Next Generation Sequencing Technologies: Data Analysis and Applications
Assembly and Quality Control
Dr. Riddhiman Dhar, Department of Biotechnology
Indian Institute of Technology Kharagpur

Good day, everyone. Welcome to the course on Next Generation Sequencing
Technologies, Data Analysis, and Applications. We have discussed different algorithms
for de novo genome assembly, starting with next-generation sequencing datasets. So, in the
last class, I introduced the last algorithm, which was the de Bruijn graph assembly, and we
talked about the steps that we needed to perform to get to the reference sequence. So, what
we will do today is look into special cases again with this de Bruijn graph assembly, and
then we will talk about the subsequent steps after we have done the assembly. So, this will

be the agenda for today's class.

So, we will talk about DBG assembly with non-uniform coverage and sequencing errors,
how these non-uniform coverage and sequencing errors actually affect the assembly
process, and what the outcome is. We will then talk about the different tools that are
available for assembly. So, these tools are based on the algorithms that we talked about.
So, I will just briefly mention those tools that you can use, and then we will talk about the

assembly quality.

So, once we have assembled the genome, we need to evaluate the quality of the assembly
process. So, whether the assembly is actually good or whether there is some scope for
improvement, those things can be assessed using this assembly quality process. So, | will
discuss that, and finally, we will talk about something called genome annotation. Once you
have assembled the genome, you want to identify the different features that are within it.
For example, you want to identify the genes for it, or the codon coding sequences, exons,

introns, etcetera.

So, these will be the keywords for this class assembly quality and annotation. So, let us
begin with the de Bruijn graph assembly. I will simply highlight the steps. So, the first step

is to start with the reads that are of length k, and we generate the left k minus 1 mer and

the right k minus 1 mer for every read that we have in the data. The second step is to
generate this directed multigraph based on this left and right k minus 1 mer because these

left and right k minus 1 mer share an overlap of length k minus 2.

We utilize that property to generate the directed multigraph. In the third step, we actually
look at the properties of the graph that we have created, and we talked about these balanced
and semi-balanced nodes. Based on the fulfillment of certain criteria, we can check whether
there is an Eulerian path that is available in the graph. So, this is something that will
establish that there is an Eulerian path. So, we also talked about this Eulerian path, right?
So, this is a path that traverses every edge exactly once, and as we traverse through the

graph using this Eulerian path, we actually generate the reference sequence.

So, we derive the reference sequence by traversing through this Eulerian path. So, what
will be illustrated today is that we will see that different graph assemblies may not always
keep the right reference sequence, and we will start with the same example that we talked
about in the last class. So, why would this happen? Why would you not get the right
reference sequence? So, because in a graph that satisfies all the criteria, there might be
multiple paths, It is not necessary that you have just one path that is unique, but you can
have multiple Eulerian paths, and we will see in an example that these multiple paths can
give rise to different reference sequences. So, again, these are highlighting the limitations
of the assembly algorithms, and it is good to know this because then we can think about

ways to actually address these issues.

So, let us start with the same example that we actually worked with in the last class. So,
here is the reference sequence on top. As you can see, the reference sequence is the same
reference sequence that we talked about in the last class. Then we have reads of length 4,
okay? So, here the k equals 4 right, and | have written down all these 4 marks for this
reference sequence. So, what we do now is, from these k marks, generate the left and right

k minus 1 marks.

So, as we discussed, this is the first step. So, that is what we do, and from that k minus 1

mark, we generate this directed multigraph, ok? We generated this directed multigraph in
the last class. So, | am not going to go into those steps again, ok? So, what | am showing

IS that this IS a directed multigraph with nodes.

So, these nodes are k minus 1 mers in the connections; these are the edges right, showing
the overlaps, and they actually signify the k mers. So, as we traverse through an edge, we
get a k mer. In addition, I am showing these two numbers, which we also introduced in the
last class. So, the first number is the number of incoming edges, right? So, this is the in-
degree for a node, and the second number in blue is the number of outgoing edges of the

out-degree for every node.

So, we are using this convention to denote this in degree and out-degree for this node. Now,
why are we considering this in-degree and out-degree? Because these are important to
decide or derive whether there is an Eulerian path available in this graph. And the condition
was that there could be at most two semi-balanced nodes, and the rest of the nodes should
be balanced, again reminding you about balanced and semi-balanced nodes. So, balanced
nodes are the nodes where the in degree equals the out-degree. So, in this graph, you see

all these nodes here right; these are balanced nodes, ok?

