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Good day, everyone. Welcome to the course on Next Generation Sequencing 

Technologies, Data Analysis, and Applications. In the last class, we started discussing 

differential gene expression analysis, or DGA analysis in short. We have talked about the 

preliminary concepts, and we have also started a discussion on DEseq2. So, we have 

completed some parts about the steps that we need to do for DEseq2 analysis. So, we will 

continue that discussion in this class. 

 

We will look at the results that are generated by this DEseq2 tool, and we will also visualize 

the results. So, once we generate the results, this is a huge result, and we need to use some 

visualizations to actually better understand what we have. So, let's set the agenda for today's 

class. We will look at the DGE analysis results. 

 

We will generate those results, and we will look at some of the visualizations and some of 

the plots that are generated for visualizing the results. So, just to briefly summarize what 

we discussed in the last class regarding DEseq 2, So, DEseq2 starts with a raw count data 

matrix. It utilizes the normalization method with the median of ratios method, which can 

take care of some of the technical variations in the data and then it uses a model that is 

based on a negative binomial distribution. So, this is a parametric method. 

 

It has some assumptions about the count data distribution, and it models them using this 

negative binomial distribution, and then it fits a generalized linear model, right? And it 

takes that approach to estimate the parameters, the coefficients that are fit in the model, 

ok? So, those coefficients give us the mean expression values of the genes as well as the 

differential expression, right? So, whether some genes are showing a difference in 

expression, So, in terms of differential expression, we get the log fold change value, ok, so 

or LFC, alright. So, again, I will remind you of the terms, right? 



 

So, we start with a count matrix with count k i j for gene i in sample j, and DEseq2 assumes 

that k i j follows a negative binomial distribution with mean j and dispersion alpha i. The 

steps that are remaining, right? The first step is that we want to estimate the dispersion 

alpha i. So, once we have estimated the parameter beta from the model, we need to identify 

whether this beta is significantly different from 0. So, that will tell us whether a gene is 

differentially expressed or not. So, to do any statistical test, we also need to get an estimate 

for this dispersion, alpha i. 

 

Now, this is quite challenging, right? We have to use the data itself to estimate this 

dispersion, ok? So, what is this dispersion? So, this is actually a very critical parameter of 

the model. As you now understand, for doing the statistical test, we have to use this 

parameter because we are assuming a negative binomial distribution, and this dispersion 

alpha i is a parameter of the distribution. This will determine the shape of the distribution. 

So, alpha is actually related to the variance of k i j using this term, right? 

 

So, the variance of k i j is given by mu i j plus alpha i mu i j square, and this models the 

variability within the group and between replicates, ok? So, we can estimate this alpha i, 

right, from the replicates that are present in our data, but as I mentioned in the last class, 

the number of replicates is very small, right? So, it is usually 3 to 5, ok? So, it is a very 

small number of replicates because we cannot do these experiments with a large number 

of replicates. It is difficult; they are expensive, right? 

 

So, we would have to settle for only 3 to 5 replicates, which means the estimates of this 

dispersion, or alpha i, could be noisy because we are estimating from only a small number 

of replicates, right? Because maybe one replicate is slightly like showing slightly different 

patterning expressions, and then, of course, the alpha i would be noisy, ok? So, how do we 



address that? How do we address that issue? So, it is actually addressed by something 

called dispersion shrinkage, ok? So, we want to reduce this noise in the dispersion data, 

and tie-daze is very simple, but there is an assumption. The assumption is that genes with 

similar mean expression should have a similar dispersion value, ok? So, this is an 

assumption that we make; this model DEseq2 makes, right, and based on that, it applies an 

empirical-based framework to shrink dispersion towards this expected dispersion value, 

right. 

 

So, if you look at the original reference, you will see, right, that once we calculate this 

dispersion value for each gene, for some genes, the dispersion will be much higher than 

the group of genes that show similar mean expression. So, there is a relationship between 

dispersion and mean expression, ok? So, what this model does, right? It assumes, ok, genes 

that have similar mean expression also should have similar dispersion values, ok, because 

we are talking about within replicate measurements. So, there is no reason why the 

dispersion value should be different, ok? And then it uses this framework to actually shrink 

this dispersion towards this expected dispersion value, and this shrinkage is actually 

dependent on the number of replicates. 

 

So, if there are a higher number of replicates, it means there will be less shrinkage, right? 

