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Good day, everyone. Welcome to the course on Next Generation Sequencing 

Technologies, Data Analysis, and Applications. In the last few classes, we have talked 

about transcriptome read mapping, and then we talked about transcriptome assembly. We 

started discussing the quantification of transcript abundance, and this is a very important 

step. In this class, we will be continuing the discussion on this transcript abundance 

quantification. So, here are the concepts that we will be covering in this class. So, we will 

talk about the read data to count data process, we will talk about some tools, and we will 

also have a look at how to do this ourselves with a small hands-on approach, and then we 

will talk about alignment-free approaches for transcriptome quantification. 

 

So, many of the tools that we have discussed rely on alignment maps or SAM or BAM files 

for this quantification, and some of the tools that we will discuss also rely on these 

alignment maps, but there are tools that can actually do this without doing any alignment, 

and they are actually significantly faster than alignment-based tools. So, we will discuss 

those as well. Here are the keywords: raw count data and model-based estimation. So, here 

is the data processing pipeline again for RNA sequencing data. 

 

We have talked about mapping; we have also talked about assembly in very brief, and we 

have come to the quantification step. Now that we have discussed some of the tools that 

can do assembly, they can also do quantification. For example, we have talked about string 

ties and cufflinks. So, they can also do quantification after the assembly process. In this 

class, we will be talking about some of the tools that are actually dedicated for 

quantification purposes because this is a very important process for any downstream 

analysis. 

 

So, you want this accurate, very accurate quantification of the transcript abundance for any 



inference later on, ok? So, if you make mistakes here, those will lead to erroneous 

inferences, ok? So, this is a very important step. So, this is something we will discuss today: 

quantification. So, there are several tools and cuff links we have already discussed, but then 

you have something called htseq-count, feature counts are the same, etcetera, and we will 

discuss those in this class, ok? 

 

So, htseq-count actually simply counts the number of reads that map to each gene transcript 

or feature, right? So, this is the simplest of all the tools. It takes the alignment map and 

then the feature file, and it will simply count how many reads map to each gene transcript 

or feature. So, these are the input files: right, alignment map, exam format, and you can 

give feature annotation, which is a GFF file or GTF file, and then output what you will get 

is a table with counts for all features, ok? So, this is a very simple process that simply 

counts. 

 

And what are the challenges here? Of course, this is a very simple process. So, one is, if 

you have read that map to multiple features or multiple genes, ok. So, this is something 

that again, we go back to the mapping to the repetitive sequences, right? So, if you have 

reads that map to multiple features and genes, how do you count those reads? Do you count 

them for both genes or both features or do you just discard them? So, what are you going 

to do? And this is something that is a very difficult question to answer, right? And we 

cannot answer this by simply looking at a simple counting process. 

 

Of course, there are more sophisticated models that can deal with these kinds of reads that 

actually map to multiple features or multiple genes. There is another tool called feature 

counts which is very similar to the htseq-count. So, again, it provides gene-level counts 

and will not provide any counts for isoforms, right? Again, as we have seen, doing this for 

isoforms is very difficult, especially from short-read data. So, again, here the input files are 

the alignment map, the SAM BAM file, and then you have the feature annotation file, 

which is the GFF file. 

 

And here is the package that you can use, download, and use, or you can get it from R in 



Bioconductor and you can use it, right? So, again, if you are not familiar with R, you can 

simply go with the subject package and download and use that package. So, what we will 

what we are going to do is we will have a hands-on now. We will just look at this raw 

RNA-Seq data, and we will get to the raw count data using this very simple step, ok? We 

will not talk about the QC and pre-processing because you already know this: right, first 

QC, etcetera. 

 

If you need to do trimming, etcetera, you can do that. What we are going to do is take an 

example of this raw RNA-Seq data. We will map using HISAT2, of course, only a small 

part of it, and then we will try to quantify with an HT-Seq count, ok? It is a very simple 

step that I can show you right here right now, ok? So, let us now go to the terminal, ok, and 

we will open the terminal, ok, and here we are and what we need are these two tools. 

 

So, one is the HSAT 2, right, and another one we need is the HT-Seq count, ok? So, here 

is the HISAT 2 tool. This is the link where you can find this, ok, and here is the link for 

HISAT 2, where you can find the tool, and again you can check the manual here, ok. Here 

is the manual, right, and you can find a lot of details, ok, and how to download, install, etc.; 

in addition, how to actually run the HISAT 2, what are the options, etc. So, what I have 

done is that I have actually installed this tool already on my system, so I can simply use it. 

 

So, as you can see here, we have this HISAT 2 folder. I have this HISAT 2 folder here that 

I actually have. So, this is the program that I downloaded. This is the compressed file. Then 

I extracted, and then I actually added this to the path. 

 

So, I can simply call HISAT 2, and I can get all the options, etcetera. So, this is what I am 

going to do, right? I am just going to run this HISAT 2 with minus-minus help. So, it will 

tell me what the options are, etcetera, ok? So, again, what you will see is that HISAT 2 is 

very similar to Bowtie 2 because, again, it uses this BWT algorithm, right, the Burrows-

Wheeler transform. 