So, the in degree and the out degree are identical, but then you have two other nodes, ok,
this one here and this one here, where the in degree and the out degree are not the same,
but then the absolute difference between the in-degree and the out-degree is equal to 1. So,
this means these two nodes are semi-balanced, okay? So, this graph then satisfies the
criteria that we define as right. So, you have at most two semi-balanced nodes. So, we have

two here, and the rest of the nodes are balanced.

So, this means there must be an Eulerian path in this graph, ok? So, this is the right
condition, which is satisfied. Now, we have to find the Eulerian path, okay? And last time
we traversed through this graph to actually find the reference sequence, I just mentioned
that we could have an option, but we took one path, and we actually got the right reference

sequence. So, if you go back to the last class, you will see that this is the path we took right,

which | will highlight with these red arrows. As you can see, we are traversing between
these two nodes, GGC and GCA, and we got this GGC right.

So, this is the reference sequence that we are building as we traverse through this path,
right? So, every edge actually gives back the KMR. So, we took this path last time, right?
So, we are going in this direction from GCA to CAT with this red arrow, then from CAT
to ATG right. And as we go along, we are also building the reference sequence. At the
bottom, you can see that | am just adding the letters.

And then we completed this process again without going into the full details. We completed
this process right, and we actually traversed through the full graph. Finally, we reached
here, and that is the end, and we got back the right reference sequence. So, this is something
we explored in the last class. Now, the question is: are there alternate paths in the graph?
We start at the same point, right with that red arrow. So, if we start at the same point, is

there any other path that is also Eulerian? So, let us look at these options, right?

So, here you have these two options. So, last time we took this option right here we took
this branch, but now we also have this branch. So, what happens if we traverse through this
branch, which is highlighted by this blue color? So, a blue-colored arrow you can see. So,
if we traverse through that branch, what happens?

So, let us traverse through that and let us see whether there is an Eulerian path, and if there
is, then let us find the reference sequence for that path. So, we traverse through this now I
will show you step by step again now highlighting with blue arrows ok and this is the path
that we are taking we are also building the reference sequence and then we take the self-
edge right we are adding these letters to the reference sequence then we take the next step
then the next one right we are going through this right this these are the solutions from this
ATG now we have to take this to TGG right that is the way the arrows are given right in
this graph So, we go to TGG, and we then go back to this GGC, right? So, that is where
we started, right? So, we have now again this option, GGC to GCA, where there are two

edges.

So, we are taking the second edge, and now we are traversing through the second edge. In
essence, we are kind of now utilizing all the paths that are available or traversing through
all the paths that are available. Now, from this point, we can take the upper path. So,
towards CAT right because we have already taken the downward path. So, we take the
upper path CAT, and then we reach the final node ATG. So, we have traversed every edge

exactly once in this graph, which means this is an Eulerian path, and corresponding to that

path, we have the reference sequence.
/ 1,1 R 1,1
CAT —> ATG TGG
GGC >

1,2 2,2 1,1
CAA o AAR o AAT
O

272
GGCAAAATGGCATG Not the correct
reference sequence!
GGCATGGCAAAATG

Now, we can compare this to the reference sequence that we started with, and it turns out
that this is not the correct reference sequence. | have written down the correct reference
sequence that we got earlier, and you can see this difference right there. So, the first two
first three are actually identical, and maybe the first four are identical, right, and then the
last three are also identical, but then in between there are some changes, ok, and you can
see the order is different in this AAATGGC. This order is different between these two
reference sequences that we derived from the same graph, ok, and that is because of the
specific structures maybe some elements are repeated. So, that is where we are getting this
kind of structure where you can have multiple Eulerian paths and we end up with different
reference sequences ok? So, this is something that we should keep in mind. It is not always
necessary that we have a unique reference sequence derived from a multigraph. So, now

what we will do is take another example where we will actually do the assembly with repeat

sequences, and we will see how the Bruijn graph actually handles them.

So, we will take this input sequence. We have used this input sequence before for the OLC
approach, etcetera. So, we will take this example of a very, very warm day. So, we see this
repeat very clearly; you have this very, very part right. So, this word is repeated three times

in this sequence. So, this is the repeat region, right? Let us build the de Bruijn graph, ok?

a_very_very_very_warm_day |nput Sequence
a very ry war
_very ¥ _wazm Read sequences of length 6
very v warm
ery:ve 7warm:d (k=6)
ry ver arm da
y very rm day
_very
very v
ery ve
ry ver
y very
_very
very w
ery wa

So, we work with a sequence of length 6 as an example; you can try with other lengths as
well; that is not an issue. So, the process is exactly the same, ok? So, here are the reads that
you can find in this sequence, and you will probably notice some of the reads are repeated.
So, because they are coming from the repeat regions, and one of the assumptions that we
are making is that every region is represented equally, What it means, in other words, is

that we are expecting uniform coverage.