So, because if you have more and more replicates, you are more confident about the 

dispersion estimate, ok, but if you have a very small number of them, then maybe you have 

only three, and then in that case, you may not be that confident about this dispersion 

estimate. So, this means you need to have, you need to probably shrink the dispersion 

mode, ok? So, this is kind of the assumption behind this dispersion shrinkage. Now, once 

you have estimated this dispersion, right, we also calculate the low fold change, right, and 

there is another term that we also use that is called low fold change shrinkage, ok. 

 

But what does it actually mean? This is also somewhat related. So, what we see in RNA-

Seq data or also in microarray data is that genes that have a low read count or low mean 

expression actually show a lot of variability in the data. The technical replicates show a lot 

of variability, right? This is kind of expected, right? If you have a very small number of 



reads to choose from or a small number of fragments to choose from, there is a lot of 

variation. 

 

So, if you are doing the same experiment, you can imagine that this is a pool of molecules 

that you have, and then you have for these genes only a very small number of molecules. 

Now, from this pool for each technical replicate, you can choose samples, right? So, you 

are sampling from that pool, and the genes that are underrepresented, right, or should have 

or have low expression are likely to have a higher variation between these replicates. So, 

when you are pulling when you are sampling this, right, for these genes, in some replicates 

you might get 10 reads, in some replicates you might get 5 reads, and in other replicates, 

you might get 2 reads, right? So, this is what we see: higher variability in genes with a low 

read count, ok? 

 

And to account for that again, we want to shrink this lock-fold change value, and again, 

DEseq2 uses an empirical-based framework. And of course, you can use different 

frameworks to do this shrinkage, and this actually gives more robust results, as the 

researchers have seen. So, in the next part, we have estimated the dispersion, right? We 

have fit the model, and we have the parameter values estimated using a generalized linear 

model, right? So, we know the beta values; now it is time for hypothesis testing, right? 

 

So, in the hypothesis testing in the simple example that I gave you in the last class, we want 

to have a null hypothesis, which says beta values are 0, which means there is no difference 

between disease and a healthy condition, ok? So, by hypothesis testing, we actually have 

this statistical basis for that, right? By saying whether we can reject that hypothesis or not, 

right? So, this is what DESeq2 does, right? So, precisely, we are testing whether 

coefficients are significantly different from 0, and coefficients that are significantly 

different from 0 will be identified as differentially expressed genes. So, to do that, DEseq2 

does what DEseq2 does: actually, we will divide these log fold changes by the standard 

error, and it will test against a standard normal distribution using the Wald test. 

 

So, you will get these Wald test statistics and the p values after the hypothesis testing for 



each gene, ok? And these p values will be their significance that will signify, right, whether 

we can reject the null hypothesis or not, ok? And I have also mentioned this because we 

are doing this for a large number of genes, right? So, sometimes with 10,000 or 20,000 

genes, we have to do something called multiple hypothesis testing, because we are doing 

this hypothesis testing for each gene. So, individually, we are doing 10,000 hypothesis 

tests, or if you have 10,000 genes, 20,000 hypothesis tests. 

 

So, we need to do something called multiple hypothesis testing, ok? We will talk about this 

multiple-hypothesis testing in the next class, right? So, this is something very important 

for getting accurate results, ok? So, I will very briefly mention the other tool, which is the 

edgeR tool. Here is the reference, and this is also a Bioconductor package. Again, this is a 

very popular tool for differential gene expression analysis. 

 

So, edgeR actually uses very similar concepts and similar steps, but there are some 

differences, ok? So, edgeR also starts with rock-on data, and it does the TMM 

normalization to generate the normalized count data. We have talked about TMM 

normalization, and again, we have seen that this method can account for some of the RNA 

composition bias that might be present. So, this is the normalization that is used by edgeR. 

So, edgeR is also a parametric model, right? 

 

So, it uses the negative binomial distribution. So, it counts our model using this negative 

binomial distribution, and it also uses a conditional maximum likelihood approach to 

estimate gene-wise dispersion values. So, you see the similarity with the other tool DEseq2, 

right? But of course, there are some differences. If you go into the reference and see the 

details, you will see the dispersion methods are not exactly the same, right? So, this 

estimation process and the shrinkage of dispersion again use empirical-based methods, but 

there is some difference. 

 

And one of the unique points about edgeR is that it can sometimes separate out this 

technical variation from biological variation. So, it can estimate the biological variation 

while calculating dispersion. Again, there is some underlying assumption. So, it assumes 



the count data within technical replicates follows a Poisson distribution, whereas between 

biological replicates you have a negative binomial distribution. So, with that assumption, 

it can actually calculate the biological variation while calculating dispersion. 

