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Good day, everyone. Welcome to the course on Next Generation Sequencing
Technologies, Data Analysis, and Applications. In the last class, we started discussing
differential gene expression analysis, or DGA analysis in short. We have talked about the
preliminary concepts, and we have also started a discussion on DEseg2. So, we have
completed some parts about the steps that we need to do for DEseg2 analysis. So, we will

continue that discussion in this class.

We will look at the results that are generated by this DEseqg2 tool, and we will also visualize
the results. So, once we generate the results, this is a huge result, and we need to use some
visualizations to actually better understand what we have. So, let's set the agenda for today's

class. We will look at the DGE analysis results.

We will generate those results, and we will look at some of the visualizations and some of
the plots that are generated for visualizing the results. So, just to briefly summarize what
we discussed in the last class regarding DEseq 2, So, DEseq2 starts with a raw count data
matrix. It utilizes the normalization method with the median of ratios method, which can
take care of some of the technical variations in the data and then it uses a model that is

based on a negative binomial distribution. So, this is a parametric method.

It has some assumptions about the count data distribution, and it models them using this
negative binomial distribution, and then it fits a generalized linear model, right? And it
takes that approach to estimate the parameters, the coefficients that are fit in the model,
ok? So, those coefficients give us the mean expression values of the genes as well as the
differential expression, right? So, whether some genes are showing a difference in
expression, So, in terms of differential expression, we get the log fold change value, ok, so

or LFC, alright. So, again, | will remind you of the terms, right?



» Dispersion is a critical parameter of the model

Variance of K;; = pj; + o2

* o;models variability within group (between replicates)

So, we start with a count matrix with count k i j for gene i in sample j, and DEseq2 assumes
that k i j follows a negative binomial distribution with mean j and dispersion alpha i. The
steps that are remaining, right? The first step is that we want to estimate the dispersion
alphai. So, once we have estimated the parameter beta from the model, we need to identify
whether this beta is significantly different from 0. So, that will tell us whether a gene is
differentially expressed or not. So, to do any statistical test, we also need to get an estimate

for this dispersion, alpha i.

Now, this is quite challenging, right? We have to use the data itself to estimate this
dispersion, ok? So, what is this dispersion? So, this is actually a very critical parameter of
the model. As you now understand, for doing the statistical test, we have to use this
parameter because we are assuming a negative binomial distribution, and this dispersion
alpha i is a parameter of the distribution. This will determine the shape of the distribution.
So, alpha is actually related to the variance of k i j using this term, right?

So, the variance of k i j is given by mu i j plus alpha i mu i j square, and this models the
variability within the group and between replicates, ok? So, we can estimate this alpha i,
right, from the replicates that are present in our data, but as | mentioned in the last class,
the number of replicates is very small, right? So, it is usually 3 to 5, ok? So, it is a very
small number of replicates because we cannot do these experiments with a large number

of replicates. It IS difficult; they are expensive, right?

So, we would have to settle for only 3 to 5 replicates, which means the estimates of this
dispersion, or alpha i, could be noisy because we are estimating from only a small number
of replicates, right? Because maybe one replicate is slightly like showing slightly different

patterning expressions, and then, of course, the alpha i would be noisy, ok? So, how do we



address that? How do we address that issue? So, it is actually addressed by something
called dispersion shrinkage, ok? So, we want to reduce this noise in the dispersion data,
and tie-daze is very simple, but there is an assumption. The assumption is that genes with
similar mean expression should have a similar dispersion value, ok? So, this is an
assumption that we make; this model DEseq2 makes, right, and based on that, it applies an
empirical-based framework to shrink dispersion towards this expected dispersion value,

right.

So, if you look at the original reference, you will see, right, that once we calculate this
dispersion value for each gene, for some genes, the dispersion will be much higher than
the group of genes that show similar mean expression. So, there is a relationship between
dispersion and mean expression, ok? So, what this model does, right? It assumes, ok, genes
that have similar mean expression also should have similar dispersion values, ok, because
we are talking about within replicate measurements. So, there is no reason why the
dispersion value should be different, ok? And then it uses this framework to actually shrink
this dispersion towards this expected dispersion value, and this shrinkage is actually

dependent on the number of replicates.

