Next Generation Sequencing Technologies: Data Analysis and Applications

Sample specific bias correction
Dr. Riddhiman Dhar, Department of Biotechnology
Indian Institute of Technology, Kharagpur

Good day, everyone. Welcome to the course on next-generation sequencing technologies, data
analysis, and applications. We have started the hands-on transcriptomic data analysis, and the goal
is to identify differentially expressed genes among samples that come from different conditions.
So, in this class, we will be talking about sample-specific bias correction. So, if you remember in
the last hands-on, we looked at some of the preliminary analysis; we looked at the distance-based
correlation or heat map. Now, what we will do is actually generate a PCA plot.

So, that is also part of the preliminary analysis, and then we will move on to the sample-specific
bias correction. So, again, here we are right. So, we have started working on preliminary data
analysis in the last class. We will complete that in this class and then we will move on to the bias

correction part.

Once we have done that, we can go into the differential expression analysis, and then we will move
on to the visualization of the results of the functional analysis over the subsequent classes. So, let
us move to R and let us complete the preliminary analysis part and see if PCA gives us the same
data as the distance-based clustering method, and then we will do the bias correction. So, let's
move. Let us move into the R terminal, ok? Here we are from the last class; this is where we ended,
and we can now generate the PCA plot. So, one of the things I just wanted to mention is that we

used Euclidean distance.

W R Graphics: Device 2 (ACTIVE) = §=

-,

> FheatmaptSarnpl'znistmatri:(, clustering distance_rows=sampleDists, clustering
>

<

So, first, we did something called an rlog transformation here and then calculated the Euclidean
distance between the samples. Now, what will the log transformation do? It will reduce variability
in the sense that, as we saw in our data for the genes that have low read counts, we reduce
variability in the data. So, in that case, we can use the Euclidean distance, but if we want to do this
analysis on the raw data counts, we have to calculate something called the poisson distance. Why?
Because of this raw data count, there will be a lot more variability, and there is no transformation
done right. So, we have to calculate something called poisson distance, and we can calculate that
using this library, which is a specific library built for this purpose, and we follow the same steps.

poisd dds

samplePoisDistMatrix poisdidd
samplePoisDistMatrix rldébin, rld<Sample, sep
samplePoisDistMatrix
samplePoisDistMatrix, clustering_distance_rows=poisdidd, clustering_distance_cols=poisdidd, col

colors) *

So, instead of this function that we use, we use this poisson distance function that comes from this
library, and then we will generate the sample poisson distance matrix, and we will use this heatmap
as before to generate this distance-based clustering or distance-based heat map. So, I will go
through this very quickly just to compare the results with our earlier results. So, and we will see,

we will get very similar results, ok? Whether you go through the rlog transformation and the

Euclidean distance, or whether you go through the raw count data and use the poisson distance,

we get the same results. So, | will simply copy this code because this part is the same as before.

So, instead of this, right? So, we are just using this poisson distance, although we are taking the
names from the RLD dollar bin, but that is ok. We are just labeling the row names right with this
bin and sample, but the distance data comes from the poisson distance. So, | will do it, and then |
will generate this plot. You can see there is a bit of difference, ok? So, | will close this, and then |
will generate it fresh, and you can see this data now ok? This is slightly different from before, ok,

and again, we have these group names and the sample names, ok.

So, you can see that these G 1, S 5, and G 1, S 9 are the sample names, and again, you notice the
same thing: these G 1 samples are very close to each other. So, darker colors mean smaller
distances, and white colors mean larger distances, and here the distance is in terms of counts, right?
And as you can see, the rest of the groups cluster together very nicely, like G 2, G 3, and G 4, and
as before, there is an outlier, G 4: S 16. This sample looks like an outlier; it does not cluster with
this group here or with the G 1 group here, ok? So, this gives the same results. So, what you can
do now is go into the PCA, right?

So, we can generate this PCA plot, okay? So, to do that, we again have this RLD. We can actually
go with this RLD data and this RLOG transformation that we did, and we can use this function
called plotPCA. So, this will generate this PCA plot from the data and it will give these PCA
percentages as well, ok? So, this is a very easy way to do this, and it will also label based on this

bin and the sample. So, let us try this command first.

rld, intgroup

Based on this log transform data, you see this: we see this PC1 here, and PC1 explains about 63
percent variance, and then you have PC2 on the y axis, which explains about 14 percent variance,

and you can see that these G1 groups are around here, right?

o
G1:81
G1:81
G185
G138
G28

PC2: 14% variance

So, the samples from the G1 group are clustered together in this PCA plot, and the other groups
are clustered around here, as you noticed before. Probably G4: S16 is somewhere here, right? So,
from all this analysis, it is clear that we should perhaps discard S16 from our analysis because it
looks like an outlier. So, this is something we can do right, and we can come to this conclusion
based on these two different preliminary analyses. We can also do this slightly differently, ok? We
can generate this PCA data, calculate this percent variance, and use this ggplot library to actually
plot the PCA data. So, we generate this PCA data from this plotPCA function right again using the

log transform data, and this will store this data inside this PCA data variable.

