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Lecture 28: Basics of Information Theory - I
Welcome. So as introduced in the last lecture, we spoke about taking help of

information theory in order to understand the stimulus and response relationship
or the transformation from the stimulus to the response. Because as we said that
we can only go so far in terms of systems level model or even network models
to understand the entire transformation totally biologically and because the higher
order models that we will that may be used are require huge amounts of data and it
grows actually exponentially as the complexity of the model increases. So we take
help of information theory not that it requires less data but it goes and takes it to the
limit in the sense that with information theory we can actually provide or quantify
complete dependence between two random variables. So remember our stimulus
we are treating it as a random variable, the response is also a random variable
and in this transformation we have two random variables that are dependent on
each other or could be independent of each other if a particular pathway is not
encoding for any information about the stimulus in those responses. So this overall
dependence, the complete dependence between the two can be quantified using
techniques in information theory and that is what we will introduce today.

So if we go back to our block box model we have stimulus as one side input
to the black box and with the number of processing elements we are getting to
the response. So our random variables are S which is the stimulus and R the
response. So in order to find the relationship or the mapping from the stimulus to
the response we may need to understand first that how much is it that the response
really cares about the stimulus. That is if let us say if this is the entire sort of
information so to speak available about the stimulus how much of it is represented
in R or in the response.

So this how much or this quantification is what we will talk about. So first we
start with the idea of how much randomness or uncertainty there is in a particular
random variable. That is if we have let us say stimulus then before the stimulus
arrives and we get a response to the neuron there is a huge amount of uncertainty
present or if it is only a few set of stimuli that the neuron often sees then it is the
uncertainty associated with those stimuli that are present because we do not know
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what the stimulus is going to be beforehand a priori unless there is some historical
dependence based on previous stimuli and so on. So in any case we that is also
part of the process that if there is dependence then we will have the stimulus space
in a different way. So let us now just think of this fact that the stimulus is coming
once at a time one of the stimuli and there is associated uncertainty about it and
we are now observing the response.

Now on observing the response the uncertainty about the stimulus may be
reduced. We will get into this in a minute and that is essentially what can be
quantified in information theory. So in order to look at how much uncertainty is
reduced we must have to define what uncertainty about a random variable in this
case stimulus is. So let us say the stimulus is being a random variable it takes
on values S1, S2, S3 and so on up to Sn let us say. Now each of these have a
probability associated with it P1, P2, P3 and Pn.

This is assuming that the stimulus is a set of discrete elements that is the
stimulus can be one of these discrete stimuli S1 to Sn and each of these are have a
probability of occurrence P1 to Pn being at random variable. So this can either be
defined by the experimenter in the sense that we are interested in understanding
only a set of stimulus let us say in the auditory system a particular set of sounds
whether a neuron is encoding the presence of a set of sounds only and whether
the responses encode in different manner each of the sounds. So in that case it is
those S1 to Sn that we will be using in the experiment and recording responses
for each of those. And now the probability of S1 and probability of S2 and all the
stimuli are in the hands of the experimenter. And in that case usually the idea is
to give a uniform probability to each of them S1 to Sn that is 1 over n to each of
them.

However we can also I mean depending on the question we can also approach
it in this way that in reality in the natural world these stimuli S1 to Sn may be
occurring with certain probabilities only based on how the stimulus statistics are
over in general in the real world. And then we can associate the probabilities
accordingly to each of those stimuli S1 to Sn. So that is one side of it and so
depending on how we choose the P1, P2 to Pn that depends on the question and
the uncertainty of the stimulus is dependent on that. And so in earlier work I mean
in the middle of the last century around 1950s, 1952 Shannon introduced this idea
of entropy and further on the whole field of information theory developed from
those. And with a priori I mean with some axiomatic properties of uncertainty
or measures of uncertainty it could be shown that the measure of an uncertainty
which we will call measure of a uncertainty of a random variable which we will
say entropy, entropy of the random variable S is how we will write it can be
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defined to be the negative sum of Pi log(Pi) where i is varying from 1 to n which
are the n stimuli that we have and Pi being the probabilities associated with each
of the stimuli.

So this HS entropy is essentially provides the amount of uncertainty present
in a random variable. Now why do we say that I mean to get an idea of why it is
so think about it in this way for a moment. Let us say so another additional thing
is that if our Pi any of the Pi’s is 0 or Pj is 0 then we define that Pi log(Pi), Pj

log(Pj) is 0. So when we have the random variable S taking on the value S1 with
probability P1 and all the other stimuli have a probability of 0 that is P2 to Pn are
0 then given that the sum of P1 to Pn must be 1 given that it is a distribution our
P1 has to be 1 and this uncertainty based on this formula turns out to be 0 log of 1
log of 1 which is 0. So now you can imagine that if the stimulus can take on only
one value which is S1 then there is no uncertainty about the stimulus.

