Next Generation Sequencing Technologies: Data Analysis and Applications

Differential Gene Expression Analysis
Dr. Riddhiman Dhar, Department of Biotechnology
Indian Institute of Technology, Kharagpur

Good day, everyone. Welcome to the course on Next Generation Sequencing Technologies, Data
Analysis, and Applications. We have been working on an RNA-Seq dataset, and we have gone
through several steps. So, we have started with the count data, and then we have done some
preliminary analysis through distance-based clustering and principal component analysis. We have
seen how the samples are similar or whether there is an outlier. So, we have found one outlier in

our sample.

And then we did the bias correction using the package EDASeq. We corrected for GC content, but
of course you can try different ways for this bias correction or within sample normalization. So,
now we have the bias-corrected data, and we can move on to the differential expression analysis—
the actual differential expression analysis, right? So, in this class, we will be talking about this
expression analysis using this tool, DESeq2. So, this is the agenda for this class. We will talk about
the first part; we will cover the first part of this differentiation expression analysis. There will be
a second part where we will cover this differential expression analysis when you have the spike in
the samples, ok? So, the normalization we can do differently, and that we will cover in the next
class, ok. So, again, coming back to the steps we have completed up to this bias correction part,
we can start with the differential gene expression analysis, and for that, we will use this tool,
DESeg2, that I have already introduced, and | have also shown you, right, how we can install this

package, ok.

So, we will now use this package to actually run this analysis, and then, of course, we can generate
some interesting results that we can interpret and visualize. So, let us now move on to the R
console, where we can actually load the data and sample information and proceed with the

differential gene expression analysis.

rdhar@LAPTOP-3KU4C9VBI: /mnt/c/Users/Dhar/Desktop/NGS_Data_Analysis_HandsOn2/Tes t$ 1s
Analyze_RNAseq_data.R RUN3_all_S1-S16_analysis.txt
BiasCorrected RUNSTALTLISI=SI6 analysis EXE Rcode_bias_correction.R

Prelim_analysis_Rcode.R SampleInformation.txt
rdhar@LAPTOP-3K4C9VBI: /mnt/c/Users/Dha sktop/NGS_Data_Analysis_HandsOn2/Test$

So, we will go back to this folder where we have all these files, and as you remember, we have
now created this bias-corrected data file, which we will utilize for doing this differential gene
expression analysis, ok. So, once we have done this, once we have loaded this, we also need the
sample information, which is again stored, ok. So, the sample information has not changed, right?

Whether you do this bias correction or not, the sample information has not changed.

brary (DESeq

So, it will remain the same, but we will have to load it and run through DESeq2. So, again, going
through the manual of DESeq2, | have collected the commands that we require, right, for doing
our analysis, and | have compiled an R script, right, which | will utilize for doing all this analysis.
Again, this is very simple: just look at the manual, format this according to their instructions, load
the appropriate data, and run the analysis, ok? So, just going back to the Bioconductor DESeq2,
here is the pdf file with all the details of the manual, right? And the first thing we need again is
this DESeq dataset class, right? So, we need to create this DESeq dataset from the data to the count

data, ok, and then we can run this differential expression analysis.

':.Al ‘" } - Y s ‘y"; T‘)
lata=re d F all Sl € ¥ t 1 i)
Samg ati txt",h)
nead(
s2 sé sl10 sl14 87 S11 815 S¢ S 812 sl
2 1017 775 1286 1121 1002 1079 1168 1327 1051 950 1211 631
22 16 31 15 15 19 32 1 i 29 26 17
270 198 362 254 230 246 274 232 210 218 245 124
244 246 389 258 215 268 241 272 245 253 33 224
YOL165C 3 3 8 0 0 8 3 4) 3 3)
¢- 263 245 272 235 219 250 264 4 32 209 273 213

YCR107W 372 322 24

Again, you will see there are a lot of functions that are also present in this program that we can
also use for plotting our data, and maybe we will use some of them, for example, the plotMA we
can use for doing this analysis. So, let us use this. So, let us load the library and also the data, ok?

So, the first step is library, which is DESeq2. It might take a bit of time, right? Because it also

needs to load other packages that are required for its run.

Now, once it is loaded, we can now load the data, and remember, right, we need to load the bias-
corrected data, right? So, again, we need to change the directory to the directory where we are
working. Again, it will depend on your system and how you set this up, right? So, here in my
system, | know this is where we have all the data, ok? So, | will now load the data from here, and

we have the bias-corrected file that we created in the last class, ok, and the header equals true, ok.

