So
we have looked at our stimulus response correlations.

So stimulus and we have a response. These based on this we have used the
CSR, the stimulus response correlation, cross correlation. And this has been the
basis for estimating the linear kernel or the spike triggered average. All of these
are based on this cross correlation between stimulus and response.

So that means a linear dependent that is a linear correlation between stimulus
and response. So in order to understand a little more basically if we think of one
stimulus element, forget about a vector of stimulus as we have done in the past.
Let us say there is only one stimulus element that is a scalar and we have a rate
that is on this axis. So S value on this axis and R value or some version of R value
on the other axis. So let us say we know that the stimulus and response are related
in a linear manner such that when the stimulus is varying from minus 1 to 1, the
response varies from let us say on a in a linear manner with a particular slope M
and then intercept C.

So the rate increases in this linear manner. Then we have then this way of
determining the model or a linear kernel is useful and we will be able to use that
to predict responses to other stimuli. So an extension of this to higher dimensional
stimulus space is what we were doing. So here the CSR, the correlation is simply
the correlation between the response and the stimulus with this kind of a relation-
ship and it is dependent on how much noise there is in our rate responses because
remember the responses rate responses are stochastic and so if we use a number of
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stimulus values on this axis, we may have multiple responses at the same stimulus
values and so essentially we may get a spread of rates, a cloud of rate responses.
If we use each stimulus and each response pair and do a scatter plot, it may be
forming this kind of a cloud around that straight line.

What CSR is doing is providing the correlation between R and S. Now so if
we have the response to the stimulus between minus 1 and 1 to be of this particular
form, the underlying form is let us say quadratic kind of relationship. So that is our
response R is basically S2. So we can remember we are saying that the stimulus
has only one element, it is not a vector just a scalar and the response is some factor
also must be there. So this rate is equal to AS2 and so with some additive white
Gaussian noise or what have you, I mean the way you want to model, let us say
for simplicity it is n that is n that is distributed, 0 mean and variance σ2 Gaussian
normal distribution.

In that case, if we look at the correlation between CSR which is the expectation
of R times S minus our expectation of R and expectation of S. In this particular
case, if we say that the S is 0 mean, let us say uniformly distributed between
minus 1 to 1 and the A is going to be immaterial. So if I instead of R we plug in
AS2 plus noise times S and let us say because expectation of S is 0, this term goes
to 0. What we have is expectation of AS3 plus expectation of n times S and this is
expectation of A times expectation of S3 plus expectation of n times expectation
of S. This goes to 0 because our noise is 0 mean Gaussian and so this turns out
to be the expectation of S3 which we will see is very much close to 0 under if we
assume certain, if we assume that it is S is 0 mean uniform over 0 to 1, like minus
1 to 1.

So obviously here if now we had plotted our stimulus many we did the exper-
iment many times for different stimulus values. For each of them we obtained a
multiple number of rates and if we now plotted a scatter that would appear a cloud
like this in this experiment with points scattered around this parabola. Then we
will be able to see that there is a clear relationship between them. However, our
CSR is providing a 0 value. So there is a clear dependence but no correlation.

No correlation in the sense that it is linear dependence is absent. So that is why
for the general case here we have taken a simple example of a quadratic function.
There can be arbitrarily many complicated functions and so that is why we need
to know if there is any dependence between R and S beyond over and above the
linear dependence and that is where the mutual information based quantification of
dependence comes in. So in this particular example if we use mutual information
we will find that it is indeed non-zero and so that will show us the power of
information theory capturing dependence. So the other aspect of it is that here we
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have simplified the problem easily in the quadratic case with simply one factor
AS2.

We have removed any linear term there and any constant term there and we
have S as a single element vector or rather a scalar. So we have only one param-
eter A that would be required to be estimated in order to know the dependence
between R and S if had we tried to model R with a quadratic function. But as
you can imagine as soon as you make S two element vector there are going to
be interactions between the different elements of S that has to be included and
there will be four factors four parameters that will require to be estimated. And
if we go on further with S increasing in dimensions to about a hundred let us say
for an auditory neuron generally people or you know scientists look into hundred
time bins of one millisecond each preceding particular time point. So if we have
hundred time point values of the stimulus then we have ten thousand interaction
factors that is quadratic terms and then of course the hundred linear terms and one
single scalar constant term.

