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Good day, everyone. Welcome to the course on next-generation sequencing technologies, data 

analysis, and applications. In the last class, we started talking about data normalization methods. 

 

We talked about some of the methods that address this gene length bias as well as the sequencing 

depth variation. And then we talked about sample normalization. So, we will continue on that in 

this class, and we will discuss more sophisticated normalization methods.  So, this is the agenda 

for this class. So, we will talk about sample normalization, and then we will talk about batch 

correction. So, in between sample normalizations, we have already discussed two methods. So, the 

first one is median normalization, the second one is UQ normalization, and we have also seen their 

drawbacks. So, one of the drawbacks is that they assume that their count data distribution differs 



by a constant across samples and this does not hold in most cases, and they also do not address 

this RNA composition bias. So, in this class, we will talk about different types of methods that can 

perhaps address these issues. The first method that we will talk about is called quantile 

normalization. Then we will discuss the median of ratios method, which is also sometimes referred 

to as or called the relative log expression or RLE method. It will give you identical results, and 

then we will talk about TMM normalization, and finally, we will talk about normalization using 

control genes or spikes in controls. So, what is quantum normalization? So, again, it starts with an 

assumption, ok? So, the assumption is that the read count distributions are identical across samples. 

So, this is a specific assumption, right? Maybe their genes are not showing the same expression, 

but the distributions are identical. They will not change between samples or, in other words, the 

distribution of gene expression levels is identical. Now, if you think about this assumption, you 

might have some questions, but keep those to yourself for the moment, because we will discuss a 

bit more about it. So, when you assume that the aim of normalization is that we want to make these 

read count distributions identical, So, if we assume they should be identical, in reality they are not. 

So, we would have to do some sort of transformation. So, these distributions become identical, 

right? So, that becomes the aim of this normalization method, and this is a normalization method 

that was employed for microarray and has also been adapted for RNA-Seq data.   



 

So, what are the steps for quantile normalization? So, the first step is to rank genes by expression 

levels in each sample, then calculate the average values of genes of the same rank across samples 

and then replace the original values by these average values. So, we can actually take an example, 

and we can see how these steps are executed and the results that you get at the end. We go back to 

the same example, right?  



 

Because you are already familiar with this, we have the genes A, B, and C; we have the samples 

1, 2, and 3; and we have the raw counts. I have not given the total because the total is not really 

important here, ok? So, what is the first step? So, we have to rank genes by expression, right?  

 

You can do low to high ranking or high to low ranking, right? So, here I have done high to low 

ranking, right? So, the numbers are the letters and the numbers that you see. So, R 1 stands for 

rank 1 right, R 2 stands for rank 2, and R 3 stands for rank 3.  So, I have ranked these genes; we 

have only 3 genes. So, it is easy, right? So, R 1 is the rank 1 gene with the highest expression ok, 

and again, we have sample 2 again, rank 1 with the highest read count ok, and sample 3 we have 



also done the ranking ok. Now, the next step is to calculate the average values by rank ok. So, for 

rank 1, what is the average value? So, for rank 1, we have these 3 rank 1s. So, this is rank 1, this 

is rank 1, and this is rank 1. So, the total count is 6 plus 12 plus 7 right, and the average will be 

that divided by 3 right. 

 

So, for rank 1, the average value is 8.33, and similarly we can calculate the R 2 average value and 

the R 3 average value. It is following the same process; we are calculating the average expression 

values by rank. So, this is what we get at the end. So, what is the next step? So, we have to replace 

the original values with the average values. So, average values of that rank are okay. So, again if 

we go back, right? So, this was rank 1, and we are replacing this with the actual value that we had 

earlier, right with this 8.33, which is the average value for rank 1. And similarly, here we are; we 

have also replaced this with 8. 



 

33 because this is rank 1. Similarly, here we have replaced this with rank 1 again, 8.33. Now, from 

what you see at the end of this normalization, the distributions are identical, right? For sample 1, 

you have 3 values: 8. 

 

33, 4.33, and 2. For sample 2, you have 8.33, 4.33, and 2. For sample 3, you have 2, 8.33, and 4.33. 

The values are identical, but the genes may show differences in expression. That is what you see 

in this very small example. So, you follow this process for thousands of genes, and we generate 

identical distributions of read counts for each sample. And that is what I am going to show you 

now. Right here, I am showing you the raw count data.  



 

This is a simple box plot; this is not an RLE plot like I showed you earlier. This is a simple box 

plot where we are looking at the raw count data distribution for those samples again. And you can 

see that these distributions are slightly different. So, each dot here is a data point; these are the 

outliers, and you can see that the distributions are slightly different.  