So indeed the entropy is 0. Now in case if you think of it in this way that
what is the maximum possible uncertainty that this particular stimulus can have.
So if you think of it in this way then we must say that there should not be any
of the stimuli occurring with chance less than the any other of them because if
something is occurring with less chance than the other or higher chance than the
other than any other then there is a difference in uncertainty that is the higher or
lower uncertainty about one of the stimuli over the other. So there is some pre-
dictability associated with one of the stimuli at least if it has a higher probability
of occurrence than the rest of the stimuli. So if so that means the uncertainty
is maximum when all the stimuli have equal probability of occurrence that is P1

equals P2 equals up to Pn and indeed you can actually show in here that that is
the case when that entropy of HS is maximum with when it has a uniform dis-
tribution when S has a uniform distribution and as you can imagine when all of
them are equally likely then in the beginning before the experiment is done or be-
fore the stimulus takes on a particular value all of them have an equal probability
of occurrence and so that gives us the maximum possible uncertainty because if
one of them has a higher probability of occurrence that means there is a reduced
uncertainty.

So that is a sort of how we can physically think of how this measure entropy
depicts or quantifies the amount of uncertainty associated with the stimulus S. So
similarly if we now have an additional random variable let us say R then what we
can come up with is what is the uncertainty of the stimulus S given the response
R that is conditional entropy that is we know that a certain R has occurred that
is R is equal to a particular Rj . So for that matter first let us define the random
variable R to take on values from R1, R2 up to Rj so sorry Rm let us say Rm.
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So when the when the response let us say we are doing the experiment and the
stimuli is in our hand and as we have said the stimuli can take on values S1 up to
Sn with the probabilities P1 up to Pn and here the response has a probability of
some occurrence of let us say Q1, Q2 up to Qm based on an overall observation.
So if we are given that the response is a particular Rj then the associated stimuli
have a set of the associated stimuli that can give rise to the response Rj need not
be the entire set of stimuli only a few of the stimuli may be giving rise to the
response Rj or a different probability is associated with each of the each of the
stimuli being possible to produce the Rj .

So here in order to go to the conditional case it is defined by essentially the
average this whole thing is the average of the uncertainty of S given R equals one
particular response Rj and then we multiply or do the weighted average proba-
bility of R equals Rj and sum this over the different j’s j equal 1 to n. So that is
the average uncertainty of the stimulus given the response. So this is the uncer-
tainty in S given a particular response Rj and the average of this whole thing is
this conditional entropy H of S given R. So in other words here we are looking
at the entropy of S given that we know what response has occurred that means
it is essentially showing us the uncertainty remaining in S given that on average
the response has occurred. So we started that with the idea that the stimulus has
an uncertainty S and once we observe the response given R the uncertainty in the
stimulus H of S given R this is the uncertainty remaining in S once R is observed
and the difference between the two is the uncertainty of S that is reduced by know-
ing the response R and that is what we call the mutual information between S and
R.

And you can also show in your reading material you will see that this is sym-
metric in the sense that this is H of R minus H of R given S. So in this case what
we are essentially having is okay so we have two random variables we may be
observing one of them and by observing one of them we are trying to guess the
first one. So we are observing the response and based on the response we are
trying to find out which stimulus has occurred with what probability each of the
stimuli may have occurred and that is the that is basically this dependence that is
there between S and R and the quantification of this relationship that is the entire
dependence between the S and R is done by this reduction in uncertainty or mu-
tual information IS,R. So in order to understand this a little more we have to think
of basically the joint distribution of the two random variables in this case that is S
and R. So let us say a toy example there are possible stimuli this side is S and this
side is R let us say R can be 0 or 1 that is in our case let us say that the neuron
either produces a spike or does not produce a spike the simplest sort of response
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space that we can think of in response to stimuli and let us say that there are only
three possible stimuli S1, S2 and S3.