So, we also need to load the sample information file, right? So, this will be the same, and also the
header equals true because you have this design information, right? The bin is there. So, we can
simply check whether this data and sample information are loaded correctly, and we can then move
on to the analysis now, ok? So, for the differential expression analysis, again, as | mentioned, we
have created a set of code that | will utilize for doing this in a very short period of time. So, we
have loaded the library, we have loaded the data and the sample, we can change the data matrix
and sample matrix, right, as data frames from this data and sample, right, and then we can run
these steps one after another, ok? So, first step: ok, I will convert this again to a data matrix; this
is going to be a data frame. This is required because sometimes some of these tools or the
commands expect this data in a certain format, ok. Again, this might also change from one version
to another depending on the R version that you are using. You might have to add a few things or
write it slightly differently, ok. We have seen these differences between versions sometimes, and
if you see any errors, we might have to go back to the manual and see if there are any changes or
not.

> dds <- DESeqDatasetFromMatrix(countData = datamatrix, colData=sampmatrix, design=-bin)
To DRSaqmatasat (se; dasion = desioe; igoreant) i

some variables in design formula are characters, converting to factors
(1:’ DESegDataSet

dim: 6€9$ 16
metadata(l): version

assays (1) : counts

rownames (6696) : YMROS56C YBROG5SW ... YGR285C YNL241C
rowData names (0):

colnames(lé): S1 S5 ... S12 Sleé

colData names(2): Sample bin

So, now we will convert these two sample matrices, right? So, the frame and sample are okay.
Now, the next step is to create this DESeq dataset, right? So, we have done this before, right, and
you remember, right, we use this dds variable to actually assign this new DESeq dataset, right, and
the command is DESeq dataset from matrix, we have count data, we have column data, right, and
the design. This is a command that we used before when doing the preliminary analysis, and we
will use the same here, ok? So, we will copy this command, and | will simply run it here again. It

gives some warning messages, but that is ok.

We have seen this warning message; as long as it is not giving any errors, it is alright. We can
again write the dds, ok, and it then gives us the summaries of this dataset. So, this is a DESeq
dataset. Now, the dimensions are different because these are the bias-corrected datasets.
Remember, we took the data for only those genes where there is overlap with this GC content
data? So, the GC content data and this data had an overlap of about 6700 genes, ok? Now, once
we have done this, right, what we will do is run that DESeq data DESeq analysis. So, the
differential expression analysis and the command that we have to use is very simple: this DESeq
dds, ok, and we can run that now in the console, right, ok, and ok. What I will do is not run this; I
will first clean it off so that you can see the steps. So, once we do this DESeq command, it will go

through certain steps that we have discussed, ok? We will see this, right, one after another.

It will take a bit of time. Again, we are running the full thing, ok? So, here it is. You can see that
the first step is estimating size factors. We have talked about size factors, and DESeq?2 utilizes this

median of ratios method for normalization.

So, this estimating size factor is just estimating these normalization factors, and then it is
calculating these estimating dispersions, ok? So, again you remember this model, right? So, we
have to calculate the gene-wise dispersions, and then this is what we are doing: gene-wise
dispersion estimates. It is calculating this mean dispersion relationship. It is calculating the final

dispersion estimate.

So, this is the shrinkage of dispersion that we again discussed in the theory class, and finally, it is

fitting the model and testing, right? It is doing this statistical test from there, ok? So, we can

actually take some of these steps. So, idea again, we can look at this PRDDS dollar, ok, and say

sample. So, these are the samples we have utilized for this analysis, OK, and the bin.

> prdds « DESeq (dds)
estimating size factors
estimating dispersions
gene-wise dispersion estimates
mean-dispersion relationship
final dispersion estimates
fitting model and testing
[le"Sl;.li§5" "S9% %g13" '"82F *ge”
> prdds$bin
[1) G1 G1 G1 Gl G2 G
Levels: Gl G2 G3 G4