 

Now, after the normalization, right after the quantile normalization you will see the distributions 

will become identical, right? Even if you look at the points, they are at exactly the same place, and 

you see the median value is exactly identical. You have these boxes; they are exactly identical. So, 

they become identical because that is the idea of quantile normalization. We want to generate 

identical distributions for all samples. So, here you have 16 samples, and for each of them, you are 

getting these identical distributions. The genes may show differences in expression, but the 

distributions are identical. So, now, this is probably a question in your mind: can we assume this 

right? Can we assume that the distributions are identical? So, again, the answer is no. It may not 

always be the case that the distributions are identical because some genes may show very high 

expression, and that value may not be present in other samples. So, you can imagine different 

scenarios where this assumption will be violated. So, we come to the drawbacks, right? So, the 

assumption that the distributions are identical often does not hold right because of different 

scenarios. If you have, say, just two genes showing very high expression, you will not have those 



values in other samples. So, you are trying to artificially contain all those values by making these 

distributions identical. So, that is one of the first major assumptions, and this is a drawback, and 

again, we have not addressed this RNA composition bias. So, if you go back to our calculation, 

you can see right that we have not addressed this RNA composition bias, and if you compare again, 

it might appear that genes B and C are highly expressed in sample 3 compared to sample 1. So, 

this again makes it unsuitable for this comparative analysis between samples. So, we come to the 

next method, which is the median of ratios method.  

 

So, this is a method that again does not assume anything right what it does is like a series of steps 

to actually address these RNA composition biases, along with other issues and biases that are 

present in the data. And sometimes it is also referred to as relative log expression normalization, 

although this was not introduced by the original authors. But if you see this term early 

normalization, you can probably then fall back. This is the same method as the median of ratios 

method. So, what are the steps here for this method? So, for each gene, we have to first calculate 

the geometric mean of count data across samples. So, this is a between-sample normalization. 

 

So, we are looking at count data for each gene across samples, and then we calculate the geometric 

mean. And of course, in some cases if you have 0 values, the geometric mean would be 0. So, for 

genes where we get the geometric mean to be 0, we just discard them for the subsequent 

analysis.  So, this is the first step. The next step is to divide the read count of each gene by the 

geometric mean. We will again take the example, and we will see the steps. Then you will 

understand this better, ok? So, we divide the read count of each gene by the geometric mean, and 

we calculate the median of the ratios that we get after the divisions in step b, and we use this 

median as the normalization factor for that sample. So, maybe this sounds very complex, but once 



we do the steps, it will be clear, ok? And so, we have calculated the normalization factor, and then 

we divide the raw read count of all genes in each sample by the normalization factor of that sample. 

So, these are the four steps we have. The first step is where we calculate the geometric mean for 

each gene. 

 

We divide the read count by the geometric mean, and once we get some ratios right, we get some 

values. We calculate the median of those ratios for each sample, and those median values for each 

sample will be the normalization factors for those samples. And using that normalization factor, 

you divide the read count of all genes in each sample. So, again, each sample will have its own 

normalization factor and we will use that to divide the read count, ok? So, let us now look at this 

right in action, and that will be clear, ok? We come back to the same example, right? So, we have 

sample 1, sample 2, and sample 3. Again, we have genes a, b, and c, and the first step is to calculate 

the geometric mean of expression of each gene across the samples.  



 

So, we come here to this table, right? So, for gene A, we have to take these three values: 6, 12 and 

0, and we have to calculate the geometric mean, which I have written on an extra column here, ok? 

So, for this sample, the read count is 0. 

 

So, this geometric mean will be 0, right? So, that is something you are probably familiar with: how 

to calculate the geometric mean. For gene b, we have sample 1, sample 2, and sample 3. We 

calculate the geometric mean. If you know how to calculate the geometric mean, you should be 

able to do this. For gene C again, we take these three values and calculate the geometric mean, and 

you continue this. You do this for thousands of genes; if you have 10,000 genes, you do the same 

process for each of them.  So, once we have done this, the next step is to divide the read count of 

each gene by the geometric mean.  