So, if there are a higher number of replicates, it means there will be less shrinkage, right?
So, because if you have more and more replicates, you are more confident about the
dispersion estimate, ok, but if you have a very small number of them, then maybe you have
only three, and then in that case, you may not be that confident about this dispersion
estimate. So, this means you need to have, you need to probably shrink the dispersion
mode, ok? So, this is kind of the assumption behind this dispersion shrinkage. Now, once
you have estimated this dispersion, right, we also calculate the low fold change, right, and

there is another term that we also use that is called low fold change shrinkage, ok.

But what does it actually mean? This is also somewhat related. So, what we see in RNA-
Seq data or also in microarray data is that genes that have a low read count or low mean
expression actually show a lot of variability in the data. The technical replicates show a lot

of variability, right? This is kind of expected, right? If you have a very small number of



reads to choose from or a small number of fragments to choose from, there is a lot of

variation.

So, if you are doing the same experiment, you can imagine that this is a pool of molecules
that you have, and then you have for these genes only a very small number of molecules.
Now, from this pool for each technical replicate, you can choose samples, right? So, you
are sampling from that pool, and the genes that are underrepresented, right, or should have
or have low expression are likely to have a higher variation between these replicates. So,
when you are pulling when you are sampling this, right, for these genes, in some replicates
you might get 10 reads, in some replicates you might get 5 reads, and in other replicates,
you might get 2 reads, right? So, this is what we see: higher variability in genes with a low

read count, ok?

And to account for that again, we want to shrink this lock-fold change value, and again,
DEseq2 uses an empirical-based framework. And of course, you can use different
frameworks to do this shrinkage, and this actually gives more robust results, as the
researchers have seen. So, in the next part, we have estimated the dispersion, right? We
have fit the model, and we have the parameter values estimated using a generalized linear

model, right? So, we know the beta values; now it is time for hypothesis testing, right?

So, in the hypothesis testing in the simple example that | gave you in the last class, we want
to have a null hypothesis, which says beta values are 0, which means there is no difference
between disease and a healthy condition, ok? So, by hypothesis testing, we actually have
this statistical basis for that, right? By saying whether we can reject that hypothesis or not,
right? So, this is what DESeq2 does, right? So, precisely, we are testing whether
coefficients are significantly different from 0, and coefficients that are significantly
different from O will be identified as differentially expressed genes. So, to do that, DEseq2
does what DEseq2 does: actually, we will divide these log fold changes by the standard

error, and it will test against a standard normal distribution using the Wald test.

So, you will get these Wald test statistics and the p values after the hypothesis testing for



each gene, ok? And these p values will be their significance that will signify, right, whether
we can reject the null hypothesis or not, ok? And | have also mentioned this because we
are doing this for a large number of genes, right? So, sometimes with 10,000 or 20,000
genes, we have to do something called multiple hypothesis testing, because we are doing
this hypothesis testing for each gene. So, individually, we are doing 10,000 hypothesis
tests, or if you have 10,000 genes, 20,000 hypothesis tests.

So, we need to do something called multiple hypothesis testing, ok? We will talk about this
multiple-hypothesis testing in the next class, right? So, this is something very important
for getting accurate results, ok? So, | will very briefly mention the other tool, which is the
edgeR tool. Here is the reference, and this is also a Bioconductor package. Again, this is a

very popular tool for differential gene expression analysis.

So, edgeR actually uses very similar concepts and similar steps, but there are some
differences, ok? So, edgeR also starts with rock-on data, and it does the TMM
normalization to generate the normalized count data. We have talked about TMM
normalization, and again, we have seen that this method can account for some of the RNA
composition bias that might be present. So, this is the normalization that is used by edgeR.

So, edgeR IS also a parametric model, right?

So, it uses the negative binomial distribution. So, it counts our model using this negative
binomial distribution, and it also uses a conditional maximum likelihood approach to
estimate gene-wise dispersion values. So, you see the similarity with the other tool DEseq2,
right? But of course, there are some differences. If you go into the reference and see the
details, you will see the dispersion methods are not exactly the same, right? So, this
estimation process and the shrinkage of dispersion again use empirical-based methods, but

there is some difference.

And one of the unique points about edgeR is that it can sometimes separate out this
technical variation from biological variation. So, it can estimate the biological variation

while calculating dispersion. Again, there is some underlying assumption. So, it assumes



the count data within technical replicates follows a Poisson distribution, whereas between
biological replicates you have a negative binomial distribution. So, with that assumption,

it can actually calculate the biological variation while calculating dispersion.