N

sl S5 s9 S13

G2 G2 G3 G3 G3 G3 G4

10 S14" "s3
4 G4 G4
S2 S6

1.1044893 1.0974487 0.8958489 0.9992632 0.9484810 0.9111134

s15

S S8 s12
0.9957956 1.010548

N &

class: DESegDataSet

dim: 6696 16

metadata(l): version
assays(4): counts mu H cooks

S16

0.9764742 0.9854391 0.9338109

rownames (6696) : YMRO56C YBRO85W ... YGR285C YNL241C
rowbData names (30): baseMean baseVar ... deviance maxCooks

colnames(16): S1 S5 ... S12 S16
colData names(3): Sample bin sizeFactor

> |

S7 "S11 15" "s4 S 912" "slé
Ss10 S1l4 s3 s7 Sl11
1.1501710 0.9948139 0.9566362 1.0566660 1.0128092

This is the experimental design. It can give you the levels, right? So, it found all the bins, and then

it knew the levels were G 1, G 2, G 3, and G 4. So, these are the conditions or the groups that we

have created, ok, and it should look at comparison between these groups, ok. And similarly, we

can also look at the size factor, and it will give us the values of each of the size factors that are

calculated. So, for this sample, the size factor is 1, and so on. So, you remember the size factor,

right? So, we have to divide, and rather, this will divide the read data by these size factors, which

it does before fitting the model. So, that is it. So, we have the results now. We can actually look at

the results, ok? So, again, it says, class DESegDataSet, the dimensions are given, the gene names,

etcetera. Now what you have to do is generate the results, right?

> prdds

class: DEsegDataset

dim: 6696 16

metadata(l): version
assays(4): counts mu H cooks

rownames (669¢) : YMROS6C YBRO8SW ... YGRZ85C ¥YNL241C
rowData names (30): baseMean baseVar ... deviance maxCooks
colnames(l€): S1 S5 ... S§12 S1é

colData names(3): Sample bin sizeFactor
> res <- results (prdds)

> res

log2 fold change (MLE): bin G4 vs Gl
Wald test pxvalue: bin G4 vs Gl
DataFrame with 6696 rows and 6 columns

baseMean log2FoldChange 1fcSE stat pvalue padj

<numeric> <numeric> <numeric> <numeric> <numeric> <numeric>
YMRO56C 955.12061 0.568978 0.171921 3.309523 9.34550e-04 0.,003882112
YBROBSW 25,.56582 -1.165487 0.435999 -2.673141 7.51447e-03 0.022812651
YJIR155W 24¢€.02707 -0.404657 0.227173 -1.781271 7.48e83e-02 0.149262255
YNL331C 284.92367 -0.582315 0.135052 -4.311793 1.61936e-05 0.000122874
YOL165C 2.95522 -1.085091 1.281757 -0.854367 3.92902e-01 0.536182387
YLR130C 1692.19% -0.0346775 0.225729%9 -0.153624 0.877905846 0.92184298
YKL175W 1653.65 -0.312639%92 0.108956 -2.869413 0.004112338 0.01365751
YBRO46C 4658.1¢6 0.3201982 0,220141 1.454515 0.145803481 0.,25478985
YGR285C 2828.64 -0.1280478 0.325748 -0.393089 0.694253627 0.79177260
YNL241C 1372.76 -0.5549751 0.156€04 -3.543814 0.000394384 0.00186044

b

So, we have to kind of do this, right? So, summarize the results from here, and we generate the
results here. So, in this variable race, we can simply type race, and it shows you the results of these
differential gene expression analyses. So, the first line you can see is the log 2 fold change, and it
specifies, ok, we are comparing bin G 4 versus G 1, ok. And the p, while the test p value again

bins G 4 Versus G 1, the data frame has 6696 rOWSs.

So, 6696 genes and 6 columns, ok? So, these six columns are here. The first column is the base
mean; this is the average expression. The second one is the log2 fold change. We have talked about
the LFC. Then you have the standard error in LFC, then you have the statistics, then you have the
p value and the adjusted p value through the Benjamin Hochberg correction, right? So, this is the
one we can then use for FDR correction. We can choose, let's say, a cutoff of 10 percent, and we
can identify genes that show this significant p-adjustment. So, this is, these columns are given for
all these 6700 genes, approximately. So, this is the result that we have gotten. Now, you might ask
why G 4 versus G 1, right? So, why not the other ones? So, by default, because if you look at the
original data, ok. So, I will show you the data first, and then I will explain. So, if you look at the
original data and if you remember the sample information pile, these S1, S5, S9, and S13 are part

of group 1, ok? Then you have group 2, then you have group 3, and then you have group 4. So, by
default, what DESeq2 will do is compare this G 4 versus G 1, write the last sample versus the first
sample, and give the results. So, let us imagine you want this G 4 versus G 3, ok? So, what you
have to do is maybe just create a file with only G 3, G 4, or reorganize this data so that G 3, G 4

are in the first and last columns, ok?