So you can imagine how the number of parameters will blow up with increase
in the stimulus space. So for this reason what people have done is or rather this
is based on work by Sharpey et al. in 2004 and neural computation. So here the
method that was developed is the assumption is okay so let us say if this is our
stimulus space S where we have multiple dimensions S1, S2 and so on. Obviously
we cannot show all the dimensions in this let us imagine that it is an n dimensional
stimulus space and actually only a small subspace of it is what matters to the
neuron that is what they call as the relevant subspace.

So what we mean by that is let us say if we are considering an auditory neuron
and looking at its encoding of different frequencies. So if we have this as the
frequency axis then let us say that this is 1 kilohertz and this is 10 kilohertz or let
us say 2, 4, 8 kilohertz. So 1 kilohertz and 8 kilohertz up to here 2, 4 in our log
scale. This is the range of frequencies to which a neuron response in the auditory
system or if we have a visual neuron or if it is a somatosensory neuron where
this represents the entire skin or this rectangle represents the entire visual field in
front. Then let us say we have this region which has an about a hundred elements.

We are not considering the time factor in here we are just thinking of static
stimuli and that is the number of pixels in this area that can be independently
stimulated in order to create responses of a neuron that we are recording from
and we want to find out its receptive field model. So that is the overall space. So
the number of frequency bins that we will have here if it is let us say 8 bins per
octave then we have essentially 32 so this is 3 octaves so we have 24 frequency
bins. So basically our stimulus is 24 dimensional in this simple case of frequency
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based receptive fields of an auditory neuron. And if we have hundred pixels in
that circular region here then we have hundred dimensions of the stimulus.

So the values along each of these dimensions there are the stimuli can have any
value along those dimensions or some range of values along each of these dimen-
sions independently or in the auditory case for the 24 here in the hundred. And so
each stimulus is a single point in the hundred dimensional or 24 dimensional stim-
ulus space and that is what we are representing by S1, S2, S2 up to Sn. And now
let us say within this there is only a few dimensions or a few sub sub region in this
over space in this overall space that is in a subspace the responses are really deter-
mined based on the stimulus in that particular subspace is a relevant subspace. So
we need to be able to find that subspace that is basically providing the responses.
So we need to actually determine what kind of stimuli on which the responses are
dependent and how can we capture the total dependence between the stimulus and
response.

Now when as soon as we are saying dependence we are saying that we will
be quantifying the dependence based on mutual information using information
theory. So the idea is fairly simple in the sense that we start off with a single
vector V in this multi dimensional stimulus space. Let us say this vector maybe I
will use a different color to this is the starting vector V . So this is the responses
let us say I mean we arbitrarily choose one vector. We want to now vary this V
in a manner such that when we look at the relation of the stimulus projected onto
this dimension V and the response then the mutual information between them is
maximized.

So going over it once more so let us say we have different stimuli sorry let us
say we have different stimuli S multiple number of them that are played and there
are corresponding probabilities associated with spiking. Let us say the response
measure is spike I mean this can be extended to any other thing. So let us say it
is a 0 1 yes or no 0 or 1 probability of spike. So that is we have a probability of
spike associated with a stimulus. So let us say this is S1 S2 and so on.

So this is each of those has a certain probability of spike associated with it and
the probability of spike overall probability of spike is the average rate response
of the neuron over the entire period of all the stimuli. So this S1 S2 can be like
the sliding parts of a stimulus throughout a continuous stimulus or they may be
distinct stimuli depending on how we are setting up the problem or whatever sys-
tem we are trying to analyze. So now given this pairs of stimulus and spike what
we can we do have is that the probability of spike given a stimulus and we have
an overall probability of spike and also a probability of stimulus which is in our
design. So this probability of spike given a stimulus is simply a proxy for remem-
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ber for mutual information we need only the joint distribution that is probability
of spike and each stimulus pair the combination this joint distribution is what is
required and the marginals are can be obtained here. So now in this case we can
also look at the probability of a particular stimulus given a spike and we can in
either case we can come up with the information associated or the mutual infor-
mation gained by observing a spike and that is simply given by our P of stimulus
given spike and log2P of stimulus given spike divided by the P of stimulus and
this has to be integrated over all possible stimuli and ds or summed if the stimulus
is discrete then summed over all of this.