 

And for statistical testing or hypothesis testing, right, we have seen that for DEseq2, it uses 

the wild test, but edgeR uses Fisher's exact test for differential expression. So, to identify 

this differential expression, it will use something called the Fisher's exact test. So, what is 

the advantage of Fisher's exact test? Because it can work with very small numbers, it is an 

exact test. So, it can work with a very small number of data points. So, even if you are 

working with only two replicates or three replicates, it would give you more robust results 

because this is an exact test that is used. 

 

So, we have now talked about these two major tools—the two most popular tools for doing 

differential expression analysis. What I am going to do now is show you some results from 

the analysis using DEseq2. So, again, I will take the results from the 16 samples that I am 

using for all these illustrations. So, we have raw count data for 16 samples, divided into 

four groups. So, each group has four replicate measurements, right? 

 

And this is how the data looks; this is the raw count data, right? So, what you can see here, 



right on the left column, right in the leftmost column, is that you have the gene names, 

right? So, these are the genes, right? So, these are the genes here, and here are the samples, 

right? So, you are starting from S 1, S 5, S 9, and up until there will be a total of 16. 

 

Of course, I cannot show you the whole thing—all the columns here in this small space—

but you have 16 samples, ok? And for each sample, these are the count data, right? So, you 

can see that gene AAC1 in sample 1 has 543 reads mapping to this chain, ok? So, these are 

ordered in such a way that these replicates are side by side. So, S 1, S 5, S 9, and S 13 are 

replicates of each other, ok? 

 

So, this is how these are organized, ok? So, again, we have a list of 7000 genes, 6000, 7000 

genes for which you have this count data, ok? And as you can probably see, the count data 

varies a lot, right? So, for some genes, you have very high-count data, and for some genes 

you have very low count data, right? So, you have this example here. You can see that this 

gene, AD 15, shows very low count data across all samples. Whereas, you have this gene 

here, A T 2, and you can see very high expression and a very high count, meaning this gene 

is probably more highly expressed. 

 

Of course, this is raw count data, so we do have to be careful in connecting these two 

expression levels because we have to do some normalization before we can do that. So, I 

will show you, right? So, as I mentioned, segment 2 uses this median of ratios method, 

right? So, it actually calculates something called the scaling factor or normalization factor 

and this package is also called the size factors, right? So, in this Seg. 2 package, you see it 

will be called the size factor. 

 

This is nothing but the normalization factors or scaling factors calculated in the median of 

ratios method, ok? And here are the steps: So, if you run D seg 2 on this sample, here are 

the five steps—the right six steps, actually. So, the first step is estimating the size factor. 

So, as you will see when we do the hands-on, it will actually give you all these steps one 

after another. 

 



So, the first is estimating size factors. This is where the normalization is taking place, using 

the median of ratios method. In the next step, it is actually estimating dispersions. You 

understand now what dispersions are and how they are calculated. For each gene, you get 

this dispersion estimate. So, you have this gene-wise dispersion estimate, right? 

 

So, you are getting these inverse values, and then the next step is, of course, the dispersion 

shrinkage, right? So, as we mentioned, you need to do the shrinkage on dispersion. To do 

that, it needs this information on the mean dispersion relationship, right? So, you need to 

generate something like a mean expression or mean count versus dispersion, and you will 

probably see something like this. 

 

So, you will see these points, right? If you see the origin paper, you will see these points 

around, and this kind of relationship you will see, ok? And for some genes, right where 

you have a higher dispersion compared to these genes of similar mean expression, So, that 

is the assumption in this model, right? The genes with similar mean expression should 

show similar dispersion values, right? 

 

So, imagine one gene here that has higher dispersion. So, for that gene, we need to perform 

the shrinkage, right? So, of course, the method will perform that shrinkage again depending 

on the number of replicas that are present in the data, right? So, it will bring it closer to the 

expected value, of course—not exactly to that expected value, but closer to that expected 

value. So, by doing that, it will generate these final dispersion estimates, right? So, this is 

what it means by final dispersion estimates because it is doing this dispersion shrinkage, 

and then the final step is the fitting model and testing, right? 

 

So, the fitting model is this generalized linear model, and the testing part is hypothesis 

testing. So, this generalized linear model will give the estimates for these coefficients' beta 

values, and then you have hypothesis testing to identify genes that are differentially 

expressed. So, it will simply generate the test statistics, the wild test statistic, and the p 

value, and of course, it will also do a p value adjustment for multiple hypothesis testing. 