So, every region of the genome is covered uniformly. So, we expect uniform coverage, and
we will see later on what happens if we deviate from that assumption. So, with this ideal
scenario, we now build all these left and right k minus 1 mer ok. Of course, | would not
have time to describe all this. So, you can see them on your screen. You can take a pen and
paper, and then you can derive all these left and right k minus 1 mer yourself by following

the same process that we described before.

So, once we have built this left and right k minus 1 mer, we can now build the directed

multigraph, and this is how it looks. So, again, the process is exactly the same as before

what we have discussed, ok? We add these edges between left k minus 1 mer and right k
minus 1 mer, and we kind of keep on adding edges right, and we end up with these multi-
edges, and until we exhaust all the reads that we have, ok. So, if we follow the same steps
now, we can identify the balanced nodes or semi-balanced nodes by pointing out the in-
degree and out-degree values for every node in the graph. And as you can probably see in

this figure, you have two semi-balanced nodes.

So, here is one right This is semi-balanced, and here is another one, ok? So, these two are
semi-balanced because the in-degree and out-degree absolute differences are 1. For the rest
of them, they are all balanced because a degree is equal to our degree, ok? So, we have two

semi-balanced nodes, which means there is an Eulerian path in this graph.

And what we have to do is then traverse. Through this graph, we can trace this Eulerian
path and derive the reference sequence. So, let us do that right. So, we start from this point
right again. We start with an edge that is semi-balanced and where the out-degree is greater
than the degree right. So, we start from here, okay, and we are traversing again. | am
highlighting these paths through these red arrows, and we will kind of show this very
simple step because this is the kind of straightforward path right. So, we traversed up to

this point; now we go up, right?

So, we are taking this path here; we are going up here up to this point again, ok? And then
we traverse to another edge, right? So, another round of reversal through this region right
through these nodes and then we go up again right using the black ones. So, black ones we
have not traversed yet, and then we come back, come down here to this node right, and

now we have to take the right.

11

0'1 > a_very_very_very_warm_day
>
y_war > L1 Correct reference
20 sequence with the
| . / > repeats
33 S
v 1,1
22 o
Carm_d > 1,0
22 14
e
2,2

We have completed the traversal of this part. So, we can take the right now, and once we
take the right, you can see this is very straightforward. We have this simple path that can
traverse through all these nodes, and we end up with the reference sequence on the right.
So, as we are traversing, you will see I am writing this reference sequence on the right, and
we are getting the reference sequences derived as we proceed through this graph. So, what
do you notice in this case? So, we have derived the reference sequence, including the repeat

sequences. So, this is the correct reference sequence with the repeats that are available.

So, what you can see, at least from this ideal example, is that the right DBG assembly can
resolve repeats to some extent, but then the assumption is that all regions are covered
uniformly by the reads. So, this is a very critical assumption, right? The moment we shift
from that, the whole thing will change. Now, why am | saying this is critical? Because in
real life, it is very unlikely that you will get uniform coverage from all the regions in the
genome, and in that case, you might not be able to find Eulerian paths on the graph. So,
what will happen if we have non-uniform coverage? We will see that this can lead to graphs

that do not have any Eulerian path.

So, this is the example we will take. We will do the assembly with non-uniform coverage,
ok, and we will take the same example. What | will do is, | have also turned down the read
sequences again, as before, of length 6, to generate this non-uniform coverage. What | will

do is, like, remove one read from the data. So, which | have highlighted here, you can see

right this read is removed. | have removed this read right. So, this means this will create
this non-uniform coverage because a part of this reference sequence will not be covered by

the reads. So, what happens now? So, we go through the same process | have.

a_very _very very v ery ve ry_ver
/ N / N N / X
Fe a ¥ Ta Ta ¥ S ¥ A
a ver _very _very very very_ ery v ery v ry ve ry_ve y_ver
y_very _very_ ery_ve ry ver y_very
5 V4 \\\ / NG N > >
¥ Sa ¥ Sa ¥ - ¥ a ¥ \A
YENSL Nexy. _very very ery v ry_ve ry ve y _ver y ver very
very very w ery wa ry_war YiWazm
/ NG G 5= T = N
¥ e ¥ Ta ¥ “a ¥ Sa ¥
NeLY Very- -very ery_ ery y_wWa ry wa y wa y_war
arm_ warm_d a da LM Cay
\\ . N\
D/ \A 4 \A » - ¥ -
m_da m_day