So, we can run this first command here, ok? This will do the PCA and store the results in this PCA
data variable, ok? So, this is done now, right? We have stored this, and it will also calculate this
PCA data percentage variation. So, the percentage variation that is explained by this PCA data is
okay. So, in our PCA data, when you do PCA analysis, you might have 10 PCs or 100 PCs, and
for each of them, you will have this percent variation or percentage variance calculated or

explained by that PC. So, we can simply store this as a percentage from this PCA data analysis.

pcaData) rld, intgroup returnData

percentVar pcaData

1
> plotPCA(rld, intgroup = c("bin", "Sample”))

> pcaData <- plotPCA(rld, intgroup = c("bin", "Sample"), returnbData=TRUE)
» percentvar <- round(l00 * attr(pcabData, "percentvar®))
> pcabData '
pCl PC2 group bin Sample name
S1 -20.24003% 2.73269148 Gl1l:S1 Gl s1 S1
55 -12.424835 0.65283797 Gl:s5 Gl S5 S5
59 13.866712 3.26227616 G1:S89 Gl 59 59
S13 -16.890199 2.63949785 G1:513 Gl s13 813
52 -1.535204 0.33778676 G2:52 G2 S2 s2
Se 3.542939 -2.25372221 G2:S6 G2 Sé Se
$10 -1.741%76é -1.23485120 G2:510 G2 s10 s10
514 7.087036 1.95562439 G2:514 G2 514 s14
s3 4.89529%4 0.25530633 G3:83 G3 S3 s3
s7 6.674392 -1.68161541 G3:S7 G3 ST S7
S11 3.44%832 1.38354826 G3:511 G3 811 511
$15 13.216794 4.66302504 G3:515 G3 S15 S15
54 11.7€4510 1.69188925 G4:54 G4 sS4 54
58 11.101%28 0.09073137 G4:58 G4 S8 S8
s12 7.725211 2.70887633 G4:512 G4 S12 812
816 -2.758973 -17.20390236 G4:516 G4 S16é Slé

So, if you look at this PCA data component, So, again, you will have these different components
PC1, PC2, group bin, etcetera, and from this PCA data, we are taking this attribute percent
variance. So, this is the percentage of variance that is explained by each PC, and we are storing it
inside this variable. So, now we can load this and use this PCA data and percent variance to actually
plot this, and you will see we will get a very nice plot because we want these groups to be colored
similarly. So, you see this here in this plot. It is ok; we can see these are the different group 1
samples on this side, but maybe if we could color them with the same color, it would be actually
better.

So, let us try that with this ggplot2, and the commands for doing that are: with this ggplot, we take
the PCA data that we generated. The x axis and y axis will be PC1 and PC2; these are the first two
principal components that explain the largest amount of variation in the data. The color equals bin
right. So, color the points according to the bin right? So, part of which group they are and shape
of the points should also be according to the bin, ok? Then you have this plus geom points of points
size of this data points, then the x xlab the level of x axis right, and it should say it should read
PC. 1 percent variance 1 right percent variance 1 this is this comes from this variable percentVar
ok.

So, this is the percent variance, which means this is the variance explained by the first PC. Then

similarly, we have percent variance 2, which is the percentage of variance explained by the PC2.
So, these are simply referring to the x level and y level, right, the level of the axis, and then we
have the coordinates fixed, ok? So, if you are not familiar with ggplot, do not worry. You can go
and look up a bit in this ggplot 2 manual, and you will see that this is how we can specify all these

axes, the point size, etcetera. It is a bit different from what we have used before, right?

pcaData PC1, PC2, color=bin, shape=bin percentV
percentVar

So, for the plot function, inside this plot we mention OK, where the x limit equals to something,
and right y limit equals to something. The x level and the y level are everything we mention inside
this plot function right in R, but ggplot is different. So, we have this plus, and then whatever you
want to add, we just add it with this plus sign. You can see this for all of them, right? So, if you
have the geometric point, you have this x level, this y level, and so on, and you can, of course, add
a lot more to this and learn that right by exploring these functions. So, we now run this command
to see if we can get a nice PCA plot of what is happening. So, what | will do is then think the

copying did not work.

