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Lecture 24 : Stimulus to Response mapping(Coding) - I
Welcome. So, we will continue our discussion on building models of receptive

fields of neurons of sensory neurons particularly. So, the problem that we are
faced with is that we have a stimulus S and it is being transformed to a response
R and the stimulus is could be parameterized by physical parameters some vector
θ and response could be based a vector also with a certain resolution of time and
as a function of time. So how is this stimulus related to the response or how is
the stimulus encoded in the response is one side of the problem and similarly the
other side of the problem is given a response can we predict the stimulus or can
we find out what stimulus was played and it can be for other things as well not
necessarily a stimulus as we have said it could be other phenomena that is going
on at the time of the responses or at the time of the activity that we are observing.
So this backward problem or the decoding problem is can be approached in a
number of ways and the encoding problem also can be approached in a number
of ways and the most simple way in which we can look at the stimulus response
relationship going from S to R is by using simple linear models or linear time
invariant models. So if we recollect how we have looked at the how we have
developed the idea of spiking by neurons we can actually say that we have sort of
box from the stimulus world let us say we have x(t) as the stimulus and ultimately
what we are observing is a set of spike trains or a set of spikes as a spike train.

So this we will write as P (t) or we can we will essentially write this as a sum
of impulses that is δ(t − ti). So where i is varying from 1 to NT that is what we
are saying what δ(t − ti) is the direct delta function we will go into details of it
in a little bit. We are representing each spike at time ti with this sum. So if there
are there is a time window T here and we are saying that there are NT spikes and
each of those spikes are occurring at time point ti then this is the representation of
P (t) that is the response.

Now in here what is going on is a very big question but for us is for us we
will try to do this that how well can we describe this black box in such that given
new x(t) s how well can we predict the response P (t) s. And so in order to build
these ideas in order to get to the stage where we will be defining models within
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that box or understanding what is going on within that box we need to take a little
bit of background even for the linear models. So the ideas that we will be using is
what we call is linear time invariant systems. So as the words suggest linear we
sort of give you an idea what linear is we will define it properly. Time invariant
simply means that the system itself is not changing with time which is not true for
neurons as we have seen that there is short term depression short term plasticity
as well as long term changes and dependence of spikes due to refractory and so
on.

So this is not a time invariant system however we may be able to approximate
it at a particular situation as a time invariant system. And what we will see is that
these kind of linear time invariant like descriptions of neurons actually works well
especially when we are considering neurons in the periphery that is as we have
discussed in the lateral geniculate nucleus or in the retinal ganglion cell responses
or in the auditory nerve or in the cochlear nucleus certain types of neurons in
the cochlear nucleus can be well described by the linear time invariant system.
Although in the true sense they are not linear time invariant systems. So another
reason why we want to use this kind of system approach is that we can always
approximate system as a linear system over a small region of parameter space as
we have done in the nonlinear phase plane analysis. We looked at the linearization
around the equilibrium points.

This also similarly can be thought of linearization around a particular point in
the parameter space and that description can be a linear time invariant system that
will be sufficient. And as we change that baseline point in the parameter space we
will have different descriptions of the system. So that is another way to conclude
that well the linear time invariant system approach is actually useful even though
the entire neuron is not necessarily so. Further the probably the most important
idea is that even though we have all these problems with these approaches if we
consider the changes in a system. So let us say we describe the neuron with a
linear time invariant system approach in the initial stages.

Let us say there is some perturbation or learning or something in the system
and the neuron changes its properties and then we describe the system with this
linear time invariant system approach. And we see that whatever we can conclude
from this approach before the perturbation or learning and after the perturbation
there will be many pointers that will be available in terms of the mechanism by
which the system change from the one initially which was approximated by that
linear system to the new linear system. So the way the linear part of the system
is changing that itself is very instructive in order to understand what underlying
mechanisms may be going on that produce that change. So we will also discuss at
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a point of time examples of this where this approach tells us about the underlying
changes in a system that is actually learning something during behavior. So with
that sort of background on why we want to study linear time invariant systems
to describe neurons I hope you are convinced that even though neurons are very
nonlinear I mean very nonlinear is not a very good term although neurons are
nonlinear still we want to use such approaches.