e e P ree MM weAwwwwS VAN T UL W WA s IO T Vewwawwws3

1ead (data)

S1 S5 89 813 82 S6 810 S14 S3 S§7 S11 S15 S8 312 S1¢

YMRO56C 695 654 667 €72 1017 775 1286 1121 1002 1079 1168 1327 1051 850 1211 €31
YBROBSW 35 26 74 31 22 16 31 15 15 19 32 17 11l 19 26 17
YJRL55W 437 245 216 215 270 198 362 254 230 246 274 232 210 218 245 124
YNL331C 380 355 403 349 244 246 389 258 215 268 241 272 245 253 233 224
YOL165C o 0 5 4 3 3 g 0 0 8 3 4 0 3 3 0
2 240 312 263 245 272 235 219 250 264 214 192 209 273 213

YCR1O7W 372 322

So, by default, when you have this kind of data, you will get these G 4 versus G 1 results, ok? But
then this is what we want in our analysis, right? We simply want this because G 1 was the most
interesting group, if you remember from the preliminary analysis. So, this is good. We have
generated this data. Now that we can interpret the data, we can look at some of the statistics and
see whether the normalization, for example, has been good. So, one of the first things to check for
normalization is the MA plot, right? So, we have discussed this MA plot before, and we take these
results and generate this MA plot to see whether the data looks good or not. So, let us do that. Let
us generate this MA plot now from this results file, ok, or the race variable. So, | will clear this
window so that you can see clearly, and | will minimize because we will generate a plot now here,
ok? So, plotMA, yes, ok. We can simply write this, and then maybe later on we can specify the
limits, ok? So, what you see here is something we have seen before, right? On the x axis, we have
the mean of normalized counts, right in the data. So, this is the average expression across all the

samples, and then you have the log-fold change.

R R Graphics: Device 2 (ACTVE) an@]@'f

. A M4, M4 8AMA As

log fold change

-2
1

yerw v v » v Ty ww e v

I 1 1 I I 1 I

1e-01 1e+00 1e+01 1e+02 1e+03 1e+04 1e+05

mean of normalized counts

This is a comparison of G 4 versus G 1, ok? So, again, we have some of these gray points and
some of the blue points, right? So, gray points are the points for which we do not see significant
results, and the blue points are the genes for which we have a significant difference in expression
between G 4 and G 1, right? So, they are simply color-coded based on their significance, ok? And
what you also notice is that genes that are low in expression or show a low read count—right, there
is a lot of variability, ok? And again, some of these genes might show a very high log-fold change,
but these are not significant. Again, because there is a very high level of variability between the

technical replicates, we cannot find these results significant.

You will not find these results significant, ok? And this analysis is the significance analysis, right?
That actually depends on two things. One is the effect size, or how much different this expression
is between these two conditions or two types of samples; that is the first thing. And how
reproducible or how low the variability is between the technical replicates between these two

different conditions, ok? So, for these samples here with very low expression, the lock fold change

is very high, right? So, the effect size is high, but the variance is also very high, right? So, there is
a lot of variance between the technical replicates, ok? And that is why these are not significant,
ok? So, is there any way to reduce this variance? And we have talked about one method, which is
the shrinkage of LFC. And there is a function in DESeq2, right, that actually we will do that, ok?
So, let us go to the manual and we will see whether we can find this function LFC shrink, ok, that
we can use for this shrinkage, ok. So, here is this function in DESeq2, LFC shrink that we can use.
We can go to that page and we can see where we can use this LFC shrink, ok. So, here it is: LFC
shrink, shrink lock to fold change, right? So, this is the theory we have discussed: why do you
want to estimate this, and why do you want to shrink these estimates for LFC? And you can do

this with two different methods, and here is the usage of this command: LFC shrink.

We have to use this data set that you have created, and etcetera, you have contrast. You can use
three different types of shrinkage methods, ok? So, again, these are explained later on, right? You
can see this, so we can also use the LFC threshold, which will come later on. So, these three
methods are explained here, right? ere is this type. So, you have apeglm; this is a student shrinkage.
Again, we are not going into the statistics, but these are three different ways you can do this
shrinkage. We can use the first one and then you have the ashr shrinkage, then you have the normal
shrinkage, ok? So, this is why they are using different types of shrinkage estimators, and that is
why they will give you slightly different results, ok? So, let us use this apeglm shrinkage method,
ok, and we will use this library apeglm, ok.