So, let us now look at the results, right? So, how do these results actually look and what 



you get? 

 

So, before you actually see the results, these are the actual size factors that were estimated 

by this tool preset 2 on this data set, ok? So, here you see a number for each sample. So, 

for S 1, this number is 1. 

 

127, and so on. For S 5, this is 1.10, right? So, these are the size factors that have been 

determined. So, we have to use this in the model, right? So, this will be used by set 2 in the 

model, right? You remember this count modeling, which is proportional to the fraction of 

molecules in the cDNA library and multiplied by the size factor, right? 

 

So, SJ, ok. So, these are the size factors for these samples. Now, in the results part, what 

we will get, we will see in a moment, we will get this mean expression of genes, we will 

get something called log2-fold change which is actually looking at the differential 

expression, right? How much is the difference in expression of a gene between two sets of 

samples? So, it is whether it is disease versus healthy or condition 1 versus condition 2. 

 

It will also give us the standard error of the LFC value, ok? So, how much error is there in 

the estimation? It will give us the results of the statistical analysis. So, because this set 2 

performs a world test, it will get a world test statistic, you will get a p value, and you will 

also get something called an adjusted p value. This is a p value corrected for multiple 

hypothesis testing. So, you will get all these values for every gene, ok? So, if you have 

7000 genes, you will get these values for 7000 genes, ok? 

 

And from that, you can then identify which genes are showing significant differences, 

right? So, there is a significant difference in expression, and you also get the log2-fold 

change, ok? So, here is the actual data, right? So, summary data that we will get once you 

run these sets 2, ok? So, it says log2-fold change, and we have done this as a G 4 versus G 

1 analysis, right? Because this makes sense. 



 

P 1 and G 4 are quite different, and it says there are about 6,805 rows, which means 6,805 

genes, and 6 columns here in the results. Okay, because we have this base mean. So, this 

is the average expression of the gene. You have log2-fold change, you have the standard 

error of log2-fold change, you have a statistic that is the world test statistic, you have the 

p-value, and you have the adjusted p-value, or p edge, right? So, you get these 6 columns 

in the results, and then you have the first column, which is for genes, and for every gene, 

you can see these values, right? So, here is the mean expression for this gene, AAC1. You 

have a log2 fold change, right? 

 

You have the standard error, statistic, p value, etcetera. Now, you can see that this p value 

is quite significant, it seems, right? So, 0.0001, and you also get the p adjusted, ok? And 

once we understand how p-adjusted data is generated, we can probably better interpret the 

data. One of the things you probably notice is this log2-fold change, which can be positive 

or negative. 

 

So, a positive log2-fold change means this gene is overexpressed in the G4 sample, ok? 

So, because this is a G 4 versus G 1 comparison, G 1 is used as the reference. So, this 

positive number means this gene, AAC1, is overexpressed in the G4 sample, ok? Whether 

this is significantly different, right, or significantly overexpressed that will come from the 

p-value, and we have to interpret the p adjusted later on. 

 



A negative number, right, minus 1.36 for AAC3, would mean that this gene is poorly 

expressed. So, it shows lower expression in the G4 sample compared to G1, ok? And how 

is the difference in log fold change? It is about 2 to the power of 0.86 in the case of A C 1, 

and in the case of A C 3, it is 2 to the power of minus 1. 

 

36, ok, because we have to do that because it is a log 2, right, log base 2. So, we have to 

take the 2 power, 2 to the power, ok? So, we have these results for all genes and this is 

before LFC shrinkage. So, I have talked about this LFC shrinkage, right? Why why we 

need to do that? And these are the results after LFC shrinkage, ok? So, here the statistic 

part is gone because we usually do not use that statistic much, right? We are usually more 

interested in these p values, p values, p adjusted, and the log fold change, right? So, you 

can see these numbers have changed slightly because of this LFC shrinkage. 

 

For example, for AAC1, it was 0.86 or something before this LFC shrinkage; here it is 

0.78, ok. So, these numbers will change a little bit again depending on the number of 

replicates that are present in the data and its mean expression, ok? So, we have now seen 

the results, and we know what to expect after we have done the analysis and how they will 

appear. Now, we need to visualize, of course, right? Because we have 7000 genes, we 

cannot go to every individual gene and see its results, right? 

 

So, we want to plot the results in such a way that we can interpret or identify the number 

of genes in the data set, ok? Of course, there are different ways to do this in the R package. 