So now to formally say what is a linear system so first of all let us say what is
a system. System is essentially what we drew in the previous slide that this is our
system that takes an input and produces an output xt as input and output is p(t).
So if we say that this xt is the input we have a system s and the output is y(t) for
now is easier to say then the system s is called a linear system if for an input x1(t)
the system produces an output y1(t) and if for an input x2(t) the system produces
an output y2(t) then if the system is given the input scalar times x1(t) plus another
scalar times x2t as the input the output can be said to be ay1t + by2t. So this is
what we call the superposition principle and if a system follows this superposition
principle we say that it is a linear system. So like the example that I was giving
in an earlier lecture that orientation tuning of a neuron that if we have one bar and
response we know and another bars horizontal bars response we know then if we
have these two together then the sum of the responses is the response when we
have the two together.

That is essentially what superposition principle says and what time invariant
means is that if I have an input xt for the system s and there is an output yt then
if we shift the input by time τ then the output is also shifted by time τ and for
any τ . So this is time invariance that is essentially if I give an input now and
measure the output now and an hour later I give the same input I should get the
same output that is our xt translated by one hour it produces yt also translated by
one hour. So that is what we mean by time invariance and a system that follows
both superposition principle and time invariance is what we call an LTI system
or linear time invariant system. Now the advantage of an LTI is that we can
completely describe the system if let us say the system s is now an LTI then if
we have an input xt we can always find out what yt is if we know some particular
property of the system which we call the impulse response. That is when xt is δ(t)
that is the Dirac delta function that we had said then the output yt that we measure
let us say it is ht.

So for input δ(t) we are getting an output ht. So if we know this ht for an LTI
we can show that for any given xt as input to the system we can find out what
the output yt is going to be and that is

∫∞
−∞ xt(τ)ht−τdτ . This is also called the

convolution of xt and ht. So this integral is the representation of the convolution.
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So why we can get that it is it follows simply from the linear time invariance prop-
erty and the fact that the Dirac delta function can be used to represent any signal
xt or scaled and shifted versions of delta functions added together can be used to
represent any stimulus xt and since the system is LTI or linear time invariant and
we know the output for δ(t) which is ht we know the output for any xt because xt

is simply scaled and shifted versions of δ(t) and linear time invariance says that
we can simply sum up the responses to get the sum up the scaled and shifted sum
of the responses in the same manner and get the overall output.

So to define δ(t) let us say we have been saying this Dirac delta function so this
will come up later on also the δ(t) can be defined in this manner it is an impulse
many of you may already know this δ(t) is that it is actually 0 for all t ̸= 0 and it
is not 0 for t = 0 and

∫∞
−∞ δ(t)dt = 1. There are many properties of this δ(t) that

will come into use is that if we multiply δ(t) with some other xt and integrate this
over the interval let us say −∞ to ∞ this simply means that it is an evaluation of
xt at wherever this delta is wherever this t is 0 so it is essentially x0 and if we shift
it if it is t − τ then it is an evaluation of xt at τ . So these things will come up in
our later lectures when we talk about how to analyze these linear time invariant
systems. So having said all these things it is essential that to describe an LTI we
need to be able to find out this ht or the impulse response. So if we can somehow
measure or find out what the ht is we are done we are done describing the system.

So how do we describe or find out ht so and how do we bring it into the overall
picture of stimulus to response scenario for a neuron. So as we had been saying
let us say this is the stimulus xt and we had this big box and we have this output pt
and remember that pt is this summation of δ(t− ti) at for i = 1 to NT that is there
are NT number of spikes in T time window for which the response for which the
stimulus is on that is xt is played. We cannot say that this itself is the LTI or we
cannot approximate this as the LTI because from xt from any xt being able with
an impulse with the impulse response it will not be possible to generate impulses
in this case given a smooth kind of xt. So now we bring into the picture what we
have learnt about the neuron so far. So we said that we can represent the response
by rate as a function of time or λ as a function of time and that λt or Rt is the
driving function for an inhomogeneous Poisson process or the point process that
the spike train is and these events are represented by the δ(t).