PC2: 14% variance

PC1. 63% variance

> ggplot (pcaData, aes(PCl, PC2, color=bin, shape=bin)) + geom_point(size=3) +
+ coord _fixed ()

So, I will just copy the code again, and I will run this code here, and you can see now that this is
actually better because each group is colored with one single color, and then also because the

shapes are different, and again, this one sample is an outlier here, which we may have to discard

before we actually go into the differential expression analysis. So, | think this preliminary analysis
actually gives us a very nice idea about which samples to take for analysis and whether there is an
outlier, and it also now tells us G1 is the interesting group, okay, because it stands out from the
rest of the samples. So, if you are going for differential expression analysis, we should be
considering G1 versus the rest of them, or maybe G1 versus G2, and so on. So, we have now
finished this preliminary data analysis, and we can now move on to the bias correction part. So,
we have discussed the different types of biases that we can see in RNA-seq data, and we can try
to at least identify or minimize some of these biases.

So, that is what we are going to do now in the next step, ok, and for this bias correction part, we
will use this package called EDASeq ok. So, again, | will show you how this package looks like it
is part of a bioconductor. So, we can simply search here, ok? So, you can see this first result for
the bioconductor EDASeq, ok? We have talked about this very briefly in the theory class, right?

Exploratory Data Analysis and Normalization for RNA-Seq

Bioconductor version: Release (3.17)

Numerical and graphical summaries of RNA-Seq read data. Within-lane normalization procedures to
adjust for GC-content effect (or other gene-level effects) on read counts: loess robust local regression,
global-scaling, and full-quantile normalization (Risso et al., 2011). Between-lane normalization
procedures to adjust for distributional differences between lanes (e.g., sequencing depth): global-scaling
and full-quantile normalization (Bullard et al., 2010).

Author: Davide Risso [aut, cre, cph], Sandrine Dudoit [aut], Ludwig Geistlinger [ctb]
Maintainer: Davide Risso <risso.davide at gmail.com>
Citation (from within R, enter citatior seq")):
Risso D, Schwartz K, Sherlock G, Dudoit S (2011), "GC-Content Normalization for RNA-Seq Data.” BMC
Bioinformatics, 12(1), 480,
Installation
To install this package, start R (version "4.3") and enter:
if (lrequire("BiocManager”, quietly = TRUE))
install.packages("BiocManager™)

BiocManager::install("EDAseq")

So, here again, it can adjust for GC content gene level effects on the counts using different types

of methods. So, it has like at least 3 methods that it can do right now: it can do a lowest regression,

global scaling or full quantile normalization, and it can also do lane normalization or means
between sample normalization. So, we will just take the within-lane normalization because we
want to correct for the biases. These are sample-specific biases that we can correct through the
within-lane normalization. So, this is what we are going to do. We will try with the GC content
normalization and we will first have to install this package. Let us see if it is there or not, and then
if it is not, we can try to install it, and then we will run the course to correct the data. So, let us
remove all the figures, etcetera, that we have generated and just also clear the window, and then

we can start a fresh one.

So, library EDASeq here, ok? So, it is installed; otherwise, you can simply install it with this
command line using the biocmanager, and then we can now use this EDASeq to do the bias
correction. So, we will try this for the GC content, and we can again look at the manual and all the

functions that are there. So, one of the things we need to do is this within lane normalization, right?

R topics documented:

EDASRO-DACKARS: iiicnming us avsrecams sewretlive &6 eleveliacs iy senaseil s ¢itreais 2
barplotemethodls:s i o5 aen % FSraya 8 Sanieh o6 SRLSEN Wi saTEn 3
betweenLaneNormalization-methods ¢ oo v v v v i vt vt i i e e 3
BasBOXPIO-MBIROLR: . v s connmmrs spaimie e aie SERiTERS W SEaEeIE ENe € e 5
DIRSPIO-metNOdS: «uvaias g comaeis SGmEte s Qe SV SOREIRIE S WA e 6
voxplot-methiods” &7aiyi S sl §% NN Ve BTN 35 VR BN el 7
getGeneLengthAndGCContento v it it i e 7
MDPIoC-MEOAT: |, veiins i exeionnme Sroacive wim rameivine S50 s ek € @i 8
mean VarFlotsmethod® oz s convans om0 Suaaae S SRR W, ABEaTRR 9
REWSEAEXNISISIONSOl: o /i &0 Shieriie Woalwalme, sl Vimieiare s4e GUalene s i @oatie 9
PIOISIOIRIIRY oo roneotmerrs woras omereas wen | possiiasacmnnets xumrevaasie sl o amsas o Wiyt 10
plotN(Prequency-methods) o cowens smrente e shevetini e sie W@Es S et 1l
plAPCA-mesthods oot &5 SRRAIERE TENBER S SERaG, SR UG S SR 11
DISTOURINNCIICINONR . or. 7 o e es s b s o S e S R TR AR e s e 12
PICIRLE-MBROUS: - oocvos commsinm wsiomacel s wtumsiie i aastess s e 13
S eOBXPrENsIOnS eI CIRRE: to S sl S e e aie U el o i e T e e e e 14
withinkaneNormalizationsmethodst
LB I e D1, ORI AT TN COnana. P TR0 R
oSt 0 oo S s e e e e e e e
Index
EDASeg-package Exploratory Data Analysis and Normalization for ." l
. i