So, remove this k minus 1 mer construction for this read because this read is not present
anymore, and we can use the rest of the k minus 1 mers to create the multigraph that we
created as before, ok? And once you create this right, what you will notice is that from this
one right connection, this one of the connections will be removed right because this read
is not there anymore. So, these two k minus 1 mers will not be there in the graph, which
means we will have one less edge here between these two nodes. Now, the moment you
have this difference removed, what you see is that we have created two other nodes that
are also not balanced. So, we have had two nodes that were semi-balanced right now, we
are not balanced, but we have now created two extra nodes that are not balanced either, ok,
because of this removal of this edge.

Now, you can see the in-degree is not equal to the out-degree; right, they are semi-balanced:;
the difference is 1; the absolute difference is 1; ok. So, this means that in this connected
graph we have four semi-balanced nodes, ok, and this means we cannot say that there is an
Eulerian path, right? So, there is no Eulerian path because we are not satisfying the criteria
that we discussed before. So, for an Eulerian path to exist, the graph should have at most

two semi-balanced nodes, but here we see four semi-balanced nodes.

No Eulerian path!

So, this is the problem now. So, if you do not have an Eulerian path how do you define it
and derive the reference sequence? So, that is the problem that we end up with, and you
can probably see now that we will not be able to derive the reference sequence. Maybe
some part of the graph will be Eulerian; maybe you can have this; you can disconnect
certain parts; you can probably see right; maybe this right part is here; if you remove this
part right from this edge and you can see this part, this part of the graph will be Eulerian.
So, you can derive the reference sequence OK, and similarly, you can see whether certain
parts of this graph are Eulerian, and maybe you end up assembling fragments of the

reference genome OK. So, these fragments are the contigs that we discussed before, right?

So, these are what we usually get at the end of the sequencing process right at the end of
the assembly because of these reasons, but because you will not get equal coverage or
uniform coverage across all regions in real sequencing experiments, ok. So, we will talk
about another scenario. So, we have to do assembly with sequencing errors, right? So, this
IS quite common because the sequences that we work with make errors. If you are working
with short reads, there will be errors; if you are working with long read data, etcetera, you
will also have errors and a lot more errors. So, this is something that we would have to deal
with in the real part, where we cannot just apply that de Brujin graph assembly in the ideal

word.

a_very very very warm day Input Sequence

H_V() I"y r'y_wa e
g yawarn Read sequences of length 6
very v warm
gry:ve _warm:d (k=6)
r@ ver arm da
é%; y_very rm _day
_very
very v
ery ve
ry ver
y very
very
very w
ery wa

So, we have to deal with these issues in the real world. So, let us see what happens if we
have a sequencing error in one of the reads. So, for doing that, we have taken the same
example, ok, with the same reads as what | have done here for this one read here. | have
changed the letter instead of this, and | have now made it rz ok. So, this is a sequencing
error; this z did not exist in the reference sequence, and we have a different letter here. So,
let us see how this will impact the deBrujin graph assembly process. So, again, as before,
we are getting the same k minus 1 mer. Now here is the read with the mutation right; we
have this rz underscore ver right, and we have derived the k minus 1 mer left and the right

ones, ok.
a very _very very v ery ve
// \\ / ‘\\ \\\ N
A » R » A » A
a_ver _very _very very very ery v ery v ry_ve
y_very _very_ very v ery ve ry ver y very
= ~ ~ > W,
~ ’ ~ S . P ~ 7 A s
/ Y ¥ “a ¥ “a ¥ A ¥ N .'/ \\.
y ver _verx _very very very_ ery v ery v ry ve ry ve y ver y_ver _very
_very very w ery wa ry war y_warm
/ N / N TN

So, what we are going to do with this is now construct the directed multigraph. When you
construct the directed multigraph, what you will notice is that this rzz underscore ve does
not exist, and this k minus 1 mer does not exist in the graph. So, what will happen is that
these two k minus 1 mer will form a separate graph, which is disconnected from the main
graph, and on top of that, what you will notice is that we have again created two nodes that
are not balanced. So, we already had two earlier nodes, one at the beginning and one at the

end, but in addition, we have created two other nodes that are not balanced. So, again, you

cannot find an Eulerian path in this directed multigraph, ok?