So λt essentially is saying that the average rate at a particular instant t that
based on many many repetitions the spiking events in that instant t and δ window
around it that the probability of spikes occurring in that window is proportional to
this λt provided that there is only one spike possible in that window. So what we
can approximate the system by is so λ(t) is the driving function. So let us say we
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have somehow get a λ(t) that serves as an input to a point process generator that
is producing the spike train PT. So I am starting from the back end of it. We know
that PT is a set of events successively occurring in time and λ(t) is the overall
driving function which is creating those events over time and that this process is
an inhomogeneous Poisson process that is a λ that is changing over time.

So what is it that is actually driving the neuron to produce spikes at a particular
window. It is its membrane potential when it crosses a threshold then there is a
spike. The higher it crosses the threshold the longer it will take to come back down
and so there will be larger period of time over which there will be high probability
of spiking that is if we repeat it from over and over again with some additional
noise and so we can represent this λ(t) to be generated by the membrane potential
of the neuron. So as a proxy for λ(t) we may now think of it in this way that if we
have the membrane potential somehow coming into this box that produces λ(t)
then this box would need to have a function that is converting let us say this is
y(t) that is converting this y(t) into λ(t) and how so the first step is that there is a
threshold. So let us say our y(t) is here and λ(t) is here.

So the rate is 0 up to the threshold membrane potential. So there must be
a threshold and after that there is an increase in firing rate or the probability of
spiking as the membrane potential is larger and larger and we also know that
there is an upper limit to this firing because of relative refractory and absolute
refractory and also naturally there are other limits to the number of spikes a neuron
can produce in terms of the ion channels that are present and so on and so there
must be some sort of a saturation and an often used function is like this that has
a threshold that saturates or a sigmoid like function or something like this that is
the transformation from y(t) to λ(t). However, it is not necessary that it is always
going to be like the figure that I have drawn there may be cases where this function
is something like this or there may be cases where this function is simply like this
straight going up to a certain range and is undefined beyond that and so on. There
are many possibilities. So and that depends on maybe other inhibitory inputs that
are there and so on.

So in general we can think of this y(t) to λ(t) transformation as a static non-
linearity that is we plug in y into that function and get out λ from that function
and that is a nonlinear function. So let us say that we represent this by a nonlin-
ear function that is producing λ as a function of y λ as a function of y or we can
call this maybe some nonlinear function s(t). Now the question is whether before
y(t) the transformation from x(t) to the membrane potential y(t) can we repre-
sent that as a linear time invariant system. So this here is preceded by a box which
has which is which we are assuming to be a linear time invariant system that takes
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x(t) as input and convolves it with the impulse response which let us say produces
something that is akin to the membrane potential of the neuron which is then pass-
ing through a static nonlinearity which is generating the probability of spikes that
is the rate of spikes λ(t) which is driving the point process. So this is the setup of
the problem in the sense that if we were to approximate the transformation of the
stimulus up to the neuron that we are recording from its membrane potential that
entire chain of events with a linear time invariant system.

So obviously that it is not a very good I mean it will appear to be not a very
good assumption but as I said we will also see that many neurons can be well
described by this h(t) and for the other reasons that we have mentioned this these
kind of models are useful. So now we are left with the task if we want to find out
what PT is going to be given any x(t) we need to be able to find this nonlinear
function actually and h(t) actually if we know h(t) that nonlinear function can be
easily estimated from the available observations. So we this whole problem boils
down to finding h(t) since it is a linear time invariant system we know that if we
know the impulse response then we know everything there is to that LTI. So if we
can somehow given some x(t) we know what the PTs are from these observations
can somehow find out what this h(t) is going to be is then we will be done with
creating this model. So that we will see is will essentially be what we call the spike
triggered average and that will require our ideas of autocorrelation function and
cross correlation functions that we have introduced and we can show that indeed
we can in spite of this nonlinearity present arbitrary nonlinearity present we can
indeed model the system with an h(t).

So we will take up that in our next lecture. Thank you.
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