So, we need that library to be installed first before we can use this shrinkage, ok. So, this library

is apeglm, ok. Let us see if it is installed on my system. If not, again, we can install this very easily

through a bioconductor. If it is a bioconductor package, | think it is a bioconductor package.

Approximate posterior estimation for GLM coefficients

Bioconductor version: Release (3.17)

apeglm provides Bayesian shrinkage estimators for effect sizes for a variety of GLM models, using
approximation of the posterior for individual coefficients.

Author: Angi Zhu [aut, cre], Joshua Zitovsky [ctb], Joseph Ibrahim [aut], Michael Love [aut]
Maintainer: Anqgi Zhu <anqizhu at live.unc.edu>
Citation (from within R, enter citation("apegim™)):

Zhu A, Ibrahim)G, Love MI (2018). “"Heavy-tailed prior distributions for sequence count data: removing
the noise and preserving large differences.” Bioinformatics. doi:10.1093/bloinformatics/bty895.

Installation

if (!require("BiocManager", quietly = TRUE))
install.packages(''8iocManager")

BiocManager::install("apegim")
For older versions of R, please refer to the appropriate Bioconductor release.

Documentation

To view documentation for the version of this package installed in your system, start R and enter:

browsevignettes("apegim")

So, we can simply search here and see whether this appears. So, by-conductor apeglm package,
right? So, again, you have the details; you have this reference that you can read that will describe
the method; and you also have a manual in a PDF file that will tell you how to use this package,
ok, and what are the functions that you can use for this purpose, ok. So, what | will do now is let
us check whether we have this, and then we will run this LFC shrink function using this method,
and we will generate the final results. So, let us go to R and see if we have library access, ok? So,
it is installed; otherwise, it will give me an error, and then we can install it. And the first thing we
need to do is check these results. Right now, we have generated the results names. So, we have
intercept; we have G 2 versus G 1, G 2 versus G 1, but we need G 4 versus G 1, right? So, this is
what we want to check, right? This is what we want to shrink using this LFC shrink function, ok,
and that is what we do here. You can see this, ok.

So, we have to do this LFC shrink on this DESeq object, right? So, after we have drawn this DESeq
analysis, we will have to use the LFC shrink on that, ok? So, this is what we are doing here. We
can see this function in LFC shrink PDDS; this is after the DESeq analysis. We are using this
coefficient because we are interested in this comparison, the right G 4 versus G 1 comparison, and
then the type of method that we will use is the APEGLM method, ok? Instead of apeglm, you can
try different methods and see whether there is much difference or not. So, we will run this
command now, ok? So, we will store the results in this res2 variable, which you can look at later
on, ok? So, let us run this on the R console, ok? It will take a bit of time, and we can then check
the results, ok? It has run it is saying, ok if you are using this for then we can we have to cite this
manuscript, ok. So, now that we have generated this res2, we can also check, right through the MA
plot, whether this method has worked and whether we see a reduction in variability for these genes,
and right the change in this logfold change for these genes that have low expression or a low read
count. So, we will see mostly a large amount of changes here around these genes, where the
normalize count is quite low, ok? So, we can check this through the MA plot. So, plotMA res res
2, right? This is the result after this LFC shrinkage, ok? And you see now that it looks much nicer,
right? So, this variability has decreased because we have used this LFC shrinkage function. So,
these logfold change values have decreased and are close to 0 now and for some of them, it is O;
this is actually more appropriate, because they might not be showing very high log4 change
because of the variance that is present in the technical replicates, ok? So, this part is now good.
Now we can do what you can do: we can actually read the results, we can export the results, and

one of the things | will show you now is how we can actually save these plots.