And for statistical testing or hypothesis testing, right, we have seen that for DEseqz2, it uses
the wild test, but edgeR uses Fisher's exact test for differential expression. So, to identify
this differential expression, it will use something called the Fisher's exact test. So, what is
the advantage of Fisher's exact test? Because it can work with very small numbers, it is an
exact test. So, it can work with a very small number of data points. So, even if you are
working with only two replicates or three replicates, it would give you more robust results

because this is an exact test that is used.

So, we have now talked about these two major tools—the two most popular tools for doing
differential expression analysis. What | am going to do now is show you some results from
the analysis using DEseqg2. So, again, | will take the results from the 16 samples that | am
using for all these illustrations. So, we have raw count data for 16 samples, divided into

four groups. So, each group has four replicate measurements, right?

Raw count data — 16 samples, 4 groups

S1 S5 S9 S13 SN2 S6 S1e si4 S3 57 511 S15
AACL 543 521 602 554 1046 775 1211 1159 1019 1111 1273 1390
AAC3 72 53 141 63 44 29 57 27 23 32 63 29
AADl1e 584 379 317 324 393 293 513 38e 336 359 412 347
AAD14 529 481 564 485 350 365 550 384 316 393 348 419
AAD1S 2 e 4 2 1 1 4 e e 4 2 2
AAD3 468 389 3e3 497 318 304 320 288 283 323 319 269
AAD4 496 353 437 416 312 271 480 235 219 266 306 192
AADS 299 244 33e 267 164 201 242 200 214 233 222 226
AAH1 438 640 634 565 630 792 677 792 612 764 529 439
AAP1 1988 2366 1546 2261 2588 1645 2417 1558 2045 1772 2229 1362
AAR2 178 149 144 169 131 135 208 152 156 152 149 16
AAT1 230 238 243 16e 224 299 421 359 333 398 452 41e

AAT2 20002 22397 15819 20466 25754 12426 40214 15336 18698 13484 32827 12284
ABD1 1619 1417 1333 1309 1279 1217 1541 1371 1275 1434 1226 1478
ABF1 3395 2821 2215 2732 1871 1415 2390 1275 1468 16e9 2157 1224
ABF2 51e5 5132 3e57 4706 3761 3516 4637 3923 3598 4127 3415 4100
ABM1 55 59 42 48 39 43 45 39 26 57 40 49

ABP1 8531 7664 6257 8097 6169 5220 6477 5725 5942 6190 5819 6096
ABP14e 4174 3699 1785 3659 2788 2618 2991 3070 2878 3053 2523 3020
ABZ1 2888 2627 2788 2989 1923 1849 2228 2058 1989 2110 1878 21e8
ABZ2 763 720 557 67e 652 677 892 801 780 887 724 975

ACA1 626 623 583 495 483 298 543 369 366 431 462 279

ACB1 5423 5479 3685 4675 2468 2382 2119 23e3 2030 2273 1839 2219
ACC1 7997 7523 5468 6499 2749 2907 4095 1990 2405 3226 3073 2244

And this is how the data looks; this is the raw count data, right? So, what you can see here,



right on the left column, right in the leftmost column, is that you have the gene names,
right? So, these are the genes, right? So, these are the genes here, and here are the samples,

right? So, you are starting from S 1, S 5, S 9, and up until there will be a total of 16.

Of course, | cannot show you the whole thing—all the columns here in this small space—
but you have 16 samples, ok? And for each sample, these are the count data, right? So, you
can see that gene AACL in sample 1 has 543 reads mapping to this chain, ok? So, these are
ordered in such a way that these replicates are side by side. So,S1,S5,S9,and S 13 are

replicates of each other, ok?

So, this is how these are organized, ok? So, again, we have a list of 7000 genes, 6000, 7000
genes for which you have this count data, ok? And as you can probably see, the count data
varies a lot, right? So, for some genes, you have very high-count data, and for some genes
you have very low count data, right? So, you have this example here. You can see that this
gene, AD 15, shows very low count data across all samples. Whereas, you have this gene
here, AT 2, and you can see very high expression and a very high count, meaning this gene
is probably more highly expressed.