 



So, we have to divide these counts by the last column, okay? So, we have discarded the one with 

0 value, right? Of course, you cannot divide by 0, and that is the first step. Remember, we have to 

discard genes for which the geometric mean is 0 ok. So, we are left with these two genes now, b 

and c, and for each of them, we have to divide by the geometric mean of that gene. So, for gene b, 

the geometric mean is 4.93. So, we are dividing the raw read count of 3 by 4.93, and similarly, we 

are doing the same for samples 2 and 3. For gene C, the geometric mean is 3.14. So, we divide the 

read counts by this number: 3.14. So, you can see this for sample 1, sample 2, and sample 3. We 

did the same, ok? Now, once we have done that right, we got the values. Now, after the division, 

these are the values. What you have to do now is calculate the median of the ratios for each sample, 

which will give us the normalization factor, sometimes also referred to as the scaling factor. So, 

you take the median for sample 1, right these ratios for sample 2, we take the median for sample 

3, we take the median, and we get these three different medians. Of course, I will not take the 

median of two values; it does not make any sense, right? But you get the idea. 

 

When you have thousands of genes, you take the median, and we will get some values right. So, I 

have simply given an example. Let us say N 1, N 2, and N 3 as medians for these samples.  Once 

we get these medians, the next step is to divide these values by the raw counts that we have started 

with. So, we can now forget about this table. In this transform table, we go back to the raw count 

data, and then we can divide by N 1, N 2, and N 3. So, this is the next step. So, for example, divide 

the counts by the normalization factor, and for sample 1, the normalization factor is N 1. So, we 

are dividing these counts by N 1 for sample 2, and the normalization factor is N 2. So, we are 



dividing by this N 2 number here for sample 3, and the normalization factor is N 3. So, we are 

dividing by N3, ok. So, once we have done this, we get the normalized count data, ok. 

 

So, one of the things you probably realize if you go back to this table, right? So, median, if you 

imagine that for samples 2 and 3, the median would be higher right compared to sample 1, it will 

probably be twofold, almost two times higher approximately, of course. Again,  it does not make 

sense, but again, if you kind of think for a moment, this will be approximately two times right. So, 

N 2 and N 3 will be larger than N 1 in this example, as you can see. So, this is approximately two 

times. So, what it means, right, if you now look at these genes B and C here, So, if N 2 and N 3 

are two times larger than N 1, So, once you have completed these divisions, So, 3 by N 1 will be 

almost similar in value to 7 by N 3, ok? And similarly, 2 by N 1 will be very similar to this 4 by N 

3 value. What it means is that we have now addressed this RNA composition bias ok, that we were 

talking about for all the methods ok. 



 

 By discarding this gene right where we have 0 value right we have calculated this geometric means 

we have calculated these ratios etcetera and taken the median we have now addressed this RNA 

composition bias here ok. So, this is something that is an advantage of this method, ok? So, now 

we can answer this question correctly, right? So, do genes B and C show lower expression in 

sample 3 compared to sample 1? That is actually no difference; there is almost no difference in 

expression between these two samples, sample 1 and sample 3. So, you can probably see now that 

the normalization factor N 3 is probably approximately two times greater than the normalization 

factor N 1, of course. Again,  if you have to do this for a large number of genes, you cannot 

calculate just the median, but just as an example, this holds ok. 



 

So, again, we go back to those RLE plots, and I can show you what the data would look like after 

normalization, right? So, this is before normalization this is the raw data right again transformed 

because of this RLE method.   



 

And then this is after normalization using this median of ratios method. And here you see, right 

again, that the medians are more or less identical and the distributions have changed. So, you can 

go back, right? These are the raw data distributions, and after this normalization, you get this kind 

of distribution for each sample. Now, as you can probably guess, the RLE plot is actually related 

to this RLE term right relative log expression. So, when you do this and make this plot, you kind 

of follow the same procedure: you calculate the geometric mean and then divide by the geometric 

mean to get this calculation of normalization factors, and then you get these plots. So, that is why 

they are kind of centered around 0, okay? So, what are the what are the drawbacks of this median 

of ratios method? We have seen that this can address the RLE composition bias issue, right? So, 

one of the major drawbacks, of course, is that there is no consideration for gene length. So, this 

means we cannot do a comparison within a sample, right? So, we cannot compare the expression 

levels of genes within a sample. So, this will require some other method right within the sample 

normalization method. So, the median of ratios method is strictly between sample normalization, 

right? o, we can compare across samples, but not within samples.  So, the next normalization 

method that is also very popular is called TMM normalization. So, again, let us look at this. So, 



what it does in its full form is, of course, the stream mean of M values, right? So, this TMM is 

right. 