e

SegERpressionSEclass L L e e e e 14

This is the function that we will use for our bias correction part, and as you can see again, we need
to create a data format-specific data format called SeqExpressionSet. So, | mentioned that for many
packages, you will see that they require a specific data format to be created from the count data or
matrix data that they were working with. So, we will do that first, and then we will run this within-
Lane normalization, and then we will export the data OK in a text file or a tab-delimited file as we

have been doing right now.

data <- newSegExpressionSet {counts, phenclata=AnnotatedDatafFrame{data. frame(ceonditions=cond)})
withinLaneNormalization(x, y, which=c("loess", "median”, "upper”,”full"), offset=FALSE, num.bins=18, rei

We have seen this count data in a tab-delimited file in a text file. We will do that after we do the

bias correction, and we will work with that for differential expression analysis.

So, let us try this part, ok? There are a lot of other functions as well, and you can see some of these
functions overlap with other functions. For example, we have the plot PCA and the plot RLE. So,
we will talk about plotRLE. Maybe later we will have used plotRLE, like | have shown you some
RLE plots before, but we can also use this later on when you do the differential expression analysis
to look at the normalized data etcetera. So, again, we can go to this within-lane normalization
method or maybe seek expressions set part right. This is a class of data right that we need to create
from our count data, and again, this is mentioned as how you can create this right and what kind
of attributes or methods you need to include in it. So, and there are some examples of how we can
create this right. So, the function is newSeqExpression set right.

So, we have to determine the counts, then you have to give the phenoData variable, and then we
have to generate this and assign it to this data variable. So, we will do that, and then once we do
that, we need this within-lane normalization method function. Okay, this will do this normalization
function, and you can see these different methods that can be used for doing this within-lane
normalization or bias correction which will give you that right, and then x is the data that we want
right and y is the variable for which we want to do the bias correction right. So, we will take the
example of GC content here, and we will do the bias correction for GC content in our data. So, let

us move on to our data, ok, and then | have again prepared a set of codes that we can use, ok.

Otherwise, it will not be possible to complete this within this class if you want to search the codes

and then search the commands and set up everything. That might take quite a bit of time, ok?

rdhar@LAPTOP-3KUCIVBI: /mnt/c/Users/Dhar/Desktop/NGS_Data_Analysis_HandsOn2/Test$ 1s
Analyze_RNAseq_data.R RUN3_all_S1-S16_analysis.txt SampleInformation.txt
Prelim_analysis_Rcode.R Rcode_bias_correction.R 5|
*dhaf@LAPTOP-3K4C9VBI:/mnt/c/UsersﬁDhar/Desktop/MGS?D; alysis_HandsOn2/Test$ vi Rcode_bias_correctio
n.R

B 1dha@LAPTOP-3K4C9VEBI /m X & ahar@LAPTOP-IKACIVEE /mn X B rdnar@LAPTOP-3KACOVBE fmn X di v
data L header
EDASeq
1(yeastGC
yeastLength
sub iterse am yeastGC
mat t datalsub
newdata \ \ mat, normalizedCounts matrix irow(mat
mnames | mat
phenoData

ita. frame(conditions

row.names Ln ;(data
featureData=Anr 1tedD 1ie(dat: ame (gc=yeastGC[sub

norm 1in I 1 ition(newdata which offset

newdata

norm2 t fram)
t norm2 quote

"Rcode_bias_correction.R" [noeol][dos] 28L, 847B

So, here itis, right? So, we are loading this data right. This is the raw count data that it will take,
and then it will take the library right. So, we will load the library EDASeq, and then we will load
these two data sets that are part of this EDASeq library. So, each GC and each length are okay. So,
one thing | should mention now is that the data set that we are working with is yeast data. So, it is

Saccharomyces cerevisiae data.

So, we can utilize this for each GC content and each length data. So, each GC is length, which is
very simple. What is being looked at is the GC content of the genes as well as the length of the
genes. So, we need this GC content information if you want to normalize based on the GC content.
We can also normalize with the length data, but for this purpose, we will just focus on the GC

content-based bias correction. So, let's run this, okay? So, the first thing is we load the data. Press

right in this data variable; maybe we have already loaded, but I just want to run this again to make

sure we have everything in order.