Of course, this is raw count data, so we do have to be careful in connecting these two
expression levels because we have to do some normalization before we can do that. So, |
will show you, right? So, as | mentioned, segment 2 uses this median of ratios method,
right? So, it actually calculates something called the scaling factor or normalization factor
and this package is also called the size factors, right? So, in this Seg. 2 package, you see it
will be called the size factor.

This is nothing but the normalization factors or scaling factors calculated in the median of
ratios method, ok? And here are the steps: So, if you run D seg 2 on this sample, here are
the five steps—the right six steps, actually. So, the first step is estimating the size factor.
So, as you will see when we do the hands-on, it will actually give you all these steps one

after another.



So, the first is estimating size factors. This is where the normalization is taking place, using
the median of ratios method. In the next step, it is actually estimating dispersions. You
understand now what dispersions are and how they are calculated. For each gene, you get
this dispersion estimate. So, you have this gene-wise dispersion estimate, right?

So, you are getting these inverse values, and then the next step is, of course, the dispersion
shrinkage, right? So, as we mentioned, you need to do the shrinkage on dispersion. To do
that, it needs this information on the mean dispersion relationship, right? So, you need to
generate something like a mean expression or mean count versus dispersion, and you will

probably see something like this.

So, you will see these points, right? If you see the origin paper, you will see these points
around, and this kind of relationship you will see, ok? And for some genes, right where
you have a higher dispersion compared to these genes of similar mean expression, So, that
is the assumption in this model, right? The genes with similar mean expression should

show similar dispersion values, right?

So, imagine one gene here that has higher dispersion. So, for that gene, we need to perform
the shrinkage, right? So, of course, the method will perform that shrinkage again depending
on the number of replicas that are present in the data, right? So, it will bring it closer to the
expected value, of course—not exactly to that expected value, but closer to that expected
value. So, by doing that, it will generate these final dispersion estimates, right? So, this is
what it means by final dispersion estimates because it is doing this dispersion shrinkage,
and then the final step is the fitting model and testing, right?

So, the fitting model is this generalized linear model, and the testing part is hypothesis
testing. So, this generalized linear model will give the estimates for these coefficients' beta
values, and then you have hypothesis testing to identify genes that are differentially
expressed. So, it will simply generate the test statistics, the wild test statistic, and the p
value, and of course, it will also do a p value adjustment for multiple hypothesis testing.

So, let us now look at the results, right? So, how do these results actually look and what



you get?

So, before you actually see the results, these are the actual size factors that were estimated
by this tool preset 2 on this data set, ok? So, here you see a number for each sample. So,
for S 1, this number is 1.

127, and so on. For S 5, this is 1.10, right? So, these are the size factors that have been
determined. So, we have to use this in the model, right? So, this will be used by set 2 in the
model, right? You remember this count modeling, which is proportional to the fraction of
molecules in the cDNA library and multiplied by the size factor, right?

sizeFactors — Median of ratios method

s1 s5 s9 Ss13 s2 S6 S10 s14 s3 s7 sl1
1.1273944 1.1041999 0.9157992 1.0087420 0.9416163 0.9035239 1.1642829 0.9932796 0.9558043 1.0484679 1.0095593
S15 sS4 S8 s12 slé
.L..OO7293O 1.0161098 0.9731536 0.9896099 0.9126955

So, SJ, ok. So, these are the size factors for these samples. Now, in the results part, what
we will get, we will see in a moment, we will get this mean expression of genes, we will
get something called log2-fold change which is actually looking at the differential
expression, right? How much is the difference in expression of a gene between two sets of

samples? So, it is whether it is disease versus healthy or condition 1 versus condition 2.

It will also give us the standard error of the LFC value, ok? So, how much error is there in
the estimation? It will give us the results of the statistical analysis. So, because this set 2
performs a world test, it will get a world test statistic, you will get a p value, and you will
also get something called an adjusted p value. This is a p value corrected for multiple
hypothesis testing. So, you will get all these values for every gene, ok? So, if you have

7000 genes, you will get these values for 7000 genes, 0K?

And from that, you can then identify which genes are showing significant differences,
right? So, there is a significant difference in expression, and you also get the log2-fold
change, ok? So, here is the actual data, right? So, summary data that we will get once you
run these sets 2, ok? So, it says log2-fold change, and we have done this as a G 4 versus G

1 analysis, right? Because this makes sense.