 

So, we will talk about what these M values are that you get. So, this method also calculates a 

scaling or normalization factor, like the earlier method that we discussed. And so, what happens 

is that we now understand that the count that we get for a gene or transcript is not just proportional; 

it is not just dependent on the expression of that gene. So, it also depends on the expression levels 

of all gene transcripts in the sample. We have seen this in our small example, ok? And one of the 

assumptions this method makes is that there is no difference in the expression of most of the genes 

between samples. So, if you take, let us say, 1000 genes, probably 80 percent or 70 percent do not 

show any difference in expression, ok? So, this is an assumption in this method, and maybe 20 

percent, 30 percent, or so they show a difference in expression between samples, ok. Based on the 

assumption, this method calculates a scaling or normalization factor, ok. So, let us  see the steps 

right how it works. So, the first step in this method is that you have to choose a reference sample. 

So, when you are comparing two samples, you choose a reference sample against which you will 

compare another sample. So, once you have chosen this reference sample, you are comparing these 

other samples, and you can calculate something called M and A values. So, these M and A values 



will come later on as well for different purposes when you talk about differential expression 

analysis, etcetera.  

 

So, how do you calculate these M and A values? So, for gene G right, this is M G right, so these 

M and A values are calculated for every gene right that is present in the data. So, M G is simply 

the log of this E g i divided by N i and divided by the E g i prime divided by N i prime. 



 

Now, this E g i is the read count or expression of gene G in sample i, and N i is the total read count 

of sample i. And the lower part, E g i prime and N i prime, is for the reference sample, right? So, 

in the first step, you choose the reference sample, and then you get all these values. Similarly, you 

can calculate this A g; this is kind of an average expression, right? So, again, you have this half 

log of 2 E g i divided by N i times E g i prime times N i prime. Again, we know that E g i is the 

read count for gene G in sample i, and N i is the total read count. Then, for similar measures, we 

have E g i prime and N i prime. This is for the reference sample. So, once you have calculated this 

right, the next step is to trim these M and A values, which are usually extreme 10, 20 percent, or 

30 percent, and so trim out those genes that show these extreme 10, 20 percent values. So, you get 

a distribution and trim out these 10, 20, or 30 percent values, ok? And what it means is that you 

are removing genes that are showing differential expression, ok? And they are showing differences 

in expression between samples, and you are removing those genes before you calculate the 

normalization factor, ok? Once we have removed these genes, we calculate the weighted mean of 

the trimmed M values. So, we do not take these extreme genes, and they are M values; we just take 

the filtered M values or trimmed M values, as we call them, and take the weighted mean. Now, the 



question is: What is this weight? Right? How do you calculate this weighted mean? So, weights 

are usually inversely proportional to the variance in read count. And this is to avoid genes that 

show a lot of fluctuation between samples. Still, even after filtering, they should not bias the mean 

too much. So, that is why the weights are inversely proportional to the variance in read count. 

 

And again, the idea behind this is that the genes that show constant expression across samples 

should have the highest weight. They are clearly not differentially expressed. So, they should have 

the highest weight in determining the normalization factor, okay? And this weighted mean is then 

used as the scaling or normalization factor. And so, you are comparing two samples, and what you 

will end up with is one scaling factor for comparison between these two samples. 



 

And you can then use this scaling factor to transform this data into a reference as well as a non-

reference sample.  If you are comparing between multiple samples, we choose one reference, and 

then we can calculate scaling factors for each pair-wise comparison. So, in that way, you can 

handle these multiple comparisons as well, alright? So, let us again go back to the example, right? 

This is the real data set.  



 



 

So, again, before normalization, this is the distribution. These are the distributions for the 16 

samples that we have, and this is after TMM normalization. You can see this right in the 

distribution; the medians become identical, and again, the values kind of come close to each other, 

right? So, we have seen this right. So, just to again give you something to think about, right here 

is the rock on data in our case. So, you can think about how you proceed with this TMM 

normalization with this data set. We will not do this, of course. It does not really make sense to do 

this on a very small data set because, again, you cannot throw out extreme values, but you can at 

least think about the steps yourself, right? So, for example, if we choose a reference sample, we 

can calculate these M and A values, and then, after discarding those extreme genes, we can then 

calculate this weighted mean, etcetera. So, you can think about the steps with a very simple 

example, and you will get this idea right behind all those complex formulas, etcetera, that we used. 