As before, you can probably disconnect certain parts and see if that part of the graph is
Eulerian, and perhaps you can derive the reference sequence, and on top of that, you have
this disconnected component. So, this is something we cannot do anything about, and we

might then have to simply keep this kind of component; we cannot really derive anything.

: 0[1 1,1
1,1
ry wa R 11
33 Cery D AT

Disconnected
Component!

33 oG M t
i

i o

Eulerian! 12

So, as you can see, these sequencing errors can again disrupt this assembly process, and as
I mentioned in this part, this biggest component is not Eulerian because of the reasons that
we just discussed. So, one of the other points that | just wanted to mention is that in deep
brain graphs, we also sometimes use edge weights. So, this is something that we do because
if we have, let's say, an average coverage of 30, 50, or 100 X for a genome, you do not

want to have these 100 edges track right.

So, instead of drawing all these edges or storing this information, we can simply put a
number saying there are 100 edges. So, those connections, the number of edges, the arrows,
or the number of edges could be the weights of those edges, right? So, I will just illustrate,
right? So, this is actually done for coverage, where you have this high coverage for genomic
features. As | mentioned, it can be 50 to 100 X, and instead of drawing or keeping track of
all edges, when you are doing the computation, you can give one edge weight for each

distinct k-mer.

So, this k-mer is the edge, right? So, the edge represents a k-mer that we have discussed.

So, I will just illustrate with this example. So, this is the same example as before: we have
these edges now. Here the numbers are small, but you can imagine if instead of these 3 or
4 or 2 right, you have let us say 30. So, we have to keep track of all this information; it is
actually better than to actually convert them to numbers and say we have 3 here; this will

automatically signify we have 3 edges here, ok?

So, this is something that can be done, ok? So, to summarize what we have discussed about
de Brujin graph assembly, So, DPG assembly does not require pair-wise compression of
reads, which actually saves time, and this means this algorithm will be faster than the other
methods that we discussed, namely OLC or SCS. So, what we have also seen is that if a
graph satisfies these criteria for Eulerian paths, we can get the reference sequence by
traversing through the multigraph, and we have also seen that there are different scenarios
where you can have multiple Eulerian paths and might end up with the wrong reference
sequence. And finally, we have also seen that if you have non-uniform coverage repeats
and sequencing errors, this can affect DBG assembly. So, we took some illustrations, and
we have shown that this can disrupt the assembly process, and of course, there are ways
we can address this one. Of course, look for subgraphs that can be Eulerian or maybe

correct for sequencing errors.

So, maybe if you are working with long read sequencing data as well as short read
sequencing data you can use the short-read sequencing data to correct the long read data.
So, that will reduce the error. So, you can take different approaches to address these issues,
ok? So, what do we get after we have done this denovo assembly? So, whether we have
used the OLC approach, the DBG approach, or the SCS approach, whatever the approach,

what do we get at the end?

So, we usually get multiple contigs. As | mentioned, right repeats remain in many cases,
and even with DBG assembly, these repeats will persist because of non-uniform coverage.
So, we end up with these multiple contigs, and there are gaps between these contigs, ok?
And to cover this, we do something called scaffolding or gap closure. So, this is usually

done between paired ends using paired ends, right?

So, imagine you have these two contigs, right? So, this is contig 1, and this is contig 2,
right? And in case you have some reads between these contigs, So, with this paired end
data, you can use those to actually do the gap closure, or what we call scaffolding. So, as
you go around and go about this assembly process, you will see you can have these different
levels of scaffolding. You can specify what level of scaffolding you want, etcetera. And

here is a reference describing some scaffolding algorithms that can be used for this purpose.

So, | will just now mention some of the tools that you can use for the assembly. So, we
have discussed the algorithms, and these are implemented in different tools. Of course,
they are based on some of these algorithms, but they take slightly different approaches and
some different implementations. And the early tools for assembly were the Celera; this is
the assembler used for human genome assembly again based on the OLC approach. And

then you also had the Newbler, which was the 454 sequencing assembler.

For assembly today, you have velvet available. So, this is based on the print graph method
that we discussed. Here is a link and here is the reference paper that you can go through.
Similarly, you have other tools; I am just mentioning some of them, which I will not discuss
because we have discussed algorithms and the implementations might be slightly different.
I will just give you references in case you want to read more and understand these tools
better. You will find the links here, ok? So, here is another tool called Hinge; this is an
OLC-based approach, and here is a link and the reference paper. And similarly, you now

have other sets of tools that are based on De Bruijn graph assembly.