So, this data is here. The next part is to load this library, and these two data sets are okay. So, first
we load the library EDASeq, then we get these two data points that we will also load ok data
yeastGC, and each length is ok; each length is probably not required for this hands-on, but anyway,
we will load the library EDASeq, and then these are the data points that are present in the EDASeq
library. So, we can simply load the yeastGC data that we use for our analysis. So, the next part is
actually creating all the data in the right data format. As | mentioned, we want to create this data
format, which is the Seq ExpressionSet, before we can run this within-Lane normalization. So, you
can probably see these two parts right there. The first part is looking at the intersection between
the row names of the data.

So, what are the row names of this data that we have loaded? These are the gene names and the
names of the yeast genes. So, this yeastGC data also has names, and these names are gene names,
ok, and we are taking only the intersection right. So, wherever we see the common genes across
these two data sets, ok. So, this is the command: sub intersect row names data names yeastGC ok.

So, here we are, and we can find out right.

sub data yeastGCh

So, these are the gene names that are common. So, this is a large majority. As you can see, out of
6800, about 6700 are present in both of these data sets. So, that is good right? So, we have found
most of the genes in these two data sets. Now, what we are doing now is creating this matrix,

taking only these genes.

[6504)
[€511]
[6518]
[€525]
[€532]
[6539]
[6546]
[6553]
[€560]
[6567]
[6574)]
[€581]
[e588]
[€595]
[6€02]
[€€09]
[6€616]
[6623]
[6630]
[6637]
[6€44]
[6€51]
[6€58]
[€€65]
[6€72)
[€€79]
[6€BE]
[£f93]

"YPLO3SW"
"YPLO71C"
"YPL10OBW"
"YPLl42C"
"YPL191C"
"YPLZ29W"
"YPL257W-A"
"YPL278C"
"YPROO3C"
"YPRO22C"
"YPROG4W"
"YPROBOW"
"YPR108W-A"
"YPR130C"
"YPR147C"
"YPR158W-B"
"YPR170W-B"
"YPR202W"
"YIRO3SC"
"YHR105W"
"YDROO2W"
"YLR4&7W"
"YBR11llC"
"YOROO3W"
"YPR107C"
"YJLO5€C"
"YGRZ211wW"
"YKL175W"

"YPLO41C"
"YPLO73C"
"YPL10SC"
"YPL150W"
"YPL197C"
"YPLZ238C"
"YPL257W-B"
"YPL2B3W-A"
"YPRO10C-A"
"YPRO27C"
"YPRO71IW"
"YPRO92W"
"YPR10SW"
"YPR136C"
"YPR148C"
"YPR159C-A"
"YPR172W"
"YPRZ03W"
"YDR349C"
"YKRO14C"
"YILOG3C"
"YNL339C"
"YHRO17wW"
"YKRO53C"
"YOR272W"
"YMR273C"
"YOL154wW"
"YBRO46C"

"YPLO44C"
"YPLO77C"
"YPL113C"
"YPL152W-A"
"YPL199C"
"YPL245W"
"YPL260W"
"YPL283W-B"
"YPRO11lC"
"YPRO3SW"
"YPRO74W-A"
"YPROYEC"
"YPR114W"
"YPR137C-A"
"YPR150W"
"YPR160C-A"
"YPR174C"
"YPR204C-A"
"YFLO38C"
"YNLO93W"
"YGLlé4c"
"YPL283C"
"YHROleC"
"YBR14EW"
"YNL23TW"
"YML10SW"
"YMR243C"
"YGR2B5C"

"YPLO60OC-A"
"YPLOSOC"
"YPL114W"
"YPL162C"
"YPL205C"
"YPL247C"
"YPL261C"
"YGR198W"
"YPRO12W"
"YPRO50C"
"YPROT6W"
"YPROGTW"
"YPR117W"
"YPR137C-B"
"YPR153W"
"YPR160W-A"
"YPR177C"
"YPR204W"
"YBR264C"
"YLR262C"
"YORS545W"
"YOR396W"
"YNL138W-A"
"YBR162W-A"
"YJROS9W"
"YOL109W"
"YNRO39C"
"YNL241C"

"YPLOG2W"
"YPLOSBW"
"YPL119C-A"
"YPL168W"
"YPLZ21eW"
"YPL250W-A"
"YPL264C"
"YOLO92wW"
"YPRO14C"
"YPROS53C"
"YPRO77C"
"YPRO98BC"
"YPR123C"
"YPR142C"
"YPR158C-C"
"YPR169W-A"
"YPR195C"
"YLR120C"
"YNL304wW"
"YMLOOIW"
"YER190W"
"YOR172W"
"YLR277C"
"YMROB9C"
"YJL139C"
"YNL310C"
"YERO33C"