R RGui (64-bit)
File Edt View Misc Packages Windows Help Vignettes

[=]=Tw] [a]S] @] @]
‘R R Console Lol] | = . s l@|s

g MAplot after LFC shrinkage
prdds)

"bin_G2_vs_G1" "bin_G3_vs_Gl1" "bin_G4_vs_G1"

s2=1fcsShrink (prdds, coef="bin_G4_vs_Gl1",type = " n")

using 'apeglm' for LFC shrinkage. If used in published research, please c$ o3 3
Zhu, A., Ibrahim, J.G., Love, M.I. (2018) Heavy-tailed prior distribu$
sequence count data: removing the noise and preserving large differen$
Bioinformatics. https://doi.org/10.1093/bioinformatics/bty895

T

1
L

.2,main="MAplot after LFC shrinkage")
_G1_afterLFCshrinkage.pdf")

log fold change
0

-1
1

T T T T

1e-01 1e+00 1e+01 1e+02 4 1e+05

g l mean of nonna,l‘/liq | R
™ (A |

We have not talked about this so far, right? So, we can maybe make it a bit nicer right before we

actually export the data and then store it as a PDF file, for example, because we want to sort these
plots for later references, or we may want to use them in some presentations in publications,
etcetera. So, before we do that | will probably make this plot a bit nicer to look at, ok, and then we
can export it. In a PDF file, okay. So, what I will do is we will start with this xlim ylim, which is
fine, right? So, we can change the cex.lab 1.4 axis to 1.2, right? So, we are changing the sizes of
the labels, right, because | think they are too small, and then what you can do is also use a main,
right? So, we want the title. So, MA plot after LFC shrinkage, ok? Ok, so you see this, right? We
now have a very nice title here, ok? Now, it looks much nicer than before. So, we can now save
this file as a PDF file, ok? So, the command to do that is copy to PDF, oh, sorry, dev copy dev dot
copy to PDF, sorry, yeah. So, this is the command: dev dot copy to PDF, right? So, it will copy
this output or save this output in a PDF file, ok? So, this is the command we use for the file. Let
us say we plot G4 versus G1 after LFC shrinkage, ok dot PDF, and we can simply enter, right, and
then we have to use this dev dot off, ok. And we can now check this file to see if it has been saved.
Okay, and we can see. You can open this PDF file, and you can see that this is now saved in a
PDF file. In R, you also have options for saving this in different other formats, such as JPEG or
BMP, and then you can directly insert it into the presentation. Why is it saved in PDF? Because
then you can maintain the resolution, and you can also export later on to JPEG or BMP, ok? There
are other ways to also save in EPS format, etcetera which are much more useful if you want to

export them to different formats later on. So, this is very useful, right? So, once we have generated
this plot, we can now export it into a PDF file, ok? So, we have seen two types of operations, right?
Once we have generated some useful data or some results, we can export the results to text files or
write them into text files. And similarly, once we have generated some plots that we want to look

at later on or maybe use for presentations, etcetera, we can also save those in PDF format.

I have shown you the PDF format, but this can also be done in other formats, ok? So, there are a
few other things we can do once we have generated these results, ok? We can, for example, filter
according to the alpha values and the p-adjusted values. We can also filter based on logfold
changes, etcetera. So, this is something we can actually do right now, ok? So, one of the things we
can do first is generate summary statistics here, ok? So, by just running summary res to, ok. So,
what it is saying is giving us a summary of the results that we have seen, ok? So, we have 6652
with a nonzero total read count, ok? So, we have this many genes, and the adjusted p value cutoff
is 0.

> summary(resz)

out of 6652.with nonzero total read count
adjusted p-value < 0.1

LFC > 0 (up) 1626, 24%

LFC < 0 (down) 2 1378; 21%

outliers [1] : 43, 0.65%

low counts [2]), 0%

(mean count < 0)

[1) see 'cooksCutoff' argument of ?7results

[2) see 'independentFiltering' argument of ?results

1. So, this is the FDR cut-off. So, there is a 10 percent false discovery rate. So, that is quite
acceptable. Of course, you can change it or redo the filtering. Then you have LFC greater than 0,
up-regulating about 600 genes. So, which is about 24 percent of the whole data set? You have LFC
less than 0, that is, down-regulated genes about 1378. So, 21 percent of the data sets. You have
some outliers, which is a very small percentage, ok? And this kind of gives us, ok, there are a lot
of genes that are showing this up-or-down regulation. And maybe we can now look for only the
top genes, right? So, the genes that show a significant difference in lock pull change may be okay.
So, LFC greater than 0 does not mean much, to be honest, because LFC could be 0.2 or 0.3. These
are very small differences in terms of actual expression levels, but they are significant, right? But

then, if you have 1600 genes, you would probably be mostly interested in the genes that show very