P 1 and G 4 are quite different, and it says there are about 6,805 rows, which means 6,805
genes, and 6 columns here in the results. Okay, because we have this base mean. So, this
is the average expression of the gene. You have log2-fold change, you have the standard
error of log2-fold change, you have a statistic that is the world test statistic, you have the
p-value, and you have the adjusted p-value, or p edge, right? So, you get these 6 columns
in the results, and then you have the first column, which is for genes, and for every gene,
you can see these values, right? So, here is the mean expression for this gene, AACL1. You

have a log2 fold change, right?
Results (before LFC shrinkage)
log2 fold change (MLE): bin G4 vs Gl
Wald test p-value: bin G4 vs Gl
DataFrame with 6805 rows and 6 columns
baseMean log2FoldChange 1fcSE stat pvalue padj
<numeric> <numeric> <numeric> <numeric> <numeric> <numeric>
AAC1 939.4464 0.863980 0.227010 3.80591 0.000141282 0.000775418
AAC3 47.2524 -1.367290 0.438370 -3.11903 0.001814455 0.006603568
AAD1O 359.3387 -0.337822 0.207038 -1.63169 0.102744318 0.186889583
AAD14 409.0547 -0.470281 0.130643 -3.59974 0.000318534 0.001529882
AAD1S 1.4741 -1.370016 1.328056 -1.03159 0.302261892 0.436622390
ZRT2 2582.28 0.0634932 0.240902 0.263565 0.79211543 0.8640061
ZRT3 2461.06 -0.2395405 0.119667 -2.001726 0.04531416 0.0969851
ZTAl 3366.35 0.1789741 0.168534 1.061946 0.28826005 0.4214437
ZUo1l 9733239 0.1383753 0.415567 0.332980 0.73914966 0.8278790
ZWF1 13978.58 -0.5397258 0.194840 -2.770102 0.00560388 0.0172021

You have the standard error, statistic, p value, etcetera. Now, you can see that this p value
is quite significant, it seems, right? So, 0.0001, and you also get the p adjusted, ok? And
once we understand how p-adjusted data is generated, we can probably better interpret the
data. One of the things you probably notice is this log2-fold change, which can be positive

or negative.

So, a positive log2-fold change means this gene is overexpressed in the G4 sample, ok?
So, because this is a G 4 versus G 1 comparison, G 1 is used as the reference. So, this
positive number means this gene, AACL, is overexpressed in the G4 sample, ok? Whether
this is significantly different, right, or significantly overexpressed that will come from the

p-value, and we have to interpret the p adjusted later on.



A negative number, right, minus 1.36 for AAC3, would mean that this gene is poorly
expressed. So, it shows lower expression in the G4 sample compared to G1, ok? And how
is the difference in log fold change? It is about 2 to the power of 0.86 in the case of A C 1,
and in the case of A C 3, it is 2 to the power of minus 1.

36, ok, because we have to do that because it is a log 2, right, log base 2. So, we have to
take the 2 power, 2 to the power, ok? So, we have these results for all genes and this is
before LFC shrinkage. So, | have talked about this LFC shrinkage, right? Why why we
need to do that? And these are the results after LFC shrinkage, ok? So, here the statistic
part is gone because we usually do not use that statistic much, right? We are usually more
interested in these p values, p values, p adjusted, and the log fold change, right? So, you
can see these numbers have changed slightly because of this LFC shrinkage.

For example, for AAC1, it was 0.86 or something before this LFC shrinkage; here it is
0.78, ok. So, these numbers will change a little bit again depending on the number of
replicates that are present in the data and its mean expression, ok? So, we have now seen
the results, and we know what to expect after we have done the analysis and how they will
appear. Now, we need to visualize, of course, right? Because we have 7000 genes, we

cannot go to every individual gene and see its results, right?

So, we want to plot the results in such a way that we can interpret or identify the number
of genes in the data set, ok? Of course, there are different ways to do this in the R package.
In DEseqg2, we can do that; in R, we can do that, but we also want to look at the results,
right, and with some plots, because visually, we can then identify certain important things.

And so, that is what we are going to do now, Ok?

So, there are three different plots that we use very commonly. So, one is called the MA
plot, the second is the volcano plot, and the third is the heat map. So, | will discuss these
different types of plots, and we will actually plot the results that we have just generated
using these plots, and you will see they will give us quite informative inferences, ok? So,

the first one is the MA plot. So, what we look at here is the mean expression versus log2



fold change, ok?