"YPLO&C"
"YpLl02C"
"YPL135C-A"
"ypri8ac"
"YPL222C-A"
"YPL251W"
"YPL276W"
"YDR352W"
"YPRO15C"
"YPRO55C"
"YPRO78C"
"YPROSSC"
"YPR12€C"
"YPR145C-A"
"YPR158C-D"
"YPR170C"
"YPR196W"
"YLR121C"
"YERO31C"
"YDR381W"
"YGR29EW"
"YBRO54W"
"YHR155W"
"YPLO74W"
"YOROG7W"
"YDR285W"
"YGL255W"

"YPLO&SC"
"YPL107wW"
"YPL13ewW"
"YPL185W"
"YPL225W"
"YPL257W"
"YPL277C"
"YPROO2C-A"
"YPRO1EW-A"
"YPRO&3C"
"YPROB4W"
"YDR368W"
"YPR127W"
"YPR14€C"
"YPR158W-A"
"YPR170w-A"
"YPR197C"
"YGL259W"
"YGL210w"
"YKL214C"
"YLR4GEW"
"YORle2C"
"YDR326C"
"YGRZ270W"
"YIRO2&C"
"YGL249W"
"YLR130C"

So, this sub is the list of genes, and we want only these genes and their count data for the bias

correction, ok?

mat datalsub

So, this is what we are doing here: we are taking this data part of the data right, a subset of the
data, and then we are converting this into a matrix and storing it in this math variable. So, math
will have this data now, ok? As you can see again, we have this sample; we have the genes. The
only difference is that now we are working with only a subset of genes that are common across
these two data sets. So, because we cannot do a GC content correction if we do not have the GC

content data for any gene.

> mat <- as.matrix(data([sub,
> head(mat)

N L aarave 4w N e LR

Sl S5 89 s13 82 Se S10 514 S3 S7 Sl11 S15 sS4 S8 812 sl6
YMRO56C 543 521 €02 554 1046 775 1211 1159 1019 1111 1273 1390 1102 968 1310 480
YBROS5W 72 53 141 &3 44 29 57 27 23 32 €3 29 13 30 50 30
YJR155W 584 379 317 324 393 293 513 380 336 359 412 347 312 333 369 171
YNL331C 529 481 564 485 350 365 550 384 316 393 348 419 364 384 353 304
YOLl65C 2 0 4 2 1 1 4 0 0 4 1 2 0 2 1 0
YBR107W 468 389 303 407 318 304 320 288 283 323 319 269 249 284 339 255

> |

So, that is why we need to work with only the intersection between these two data sets. So, now
that this is done right, we are ready to create this new seq ExpressionSet, ok? So, again, it might
seem a bit complicated, but we are following the manual exactly as it is given in the manual. So,
what we will do is create this new data variable, and we will assign this new SegExpressionSet

right that we created to this variable ok?

So, the first part here is the math, right? So, this is the matrix that we have just created this is the
only count data. You can also define this normalized count variable. So, this normalized count
variable is just data in a matrix, right? But there is no data now; it will be created, and the number
of rows will be the same as the matrix. So, matrix, let us say, 6700 rows This normalized data
matrix, or normalized count matrix, should also have the same number of rows and the same
number of genes as the n-th column. So, the number of columns should be the same as the matrix
file because we have 16 samples here. We should also get 16 samples, and the dimension names
will be the same as the matrix. So, that is why everything should be the same as the matrix; only

the data will be different after the bias correction.

Then you have the phenoData, which is given as the annotated data frame right, which actually
gives us the conditions or factors of these experiments. So, as you can probably see, the first 4
samples belong to group 1, the next 4 samples belong to group 2, the next 4 belong to group 3, and
the final 4 belong to group 4. So, this is what we are mentioning when we are saying this factor C,
etcetera, etcetera, ok. Then you have the row names right. So, these are the row names given for
this data frame. This will be a data file, right? This is the data variable that you have loaded with

the column names of that data.

So, these are the sample names, which will be the row names in the case of phenotypes, right? So,
phenoData, and then you have the feature data, which actually belongs to this yeastGC sub. So,
this is based on the GC content, right? So, we are looking at GC content here. So, this belongs to
the yeastGC sub. Again, it might seem complicated, but again, we are following the functions that

are given in the manual, and | will show you in a moment.

mat normalizedCounts mat: nrow

conditions

data

gc=yeastGC|sub

So, then we can run this in R. It is a big command, right? You can see this in that it goes to multiple
lines, but in R it is ok, right? It seems to be see this plus plus right, and then we can run the full
command, ok? It has generated this new data. Now we can probably type, and it will show you
right: this is the SeqExpressionSet class of data. This is what we wanted, right? This is what we
want to create before we can run this within-Lane normalization method. And again, you have
some statistics about the data: what are these assay data, how many samples, etcetera, sample
names, etcetera. All these things that feature names are all given here, ok? So, what | wanted to

show you is that we are running this according to the manual, right?