high logfold change, right? Those are probably more interesting to look at, ok? So, on top of this
data, we can now use our own filtering criteria, ok? And this is what we are going to do, ok? And
it is very simple, actually. So, we can create these cutoffs, right? So, for example, we can generate
these tables and use these LFC thresholds on top of the data. So, here is this one. The first one is
that we are generating these results where we are using this alpha cutoff of 0.05, right? So, it means
we are now using the FDR cutoff. Okay, alright. So, what you can do is set our own filters, ok?
And we can run this different program to adjust the cutoff. So, we can change the FDR cutoffs,
and we can also change the LFC threshold cutoffs, ok? So, we will try that using the results that
we have generated, but we then have to run this on the DESeq object, right? So, after this
differential gene expression analysis that we generate, we can then run these filters, and then we

can see all these results, ok.

> res.05 <- results(prdds, alpha=.05)

> table (res.05$padj <

“Seos 2611

> | [»
So, the first thing is that we are actually running this on, ok. So, we will run this PRDDS at alpha
0.05. So, this is looking at only genes for which the p value is less than 0.05, right? We are filtering
those. And then after that, we can also see how many genes are there where p adjusted is less
than 0.05, right? So, we have 5 percent FDR, right? So, there are only about 2611 genes that
actually satisfy this criteria, ok? So, this is something that is a significant reduction from the earlier
value, right? We have seen about 24 percent of genes showing up regulation and 21 percent of
genes showing down regulation; in total, there are about 2600 genes, right? So, that is, we are
making this more stringent, ok? So, similarly, we can use these LFC thresholds, right, and we can

see, right, whether we can generate, ok.

So, we are using this LFC threshold of 1, right? So, a log2 fold change threshold of 1 means we
want only those genes that show at least a 2-fold change in expression, ok? So, this is what we are
going to do, right, and then we can again have a look at this, right? Out of these genes, what

fractions are showing this p adjusted less than 0.1?

> resLFCl <- results(prdds, lfcThreshold=1l)
> table (resLFClépadj < 0.1)

FALSE TRUE
6499 110
> table(resLFClSpadj < 0,05)

FALSE TRUE
6516 93

So, itis about 110, ok? So, that is a significant reduction now. We can make it more stringent, and
we see that only 93 genes are showing the LFC threshold; crossing this LFC threshold of 1 means
they are showing at least a 2-fold change in expression. In addition, they are showing p adjusted,
which is less than 5 percent, ok? So, that is a good thing we have 93 genes, and these are probably
the most interesting genes, ok? We can do further analysis, right? We can look at something else,
right? For example, we can sort this list, find out the top genes, etcetera, but one thing we can
simply do is export this data. Whatever we have generated, we can simply export it, and then we
can play around with this data set and identify which top genes you want. For example, maybe we
want only the up-regulated or down-regulated genes, and that is something we can do, and we can
analyze those data sets, ok? So, again, for exporting, we simply have a look at these two. So,
perhaps we can just export this right into some DE gene list, and then we can do our other type of

analysis, ok?

VJaw B
log2 fold change (MAP): bin ¢4 vs Gl
Wald test p-value: bin G4 vs Gl

DataFrame with €696 rows and 5 columns

baseMean log2FoldChange 1fcSE pvalue padj

<numeric> <numeric> <numeric> <numeric> <numeric>
YMRO56C 955.12061 0.520180 0.170836 9.34550e-04 0,003882112
YBRO85W 25.56582 -0,.865976 0.466316 7.51447e-03 0,022812651
YJR155W 246.02707 -0.330967 0.214880 7.48683e-02 0.149262255
YNL331C 284.92367 -0.552777 0.134789 1.61936e-05 0.000122874
YOL165C 2.95522 -0.109865 0.420216 3.92902e-01 0.536182387
YLR130C 1692.19 -0.0277865 0.199137 0.877905846 0.92184298
YKL175W 1653.65 -0.2965020 0.107226 0.004112338 0.01365751
YBRO46C 4658.16 0.2561617 0.204734 0.145803481 0.25478985
YGR285C 2828.64 -0.0804100 0.260468 0.694253627 0.79177260
YNL241C 7372.76 -0.5142418 0.155676 0.000394384 0.00186044

> write.table(res2,"DE genes_list.txt")
> write.table(res2, "DE_genes_list.txt",quote=F, sep=)