In DEseq2, we can do that; in R, we can do that, but we also want to look at the results, 

right, and with some plots, because visually, we can then identify certain important things. 

And so, that is what we are going to do now, ok? 

 

So, there are three different plots that we use very commonly. So, one is called the MA 

plot, the second is the volcano plot, and the third is the heat map. So, I will discuss these 

different types of plots, and we will actually plot the results that we have just generated 

using these plots, and you will see they will give us quite informative inferences, ok? So, 

the first one is the MA plot. So, what we look at here is the mean expression versus log2 



fold change, ok? 

 

So, how do you calculate this? In a moment, I will talk about this. So, we will calculate 

two parameters, M and A. So, what happens is that when you plot this mean expression 

versus log2-fold change, you can actually see the number of differentially expressed genes, 

ok, and their distribution of log2-fold change, ok. And also, the MA plot helps in proper 

normalization, right? So, we can check whether we have done proper normalization, and 

this was actually very useful for microarray data analysis, but here also in un-anesthetic 

data analysis, we can say, ok, whether the normalization has been done properly or whether 

there is a need for another round of normalization or a different normalization. 

 

So, into the technical details, how do we actually generate this plot? So, imagine this 

scenario again diseased versus healthy samples, ok, and for all genes I, we can say DI is 

the normalized count for gene I in the diseased sample and HI is the normalized count for 

gene I in the healthy sample, ok. And we calculate these two parameters, M and A, for each 

gene, ok? So, MI is log 2 Di divided by Hi, and AI is log 2 Di plus log 2 Hi divided by 2. 

So, A is kind of like the average expression, ok, and Mi is the log fold change, right? 

 

We are looking at differences in expression, ok? So, here is the plot—actually, this is how 

it would look. So, on the x axis, you have the mean of normalized counts, or the A values, 

right? This is the average value, and then along the y axis you have the log 2 fold change, 

or M, ok. And as you can see, the log2 fold change can be positive or negative and we have 

actually discussed this scenario, right? So, a positive change would mean the gene is 

overexpressed in the G4 sample; a negative change would mean this gene is under-

expressed or shows lower expression in the G4 sample compared to the G1 sample. 



 

So, now what you see are these dots. So, each dot is a gene result. So, we calculate M and 

A for each gene, and then we plot this, right? And every point that you see is a gene, ok? 

And you can see these two different colors, right? So, you have points in two different 

colors; some points are in gray and some points are in blue, ok? So, what is the difference? 

So, the gray points are not statistically significant, ok? 

 

And blue points are statistically significant, right? They show a statistically significant 

difference in expression, ok? So, this means these genes that are in blue and in this top part 

are the genes that are overexpressed or show higher expression in the G4 sample compared 

to G1. And this gene blue in blue here, right, shows a negative log2 fold change, and in 

blue, they are showing lower expression in the G4 sample compared to G1, ok? So, you 

can kind of get an idea, ok, these are the genes these are the number of genes that are 

showing this kind of thing, ok. 

 

And you can also see the distribution of the log2 fold change. So, you can see if there are 

quite a few genes that are above these two values in log2 fold change, right? So, that means 

they are actually showing four-fold overexpression, right, 2 to the power of 2. So, that is a 

four-fold overexpression in the G4 sample compared to G1. And similarly, you can 

interpret the data for the genes that show very low log2 fold change or negative log2 fold 

change, right? 



   

 

And you can understand they are showing significantly lower expression in the G4 sample, 

ok? So, this is before LFC shrinkage, right? So, what happens after LFC shrinkage is that 

you see, right, the genes that showed very low mean expression or mean count are they 

kind of disappear from this here, right? So, one of the points is probably obvious, right? 

So, we see most of these blue genes only in the high mean expression. For this gene that 

shows low mean expression, right, even though you see the log2-fold change is high here, 

right, they are not statistically significant, ok. 

 

This is because there is a lot of variation in the data. And because of this variation, when 

you do the hypothesis testing, it cannot identify that the p value is not significant. It cannot 

be identified as a statistically significant difference, ok, because the statistical test depends 

on the variance of the data, right? So, for genes that have low counts or show low 

expression, they show very high variability, which is why they are not identified as 

significantly different. Even though the average log2-fold change you can see is quite high, 

right, they are statistically not significant. So, what LFC shrinkage does is kind of shrink 

these LFC values, because they are highly variable. 

 

It actually uses this empirical base method to shrink these values. And what you see is that 

these values have been shrinking now, and you can see they are kind of close to 0, right? 