So, how do you calculate this? In a moment, 1 will talk about this. So, we will calculate
two parameters, M and A. So, what happens is that when you plot this mean expression
versus log2-fold change, you can actually see the number of differentially expressed genes,
ok, and their distribution of log2-fold change, ok. And also, the MA plot helps in proper
normalization, right? So, we can check whether we have done proper normalization, and
this was actually very useful for microarray data analysis, but here also in un-anesthetic
data analysis, we can say, ok, whether the normalization has been done properly or whether

there is a need for another round of normalization or a different normalization.

So, into the technical details, how do we actually generate this plot? So, imagine this
scenario again diseased versus healthy samples, ok, and for all genes I, we can say DI is
the normalized count for gene I in the diseased sample and HI is the normalized count for
gene | in the healthy sample, ok. And we calculate these two parameters, M and A, for each
gene, ok? So, Ml is log 2 Di divided by Hi, and Al is log 2 Di plus log 2 Hi divided by 2.
So, A is kind of like the average expression, ok, and Mi is the log fold change, right?
M-A plot

Diseased(D) vs Healthy(H) samples

For all genes ‘i’ :

D; = normalized count for gene ‘i’ in diseased sample
H; = normalized count for gene ‘i’ in healthy sample

M; = log,(Di/H;)

We are looking at differences in expression, ok? So, here is the plot—actually, this is how
it would look. So, on the x axis, you have the mean of normalized counts, or the A values,
right? This is the average value, and then along the y axis you have the log 2 fold change,
or M, ok. And as you can see, the log2 fold change can be positive or negative and we have
actually discussed this scenario, right? So, a positive change would mean the gene is
overexpressed in the G4 sample; a negative change would mean this gene is under-

expressed or shows lower expression in the G4 sample compared to the G1 sample.
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So, now what you see are these dots. So, each dot is a gene result. So, we calculate M and
A for each gene, and then we plot this, right? And every point that you see is a gene, ok?
And you can see these two different colors, right? So, you have points in two different
colors; some points are in gray and some points are in blue, ok? So, what is the difference?

So, the gray points are not statistically significant, ok?

And blue points are statistically significant, right? They show a statistically significant
difference in expression, ok? So, this means these genes that are in blue and in this top part
are the genes that are overexpressed or show higher expression in the G4 sample compared
to G1. And this gene blue in blue here, right, shows a negative log2 fold change, and in
blue, they are showing lower expression in the G4 sample compared to G1, ok? So, you
can kind of get an idea, ok, these are the genes these are the number of genes that are
showing this kind of thing, ok.

And you can also see the distribution of the log2 fold change. So, you can see if there are
quite a few genes that are above these two values in log2 fold change, right? So, that means
they are actually showing four-fold overexpression, right, 2 to the power of 2. So, that is a
four-fold overexpression in the G4 sample compared to G1. And similarly, you can
interpret the data for the genes that show very low log2 fold change or negative log2 fold
change, right?



- S Af

2

log, fold change (M)

=0

log, fold change (M)
0

-4

1e-01 1e+01 1e+03 1e+05 T T T T T T T
1e-01 1e+01 1e+03 1e+05
Mean of normalized counts (A) Mean of normalized counts (A)

And you can understand they are showing significantly lower expression in the G4 sample,
ok? So, this is before LFC shrinkage, right? So, what happens after LFC shrinkage is that
you see, right, the genes that showed very low mean expression or mean count are they
kind of disappear from this here, right? So, one of the points is probably obvious, right?
So, we see most of these blue genes only in the high mean expression. For this gene that
shows low mean expression, right, even though you see the log2-fold change is high here,
right, they are not statistically significant, ok.

This is because there is a lot of variation in the data. And because of this variation, when
you do the hypothesis testing, it cannot identify that the p value is not significant. It cannot
be identified as a statistically significant difference, ok, because the statistical test depends
on the variance of the data, right? So, for genes that have low counts or show low
expression, they show very high variability, which is why they are not identified as
significantly different. Even though the average log2-fold change you can see is quite high,
right, they are statistically not significant. So, what LFC shrinkage does is kind of shrink

these LFC values, because they are highly variable.