vironment)

unts, offset

Names: YMROS56C YBROSSW ... YNL241C (€69¢& total)
els: gc

fvarMetadata: labelDescription
experimentData: use 'experimentData(object)’

Annotation:

So, we created this new seek data method, as you can probably see. So, we have this normalization,
ok? So, | will show you here perhaps in one of the examples you can see this clearly right this data
is created like this you can see this right. So, we have just replaced this with our experimental

design and our data.

data <- newSegExpressionSet(mat,
phenoData=AnnotatedDataFrame(
data.frame(conditions=factor(c("mut”, "mut”, "wt", "wt")),
row.names=colnames (geneLevelData))),
featureData=AnnotatedDataFrame{data.frame(gc=yeastGC{subl)))

And then we are following the GC content, right? So, when we want to correct for GC content
bias, So, that is what we are going to do after we have created this data set, ok? So, the next step
is to actually run this within Lane normalization, whether and then use a specific type of method.
We can use the lowest method, or we can use full quantile normalization right and then. So, there
are three methods that I mentioned. So, we can use any three of them again; these options are given

on top, and you can find them, and then we will get the normalized data that will be created.

newdata which round offset

And we can then export that normalized data into a text file, ok? So, let us do that now, ok? So,
we have created this new set of data, right? So, this is stored in this variable name data, ok, and we
now want to do this within lane normalization, ok. So, that is the goal, which is the next step,

which IS this normalization path.

Alright So, let us run this. | have copied this. So, we can run this command, and we can probably
see one thing, right? So, this is the data right where we are running this normalization within lane
normalization. Based on GC content, we are running full quantile normalization around the values
to true because we want these normalized counts to be integers. We will load them in DESeg2,
which expects raw counts. So, that is why you want to say round equals true and offset is false.
So, there are two options in this package: you can keep the counts the same as the raw count, and

then you can set offset values, which will give you the normalized values.

> norm <- withinLaneNormalization(newdata, "gc", which="full", round=TRUE, offset=FALSE)
> norm
SegExpressionSet (storageMode: lockedEnvironment)
assayData: 6696 features, 1€ samples
element names: counts, normalizedCounts, offset
protocolData: none
phenoData
sampleNames: S1 S5 ... S16 (16 total)
varLabels: conditions
varMetadata: labelDescription
featureData
featureNames: YMROS56C YBROS5W ... YNL241C (6696 total)
fvarLabels: gc
fvarMetadata: labelDescription
experimentData: use 'experimentData(object)’
Anpotation:

But in our case, we just want to create these normalized counts which we will use for the
differential expression analysis. So, we have run this now, and we can say the norm is right, and

the data is here, ok. So, how do we actually look at the bias? So, whether there is any bias or not,.

So, you can see this by using this command bias plot. Again, this is part of this package. There are
other plotting functions as well, and you can use them, and this will give you the bias plot. So, this
is the GC content and the gene counts right based on this bias plot, ok? So, of course, gene counts

cannot be negative. So, there is some sort of scaling here, ok?

newdata

protocolData: none

phenoData
sampleNames: S1 S5 ... S16 (16 total)
varLabels: conditions o
varMetadata: labelDescription g7
featureData
featureNames: YMRO56C YBROSS5W ... YNL241C (6696 total) o
fvarLabels: gc 37
fvarMetadata: labelDescription
experimentData: use 'experimentData(object)' o
Annotation: & 7
> T m < withinLaneNormalization(newdata, "gc", which="full", round=TRUE,
-3 m o
SegExpressionSet (storageMode: lockedEnvironment) 27

assayData: 6696 features, 16 samples
element names: counts, normalizedCounts, offset
protocolData: none
phenoData
sampleNames: S1 S5 ... S16 (16 total)
varLabels: conditions
varMetadata: labelDescription
featureData
featureNames: YMR0O56C YBRO8S5W ... YNL241C (6696 total)
fvarLabels: gc
fvarMetadata: labelDescription
experimentData: use 'experimentData(object)'
Annotation:
> riasPlot(newdata,“qc")
>

gene counts

So, this is how we can check this out. Now what we will do is export this data, right? So, to export

this data, | will use this command: normCounts norm. So, it will get the normalized count data

from this normalized data set, right? So, this norm data is the normalized data, and from norm

counts, if you use norm counts on norm, we will get the normalized count.