So if we design the experiment in such a way and that let us say our S1, S2
and S3 are equally probable then the marginal probabilities of S that is PS is one
third one third and one third. Now if our probability of response being 0 and 1
are equal if stimulus 1 occurs then we have the conditional probability of R equals
0 given S equals S1 that is equal to half and probability of R equals 1 given S
equals S1 is also half. So that means the joint probabilities you simply multiply it
with the probability of S equals S1 that is PR,S(R = r, S = s) = P (R = r|S =
s) ∗ P (S = s) this is from the definition of joint and conditional probability so
we have one sixth and one sixth here. Let us say when stimulus S2 occurs mostly
it produces a spike that is let us say for probability R equals 1 given S equals S2
is equal to 5 by or let us say 3 by 4 75 percent of the time it produces a spike that
is 3 by 4 and let us say obviously then P (R = 0|S = S2) is one fourth. So again
using by multiplying by the probability of S equals S2 we have one fourth here
and one twelfth here and let us say now that S3 is such a stimulus that probability
of response equal to 1 given S equal to S3 is very small or let us say 3 by 8 not
very small or let us make it even smaller 3 by 16 and similarly the probability of
R equals 0 given S equals S3 is basically 13 by 16.

So now this here is then multiplying by one third is 1 by 16 and here we have
3 13 by 48. So now if I ask you the question that you do not know what the
stimulus is but you know that one of these stimulus S1 S2 and S3 has been played
to the neuron or the system and you see that there is a spike. What would be
your guess as to which stimulus has occurred? Obviously you will say that the
one with the highest probability associated with the spike is the most likely one to
have occurred which is S2 that is with a 25 percent chance there is a probability
of a spike if S2 occurs but for the other ones there is a lower probability. So the
second most probable is S1 and the third most probable is S3. So by choosing S2
you will be most often right compared to by choosing S1 all the time or S3 all the
time.

Similarly the opposite way if now if you observe no spike on presentation
of stimulus S1 or S2 or S3 and you are asked that which stimulus might have
occurred obviously your answer is going to be S3 because that is the most likely
one that produces no spike as compared to S2 and S1 the next one being S1 and the
least possible one is S2. So in that sense initially before you observe the response
0 or 1 if you were asked what stimulus is going to be played or presented you
would have said that each of them has equal likelihood of occurrence because you
know a priori that each of the stimuli have a probability one third of occurrence.

5



So the entropy associated with the stimulus is the entropy associated with this
distribution one third one third and one third and when we know the response
that is so this is our HS is the entropy associated with this distribution and once
we know the response S equal to either S1 or S2 or S3 then we have H(S|R =
0) + H(S|R = 1) and the average of this that is multiplying by P (R = 0) and
this multiplied by P (R = 1) that is our H(S|R). So what you will find is that
since now given the stimulus the given the response we know that certain stimuli
have higher probability of having been presented than the other ones there is a
reduction in uncertainty about the stimulus and that is quantified by this H(S|R)
and in order to compute this H(S|R) we need to compute H(S|R = 0) and
H(S|R = 1) and we need to have the probability of R equals 0 and R equals 1
which are the marginals by adding the probabilities in the column probability of
R equals 0 comes here probability of R equals 1 comes here and with these we
can compute this H(S|R) and so with both of these together we can also compute
I(S,R) which will be H(S)−H(S|R) which is the mutual information between
the stimulus and response.

So here we have talked about primarily random variable stimuli and responses
that are discrete in nature we can also have stimulus that is in the continuous do-
main or a continuous random variable and R is also can be discrete or continuous
or even let us say both are continuous because we can say that rate over possi-
ble time windows is a continuous random variable that is number of spikes per
second. So in that case we have a similar definition that is I(S,R) is given by
H(S)−H(S|R). So what we mean by little H is for continuous random variables
differential entropy and it is defined similar to the discrete entropy case in this
case we have let us say S has the distribution P (S) or density P (S). So in that
case h(S) or the differential entropy of stimulus is given by the integral of P (S)
negative integral of P (S) log(P (S)) dS and so this is this differential entropy is
not physically the same as what entropy is that is the amount of uncertainty as-
sociated with a random variable we cannot say that but because the entropy of
a continuous random variable H(S) actually goes off to is undefined goes off to
infinity because of we can show that by discretizing the stimulus space with very
small bin size and taking in the limit that bin size goes to 0 we can show that the
entropy or capital H(S) is becomes infinite. Similarly for P (R) also we have the
same definition h(R) and that also is not exactly the uncertainty associated with
R there is a difference between them between differential entropy and entropy.

However when we take a look at the mutual information or IS,R in this case
the meaning is intact because in this case the reduction in uncertainty remains
meaningful because in the limit when we the discrete bin size of the two cases
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cancel each other out and we still remain with the meaning of mutual information
which is the reduction in the uncertainty by knowing one random variable of the
other random variable. And so based on this ideas of mutual information and
entropy we will go forward with few other ideas from information theory to go
into applications of information theory in our concept of neuronal encoding and
decoding. Thank you.
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