L4

So, if you look at the DE gene list, of course, we have to use these other things that we have used.
We do not want code, right, and we want tabs separated by, right, and this should be created in
the. So, the DE genes list contains lists of all the genes that are present in the data sets and also the
logfold change values. With that data, we can now play around, set our own thresholds, do different
sorts of plotting, etcetera in terminal. So, one thing | will just do is finally have a look at the file.
We created this DE gene list file, and this is what we get, right? This is the final outcome; all the
genes are here. If you can go to the last line, you will see we have 6696 genes, right? o, for a total
of 6696, with the header, we have the extra line.

rdhar@LAPTOP-3KUC9VBI: /mnt/c/Users/Dhar/Desktop/NGS_Data_Analysis_HandsOn2/Test$ 1s
Analyze_RNAseq_data.R RUN3_all_S1-S16_analysis.txt

BiasCorrected_RUN3_all_S1-S16_analysis.txt Rcode_bias_correction.R
S§mplelnformation.txt

DE_genes_list.txt
MAplot_GU_vs_Gl_afterLFCshrinkage.pdf
Prelim_analysis_Rcode.R

rdhar@LAPTOP-3KUCIOVBI: /mnt/c/Users/Dhar/Desktop/NGS_Data_Analysis_HandsOn2/Test$ vi DE_genes_list.txt

log2FoldChange 1fcSE pvalue
955.120607194351 0.52017964489432

padj

0.170836336072413 0.000934549791145517
25.565815642665 —0.865976388651881 0.466315842686723 0.00751447130303377 0.022812
246.027065852305 -0.330967060889698 0.214879649306078 0.0748682666104638
284.92366640616 —0.552776652103582 0.134789116061964 1.61935913881358e-05 0.000122

2.95521757462095
254.,968377576616
242,722884574902
160.700173861211
490.69682872u4442
2276.19650159919
130.406901134153
314.282369851277

-0.109865320556055
-0.387054233687017
-0.840548853506414
-0.372518921688433
0.051512320515449
0.00228263238922601
0.132261509094553
1.00671136555084

0.
©.13172993973712
0.205951302195454
0.
0]
0
0

420216363618564

181404485330961

.279331456694578
.225304782686553
.129729441736829
0.

184857005308569

.392901542691354
.00191746607279776
.20401737878477e-06
.0228221385077307
.80925463111259
.985933260986273
.285044127643592
.51986079700836e-09

9603.562765049 -0.
1981.11713251185
2215.78987235199
11354.9470568905
23.103820582033 -0.
4o45.8263668076 —0.
3943.3242292661 -0.
1475.86497877305
898.719673510543
352,243373727123
1550.2360305652 -0.
2929.58664118202
YLR131C 597.605555376
YLR144C 1207.403678
:Se_Nnowran

0722340389642158 0.240908702235436
0.0322160709350437
-0.814681127072458
-0.211126242739398

0167745446738419

©.714413303294218 0.806139
0.0927412970418466 0.721428938933296
0.241533390406222 0.000143349004973773
0.197514682591335 0.224959553463756
0.242257552637552 0.931685151968172 0.956877
3922663372U8338 0.0732007960238405 5.05373298411098e-08 7.743089
00669511022976417 0.215709982767522 0.968215116978954 0.979628
-0.554636254005403 0.105062660892763 5.04055528726213e-08
0.546531229555701 0.114355775198941 9.26559255329309e-07
-0.157232695824126 0.196027131029593 0.00890418072984397
946359997385729 0.103188002991658 7.89039513502148e-21 1.682181
-0.956160939582643 0.192497882224608 1.03220944833316e-07
0.000459738207498256 0.002118
31020087642 0.816194478659525
1.1 Tor

YMR289W
YERO45C
YGRO37C
YNRO16C

We have the average mean expression; this is the first column here, then, of course, after the gene
name, you have the log2 FoldChange value, you have Ifcse, you have the p value, and the p is
adjusted, right? So, these are the two values that we want to work with, for example, the lock-to-
pole change value and the p-adjusted value. These two are the most interesting ones for us, and we

can do further analysis, plotting etcetera with this data once we have generated this file, ok? So,

this is the first part of the DESeq analysis, right? The next part we will use is that we will utilize a
data set where we have the spike present. So, we will have this spike in the mix, with which
synthetic RNA molecules have been added to the samples in an equal amount, and based on that,
we will do normalization and differential gene expression analysis, and so that will be for the next

class. Thank you very much.