So note that I have changed it a little bit from the usual definition and this can
be replaced by the joint and then divided by P of spike that is what we have written
here and this integration of S is taking care of the divided by probability of spike
that will be needed to get the joint distribution outside in the mutual information
formula. So this is defined as our Ispike that is information associated with a single
spike when there is a set of stimuli. Now what is now the relationship how does
the V come in? So we want to change this V in a manner such that if we convert
this Ispike as a function of V we can keep on increasing the Ispike as a function of
V . So remember that if we from the data processing inequality if we have let us
say stimulus to function of the stimulus and then a response here then our I(R, S)
is going to be less than equal to I(R, S). So here we can actually have the arrows
in the other way and then get the same result from the data processing.

So here what we are saying that if we are transforming the stimulus into some
other space which is we will be what we will be doing is projecting each of the
stimuli on to the vector V which is simply the dot product of S and V and we will
call this X . So this is our F (S) that we have defined here this X is our F (S).
So now using this X instead of S we have the same thing that we have Ispike as
a function of V the vector V and after having projected the stimulus S on to that
particular vector V we have over the entire X now we have a single dimension
because X is a scalar ah dX similarly from the S we can get obtain the probability
of we can obtain the probability of X given spike just as we obtain the probability
of S given spike and log2 probability of X given spike divided by probability of X .
So using this idea what if we take if we now keep on changing the V in a manner
such that this Ispike(V ) keeps on increasing if the Ispike(V ) keeps on increasing
and reaches a maximum then we have found the V or the relevant subspace if it is
one dimensional we would have found the relevant subspace that is important to
the neuron that will capture the overall dependence in this at least in one particular
dimension. So if we use any kind of optimization method like a gradient descent
by obtaining the gradient of Ispike(V ) we can basically now update the V in every
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step so we start with an arbitrary V0 we obtain the Ispike(V ) at that particular V0.
So Ispike(V0) at this point we have a gradient of the mutual information over

the direction of V . So we over the some direction in the stimulus space we update
the V to V1 such that our we move up the gradient we get Ispike(V1) now and so
we keep on moving and finally till we reach a maximum and that final V is what
is going to be the relevant subspace had we had only one dimension. Now the
transformation from the stimulus to the response is basically that we stimulus dot
V then there is a function along over it that is providing the spike or probability
of spike and so on or rate in this case. So this function is not available all we are
getting is if the model is based on only one dimension along the entire stimulus
space then that dimension provides that V particular V provides the maximum
mutual information between the stimulus and response had provided we are going
through this one dot vector one dot product step. So now this can be extended
to simultaneously have multiple V ’s to start off with and each of those can be
optimized to reach a higher mutual information.

Again we are only obtaining the subspace V one particular V or multiple V ’s
depending on how we set up the problem. However that function also is important
and that function will have to be determined only empirically from the data that is
after having projected the S onto V we get those X’s and from the data estimate
what rates we were getting for each of the X’s and get a numerical value of the
function over the different X values or essentially different S values. So that
function cannot be obtained through the mutual information idea analytically. So
it has to be in empirical form. So and now if we extend that to multiple vectors it
gradually again runs into the same problem of estimating many parameters and so
on and the optimization becomes more tricky with multiple V ’s.

However there are examples in the literature where two or even three dimen-
sions have been optimized directly. So I do understand that for the purposes of
this course this is a little advanced so this would not be for the entire group of you.
Some of you who are interested more in this direction can look into this as a way
to model systems. For others you should understand the idea behind it as to how
mutual information or information theory is being used in this particular case to
model the stimulus response relationship. In later lectures we will be still using
information theory and looking at coding and decoding but in a different way not
from the perspective of modeling more from the perspective of discrimination by
responses of two different stimuli of multiple different stimuli.

So we will take up those studies in our next lectures where we extend the ideas
of information theory in understanding neural coding and decoding. Thank you.
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