And we want to store this as a data frame inside this variable, norm2. And in the next step, we will
write this norm 2 variable using this command. Write dot table right; this is a very similar
command as read dot table. So, read dot table will read the data from a text file, whereas write dot
table will write this variable data, this matrix data, in a file, and you can say you can mention this
file name right, and then you can tell how you should write this. So, this shape equals a slash,
which means you should separate the data. Separate the data in every column using tabs, ok? So,
we want this tab-separated file quote to mean:. So, if you do not use this command, you will see

that all these values will be within double quotes.

a
|
|

s

(a

S 859 813 52 56 S10 s14 S3 S7 8§11 815 S4 S8 S12 sleé
YMRO56C ©95 €54 €67 €72 1017 775 1286 1121 1002 1079 11&8 1327 1051 950 1211 e31
YBROS5W 35 26 74 31 22 1le 31 15 15 19 32 17 11 1% 26 17
YJR155W 437 245 216 215 270 198 362 254 230 246 274 232 210 218 245 124
YNL331C 380 355 403 349 244 246 389 258 215 268 241 272 245 253 233 224
YOL165C 4 0 5 4 3 3 8 0 0 8 3 B 0 3 3 0
YCR107W 372 322 240 312 263 245 272 235 219 250 264 214 192 209 273 213

> |

So, we do not want those double quotes, right? So, we will just write. So, a quote equals a false
right. So, F just stands for false. Instead of writing the full thing we can simply say F, which means
we do not want any quotes when we are writing this data. So, we will run this right, and we will
get this normalized count data. And we can check a little bit normalized, ok, maybe we can try
head norm 2 right, and you will see this is different from what we have seen earlier. So, from the
raw count data, this is actually different, which you can compare, and it should be different because

this is corrected for the GC content bias.

Once you have generated this data, we can simply write this table, OK, and we can use this

command to write a dot table, and this bias-corrected file will now be generated, OK. And we can

verify this through the command line; we will have a look at that in a moment, ok? Before | look
at that file, 1 just wanted to say that we can also look at this within-lane normalization to see
whether this normalization has happened, what kind of normalization has happened, and what kind
of adjustment has happened using the RLE plot. So, we have used this command before, and here,
also within the package EDASeq, we have this plotRLE command. And we can look at the data
before normalization, which is the new data, and also look at the normalized data, which is the
norm variable.

newdata

N m

So, we can use this plot for early new data and the plot norm, and we can see very quickly how
this normalization changes the data. So, this is what we are going to do, and I will just move this
little bit so that you can see the data. So, these are the S1 to S16 samples, and you can see this is

before normalization, right?

1 1 1
CODOOCIIET— - - - - - NSO O oo
¢ u— ; - -~ {— I D O OO0

Cm— - - - - R 0

O COCRATE——

Q’\

O E— [I—m
o

St S8 52 S$10 S3 Si1 54 S12

And after normalization, you can see there is some difference again, depending on the type of
normalization. This will change, ok?

qgo. ST IO

§2'=‘,_, °© 2o o 0o g 8

it
l v I i i i i i I i l

TEAARLARAARY
1 Ey4#°: 8° 0" VgL

B . > 8 © s o o)

] & o 9 8 >

You can see the distributions have changed a little bit. So, if this is what a bias correction will do,
then we have corrected only for GC bias, and of course, we can take other examples. You can do
this for other methods. One final thing we want to see is that we have created the bias-corrected
file. So, this code is complete. Now that we have run this code we can come out, and we just want
to see that we have created this bias-corrected file. So, here is the bias-corrected file, and we can
open this with Vi to see again that we have created this file and saved it in the right format. We
will load this data next when we do the differential gene expression analysis, ok?
rdhar@LAPTOP-3KUCI9VBI: /mnt/c/Us /Dhar/Desktop/NGS_Data_Analysis Handaﬂn?/]wx{$ 1s

nalyze_RNAseq_data.R RUN3_all_S1-S16_analysis.txt

BiasCorrected_RUN3_all_S1-S16_analysis.txt Rcode_bias_correction.R
Prelim_analysis_Rcode.R SampleInformation.txt

rdhar@LAPTOP-3KUC9VBI: /mnt/c/Users/Dhar/Desktop/NGS_Data_Analysis_HandsOn2/Test$ vi BiasCorrected_RUN3_a
1_S1-S16_analysis.txt |

:5e nowrap

So, to summarize, we have completed the preliminary analysis, and we have seen whether the
samples are correlated or whether there is an outlier in the sample based on two types of analysis:
distance-based clustering and principal component analysis. And both gave us very similar results,
right? So, we get some very useful insights into the data before we actually jump into the
differential expression analysis part. And then in the second part we have looked into the bias
correction. There are different types of biases that represent the data in this answer. We simply
looked at the GC content bias and corrected for that bias, and we have generated this bias corrected

data that we can use now for the differential gene expression analysis. Thank you.