And this kind of makes it actually very robust for this method, because we are kind of 

taking this variable into account depending on the number of replicates, ok? So, I also 

mentioned that we can check the quality of normalization from the M-F plot, right? So, this 



is something we researchers have been doing for microarray data as well, and this can also 

be extended to anistic data. So, one of the assumptions in this kind of analysis is that most 

of the genes do not show any difference in expression across samples. 

 

And this means that for most genes, their log2 fold change value should be 0, right? So, 

they should be lying on that 0 line, ok? And if you see a dependence of log2 fold change 

on the mean expression, that would mean it probably requires better normalization, or 

maybe you need to use some other normalization on top of the current method, ok? So, 

what I will mention right here is that what you see is that most of the genes are lying on 

these 0 lines. So, this seems pretty good, but sometimes what you might see is that if you 

have the 0 line, the samples are lying like this, ok? 

 

Most of the samples are below 0, or you see some sort of curve nature in this plot, ok? 

Instead of this kind of nature centered around 0, you see, maybe this plot is slightly curved, 

ok? Now, if this is the case, that would mean, right, this is the 0 line, right? If this is the 

case, this would mean you need better normalization methods, ok? And by inspecting this 

M-A plot, you can probably say, OK, the data is properly normalized, or whether you need 

some sort of normalization or different normalization methods on this data. 

 

  All right. So, the other plots are there. So, another is the volcano plot, and this actually 

looks at log2-fold change versus log 10 p value. It kind of gives you information about 

how log2-fold change values vary with significance level, right? So, this is what we get. 

So, the x axis is log2-fold change, right, the LFC, and the y axis is the minus log 10 p value, 

right. 

 

So, a higher minus log 10 p value means more significance, right? Because you have the 

minus. So, if you had let us say 10 to the power minus 2 p value, your minus log 10 p value 

would be 2, right? If you have 10 to the power of 10, your minus log 10 p value would be 

10, right? So, a higher value of minus log 10 p means more significant, right? And as you 

can see, we have set this threshold here, and based on this threshold, these genes are 

colored; these are significant; these are in blue. The genes that are not showing a significant 



difference, right? There is no statistical significance, right? They are shown in gray here 

and in this part. 

 

You can also see, for example, what fraction of genes are showing a higher log-fold change 

than 1 or genes that are showing a lower log-fold change than minus 2 or minus 1, right? 

All those things can be visualized using this Falcon plot. And finally, the heat map, right? 

So, we use a heat map for comparison of the expression levels of a set of genes across many 

samples and not just two samples, and here is a heat map for the same thing, right? So, you 

have g 1 g 2 g 3 g 4. So, we are looking at, let us say, one replicate of each, and we are 

looking at the different genes, which are numbered here along the rows, right. 

 

So, you can see genes 1 and 2, etcetera. So, here you are seeing these expression levels; 

these are color-coded, and the colors are given here, ok? So, if you have a red color, this 



means this gene is overexpressed; ok, it shows higher expression or positive log fold 

change; ok. So, you can probably see this very clearly here, right? For example, this set of 

genes is more highly expressed in the group 1 samples, right, compared to group 4 or group 

3. 

 

In addition, what you can probably see is that there is kind of a gradient, right? So, g 1 has 

the highest expression for these genes, then you have g 2; they show some expression, g 3 

is slightly lower, and g 4 shows almost no expression, right? So, this kind of pattern can be 

identified with this heat map analysis. You can also do hierarchical clustering on top of 

this. So, this heat map is without clustering; the genes are ordered, right, from gene 1 to 

gene 24, but you can do hierarchical clustering. 

 

So, it will cluster genes that show similar expression patterns across the data, right? So, 

you can see it has clustered these groups of genes because they show a similar pattern 

across these groups (1, 2, 3 4, ok. So, this set of genes has the highest expression in group 

1, then slightly lower expression in group 2, then lower expression in group 3, and lowest 

in group 4. So, we have talked about this difference visualization that helps us understand 

the results better, ok? Here are the references for this class. 

 

So, we have completed the differential expression analysis with the package DESec 2. At 

least I have discussed the theoretical steps; of course, we will do it hands-on. And we have 

seen the results that we get and two values. Two results are very important for us. One is a 



log2 fold change, and the other is p-adjusted. We have visualized the results through the 

MA plot, volcano plot, and heat map. Again, we have seen some important insights that 

we get from this visualization. Thank you. 

 