So, we will talk about the next normalization, and this is quite different from what we have 

discussed so far, ok? So, this normalization method uses something called spike in controls. So, 

what are these spikes in controls? So, spike-in is an external RNA molecule that is added to RNA-



seq samples. So, these are not part of your sample, right? You do not isolate them from the tissue 

or cells, right? These are synthetic molecules, data, and external molecules that we add to our 

samples, ok? The question is, why do we add them? So, again, there is a consortium that actually 

has designed these spikes in control; these are synthetic RNA molecules, and kind of taking care 

that these are synthetic; they do not show any similarity with RNA molecules that are present in 

organisms, etcetera. So, you will see this term ERCC spike in controls or ERCC spike in mix quite 

often, and you understand what this actually means. So, this is usually a mix of synthetic RNA 

molecules of different sizes, and these are also mixed in different numbers.  This is not a single 

molecule; you have many molecules like that, and they are of different sizes lengths, and they are 

mixed in different numbers. So, just to see like how they are  actually how they actually come out 

after you do the RNA sequencing experiment ok.  So, how does it work actually how does this 

method work ok. So, what we do in this case is add an equal amount of spike to each sample. So, 

if you have  16 samples we add this equal amount exactly equal amount of the spike in to these 

samples right. 

 

So, there is no biological variation here, ok, because we are adding this manually right after the 

RNA extraction. After we have purified the RNA, we add this, and then we do the same steps right 

for the library preparation, sequencing, etcetera. So, any variation that we see in the read counts 

right that that will arise purely due to technical variation; there is no biological variation here, ok? 

It will purely come from the experimental steps that we are following.  Using this control, we can 

now normalize all sources of technical variation using a generalized linear model. So, we can set 

a generalized linear model, and researchers have done that. There are packages, and we will see 

these things later on when you actually do the hands-on. We will actually do this process right, 

and we can remove these unwanted technical variations.  



  

 



So, I will just show this data again because this data set had this ERCC spike in controls. So, you 

can see this here, ok? Again, this is the raw data. You will see the RLE plot right again for all the 

samples, and this data had ERCC spikes. You will be able to see that if you see the raw count data, 

then these names of ERCC spike ins will come out right, and after normalization is spike in 

controls, this is what we get, ok?  

 

And you can see this is actually very different from what we got earlier across all different types 

of normalization. We still see, for example, that in this sample, they look a bit like outliers, but 

they do not show a very similar distribution across this data set. So, that may actually be the case, 

right? Because there was some sort of variation that happened during the experiment that actually 

led to this kind of situation.  So, the biggest question is, which normalization method should you 

choose? We have discussed a lot of these methods, and the question is which one you would 

choose. Again, there is no unique answer here; it depends on your application and what you want 

to do. If you want to do this within sample comparison, of course, then you have to choose a 



method that does this within sample normalization. 

 

But if you want to do this between sample comparisons only, then you have to choose a proper 

method that will be able to handle this RNA composition bias across samples and also look at 

differences in other factors. So, it can model all these technical variations. So, you would have to 

choose something like that, but if you want to do both, then you have to probably combine some 

of these methods one after another. So, what I will do is not go into too many details about this, 

but this has been kind of searched around, and so, here are some papers and some references that 

you can explore to better understand these issues. So, there are some papers that actually compare 

different normalization methods for different applications, different sets, and different types of 

analysis, and they found out different things. So, you can go into these references and explore 

them. So, one final thing that I wanted to discuss is something called batch correction. So,  what 

happens in this when you want to combine different data sets of the same experiments ok.  So, 

when you want to combine these different data sets right they can show different read 

counts  expression levels of same genes and this is something that we very often see ok.  And 

because these experiments are done on different time points maybe years apart or  in different labs 

you tend to get different results because the experimental conditions  are slightly different etcetera 

the people who are doing the experiment they are also different  right it also varies a lot based on 

the person who is doing the experiment ok.  And again as I mentioned this is mostly experimental 

variation right also the some  of the conditions may have changed and which leads to this 

difference in expression levels. 



 

So, you can actually correct this using these tools. These are two tools I will mention right now. I 

will not go into all the details, but the first one is part of the lImma package in R. So, it feeds linear 

models to the data for analyzing the effect of batches. If you have batch data you can actually 

analyze this using this package lemma. This was actually designed for  microarrays but can be 

extended to RNA-seq. And the second one is a function called ComBat, which again corrects for 

batch effects. It uses a Bayesian framework to adjust for batch effects.  I will not go into details, 

but if you are interested, of course, you can explore this move. Here are the references for this 

class to summarize. We have talked about very sophisticated sample normalization methods that 

can address this RNA composition bias and, of course, other issues. 

 

And we have talked about two methods that can do this very well: the median of ratios method 

and TMM normalization. We have also talked about the normalization method using RNA spikes 

in controls, and they enable estimation of technical variation. We have seen the normalization data 

right after normalization. And we have also talked about batch correction, which allows us to 

combine datasets and compare across datasets. Thank you. 