So, one is SOAPdenovo version 2, then you have SPAdes, again, this is the De Bruijn
graph-based assembly method. We have another one, which is the IDBA. It actually has an
interesting extension that can work with highly uneven coverage or depth, as you can see
in the title of the paper. So, this is again a very interesting extension of the original tool,
which is the IDBA. And finally, there are also other tools that can actually utilize other
types of methods; we have not discussed other types of algorithms or extensions of those

algorithms. So, here is one, which is called the SGA. This is a string graph-based assembly,

and here is the paper and the link to that.

Now, once you have done the assembly, you need to assess the quality of the assembly. As
we have done all throughout, we have checked the quality of the read, the quality of the
mapping, and here we want to check the quality of the assembly. We very briefly talked
about this assembly quality when we were talking about transcriptome assembly. So,
similarly, when you are doing genome assembly, you would also have to look for quality.
And one of the matrices that we defined earlier is called the N50 metric, and the explanation
for N50 is very simple. So, let us say the N50 value is X. This means that at least half of all
assembled contigs are of length X or higher.
* N50 metric

N50 value = x

- at least half of all assembled bases from contigs of at least length X’

So, if x is, let us say, 5 kB, it will say that at least half of all assembled contigs will be
greater than 5 kB. So, this is how we actually look at the data. So, if you want this value to
be higher, that would mean you have managed to get close to the actual chromosome or
genome. So, we also look at contig numbers, and we want these numbers to be as small as

possible, and in the ideal world, we want them to be close to the chromosome number.

And in addition, we also check for genomic coverage and genomic completeness. So, how
do you check this? So, from other experiments, we have some idea about the genome size
number of chromosomes, etcetera. So, we can utilize that information and see right how
much of that genome size is covered by these reads that we have or the contigs that we
have generated, right how much of the full genome we have covered with the reads, and
also the coverage right how many reads on average we see for each location of the genome.
So, these are very important parameters and they have actually been implemented in
different tools. Again, I will just simply mention these tools. You can find the links, and
you can also go through the papers and utilize them for your research. Finally, the final
step after we have checked the quality is something called genome annotation.

So, you have derived a new reference sequence, right, but then it is simply just the basis,
right, ATGC, etcetera. So, what we need to do now is add more information, add
something, or associate these bases with genes, exons, etcetera, and this process is called
genome annotation. So, there are two types of annotation that you can do. So, the first is
structural annotation, okay? So, this is about identifying structural elements of the genome,
for example, genes coding regions, exons, or introns, and this you can do through
something called gene prediction.

You can, of course, check closely related species or organisms and see whether there are
some sequences that resemble genes from those closely related species. So, you can do this
gene prediction, or you can also combine this analysis with transcriptome analysis. So, the
advantage is that with the transcriptome, you know which regions of the genome are
transcribed. So, you can now start identifying the gene regions—the coding regions—
exons and introns, which we can do very easily if you also combine genome data with
transcriptome data. The second type of annotation we do is called functional annotation.

This is actually much harder because what you want to do is infer gene functions.

So, we have now identified some genes, but we want to infer gene function, and we have
to do this through comparative analysis because the experimental determination of function
is very difficult, tedious, and time-consuming. So, we would have to do this through
comparative analysis with related genomes to see if similar genes exist in other organisms,
and if we know the function of those genes in the related organisms, we can then say this
gene also has a similar sequence. So, it is likely to perform the same or similar function.
Alternatively, you can also do domain predictions. So, for specific functions, you have
specific protein domains, and if you see the presence of certain domains in certain genes,
you might be able to predict right away that this gene is probably associated with this kind

of function.

So, here are the references for this class, and to summarize, we have extensively discussed

deep brain graph assembly and have seen that it does not require any comparison for

overlaps. So, it builds this overlap graph or multigraph using the k minus 1 mer in the data,
and then we can identify whether there is an Eulerian path, which enables the derivation of
the reference sequence. Of course, we also talked about exceptions. So, there are different
scenarios where we cannot find an Eulerian path or where there could be multiple Eulerian
paths, and we have talked about assembly quality assessment because once we have done
the assembly, we want to check how good the assembly is. The tools that we have described
or the algorithms that we have described, as you can see, are not perfect, but there is still a
lot of scope for improvement. And then finally, we talked about genome annotation very
briefly. This is for the identification of structural and functional elements, and this actually
follows after you have done the assembly, which actually completes the whole process.

Thank you very much.