It actually uses this empirical base method to shrink these values. And what you see is that
these values have been shrinking now, and you can see they are kind of close to 0O, right?
And this kind of makes it actually very robust for this method, because we are kind of
taking this variable into account depending on the number of replicates, ok? So, | also

mentioned that we can check the quality of normalization from the M-F plot, right? So, this



is something we researchers have been doing for microarray data as well, and this can also
be extended to anistic data. So, one of the assumptions in this kind of analysis is that most

of the genes do not show any difference in expression across samples.

And this means that for most genes, their log2 fold change value should be 0, right? So,
they should be lying on that 0 line, ok? And if you see a dependence of log2 fold change
on the mean expression, that would mean it probably requires better normalization, or
maybe you need to use some other normalization on top of the current method, ok? So,
what | will mention right here is that what you see is that most of the genes are lying on
these 0 lines. So, this seems pretty good, but sometimes what you might see is that if you

have the O line, the  samples are lying like  this, ok?

Most of the samples are below 0, or you see some sort of curve nature in this plot, ok?
Instead of this kind of nature centered around 0, you see, maybe this plot is slightly curved,
ok? Now, if this is the case, that would mean, right, this is the 0 line, right? If this is the
case, this would mean you need better normalization methods, ok? And by inspecting this
M-A plot, you can probably say, OK, the data is properly normalized, or whether you need

some sort of normalization or different normalization methods on this data.

All right. So, the other plots are there. So, another is the volcano plot, and this actually
looks at log2-fold change versus log 10 p value. It kind of gives you information about
how log2-fold change values vary with significance level, right? So, this is what we get.
So, the x axis is log2-fold change, right, the LFC, and the y axis is the minus log 10 p value,
right.

So, a higher minus log 10 p value means more significance, right? Because you have the
minus. So, if you had let us say 10 to the power minus 2 p value, your minus log 10 p value
would be 2, right? If you have 10 to the power of 10, your minus log 10 p value would be
10, right? So, a higher value of minus log 10 p means more significant, right? And as you
can see, we have set this threshold here, and based on this threshold, these genes are

colored; these are significant; these are in blue. The genes that are not showing a significant



difference, right? There is no statistical significance, right? They are shown in gray here

and in this part.

Volcano plot

—log,,(p-value)

log,FoldChange

You can also see, for example, what fraction of genes are showing a higher log-fold change
than 1 or genes that are showing a lower log-fold change than minus 2 or minus 1, right?
All those things can be visualized using this Falcon plot. And finally, the heat map, right?
So, we use a heat map for comparison of the expression levels of a set of genes across many
samples and not just two samples, and here is a heat map for the same thing, right? So, you
have g 1 g 2 g 3 g 4. So, we are looking at, let us say, one replicate of each, and we are
looking at the different genes, which are numbered here along the rows, right.

Heatmap
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So, you can see genes 1 and 2, etcetera. So, here you are seeing these expression levels;

these are color-coded, and the colors are given here, ok? So, if you have a red color, this



means this gene is overexpressed; ok, it shows higher expression or positive log fold
change; ok. So, you can probably see this very clearly here, right? For example, this set of
genes is more highly expressed in the group 1 samples, right, compared to group 4 or group
3.

In addition, what you can probably see is that there is kind of a gradient, right? So, g 1 has
the highest expression for these genes, then you have g 2; they show some expression, g 3
is slightly lower, and g 4 shows almost no expression, right? So, this kind of pattern can be
identified with this heat map analysis. You can also do hierarchical clustering on top of
this. So, this heat map is without clustering; the genes are ordered, right, from gene 1 to

gene 24, but you can do hierarchical clustering.

Color Key
and Histogram

=2 012
Value

Count
0 20

G1 G2 G3 G4

So, it will cluster genes that show similar expression patterns across the data, right? So,
you can see it has clustered these groups of genes because they show a similar pattern
across these groups (1, 2, 3 4, ok. So, this set of genes has the highest expression in group
1, then slightly lower expression in group 2, then lower expression in group 3, and lowest
in group 4. So, we have talked about this difference visualization that helps us understand

the  results better, ok? Here are the references for this class.

So, we have completed the differential expression analysis with the package DESec 2. At
least | have discussed the theoretical steps; of course, we will do it hands-on. And we have

seen the results that we get and two values. Two results are very important for us. One is a



log2 fold change, and the other is p-adjusted. We have visualized the results through the
MA plot, volcano plot, and heat map. Again, we have seen some important insights that

we get from this visualization. Thank you.