 

So, the tool has also been kept very similar to yours. So, it is actually very easy to use if 

you know this bowtie, right? So, we have HISAT 2, and we have minus x. Again, we have 

to provide the index. Then we have the minus 1 M 1 minus 2 M 2 minus U R, right? 

 

So, we are going to run this right here now, ok? So, all these options are there. So, you can 

simply run this with a dataset. Now, what I have done is downloaded one dataset here from 

NCBI GEO, ok? And I will show you that later during the hands-on, when we have a full 

hands-on demonstration of how to download these datasets. 

 

And from this, you have created only a part of that file, right? I have just created a small 

file from that because that file is quite big; it will take a long time to run or to map, ok? So, 

if you want to do this in a short period of time, we will just use this part file to do one part 

dot first, ok? So, let us run this now. 

 

HISAT 2 minus x, right. Now, we need the indexes, ok? Now, what is good about this is 

that HISAT 2 can build these indexes, but you can also download indexes for some 

genomes. So, for example, you can check here; you have specific species here; you already 

have these indexes built, ok? So, you have this homo sapiens, etcetera. So, I have 

downloaded this index, which is for Saccharomyces cerevisiae because the data that I have 

downloaded is for this species, Saccharomyces cerevisiae. 

 

And you can see different types of indexes, right? So, you have genome SNPs, right? So, 

you have these single-layer polymorphisms with the genome that has been added, the 

genome transcriptome, right? So, you have the genome, SNPs, transcriptome, etcetera, 

right? And similarly, for different species, you will see these different types of indexes, 



ok? 

 

And for Saccharomyces cerevisiae, you have the genome as well as the genome 

transcriptome. So, I have downloaded this genome transcriptome. If you just click on this, 

ok. So, it will download, but it will take a lot of time. 

 

So, I will just stop. I have actually downloaded this already, and it is present here. So, if 

you will check, this is the R64 underscore trans, this is the sequence, and this is the index 

file that is present in this folder, ok? So, we will use this index, ok? So, we just need to 

give the base name, right? We do not need to give all those dots 1 dot ht 2 dot 2 dot ht 2, 

right? 

 

This is very similar to both I and II; remember, we just use the base name for this purpose, 

ok? So, the next step is that we have to give minus u because we are working with unpaired 

data. We do not have paired-end data, right? And this is the t1_part dot fastq. This is the 

fast point that we want to analyze, and then we have minuses, right? 

 

We can simply say, right, part is beyond dot sam, right? Again, this program gives output 

in the SAM format, right? So, we will have to again mention that the minus s part is is 

without dot sam, ok? So, part means this is only part of the full data we are working with. 

So, that is why I gave this name part, ok? 

 

Maybe we can just say t1 part, right? Because this is from the t1 part file, alright? So, let 

us run this and see, ok? So, what is the output? We have 25000 reads, ok? These are 

unpaired reads. Then it gives very similar statistics, like both bowties, ok? 



 

You can see this, right? So, some reads did not align, some reads aligned exactly one time 

and some reads—about 7.5 percent—aligned multiple times. Now, this is where this part 

is actually interesting, right? This is what we will do with this, ok. If they are aligning to 

multiple genes, whether you count for both genes or simply discard them from your 

analysis, ok. 

 

So, this is where more sophisticated tools are actually important, right? So, which we will 

discuss a bit later, right? What are these tools that we can use to read data that aligns to 

multiple positions in the genome or in the transcriptome, and how do you utilize those to 

actually estimate transcript abundance? Because these are discarded, discarding them 

means we are underestimating maybe the abundance of some transcripts, and counting 

them for multiple genes or transcripts might lead to overestimation for some abundance of 

some transcripts, ok? So, this is a very important problem, right? 

 

It is not just for genomes; it is not like just genome sequencing. Here, the count—the 

number of reads mapping to each feature—is very important. So, the overall alignment rate 

is 95. 

 

5 percent. So, this is a good alignment rate. So, we can now go ahead with the 

quantification. Okay, alright. So, let us see now if we can do the htseq-count, right? So, let 

us see if we can, ok? So, I have also opened this. 

 

So, here is the function htsec count, right? So, how do you actually use this function? So, 

again, here you have all the details of this, right? You can find a lot of these options, and 

you have to install a program called htsec. You can see this, right, this program and again, 

the prerequisites and installation; these are all given, ok, and you can check them, and you 

can see that how do you install all this? So, if you are using Python, you can use this pip 

install htsec, or if you are using Linux, in Ubuntu, you can simply say sudo apt-get install. 

 

We have talked about this in the Linux installation process, right? We can do that, 



right?  Simply put, we can use this sudo apt-get install, and then, of course, in Windows, 

you can also have different download packages, etcetera. So, let us see if we can run this, 

right, htsec count. 

 

Here are the options. Again, we will not use any option. So, what it needs is the alignment 

file, the SAM file that we generated, and the feature file, right, the GFF file. So, we have 

downloaded the GFF file. So, let us see, right, the GFF file is here, GFF GTF. You can see 

this, right, inside this folder, and I have simply just copied this GCF64 genomic new dot 

GTF. 

 

This is the file that you can simply use, ok? So, let us see if we can run this htseq-count 

because I have already installed it, right? So, what it needs is the alignment file, which is 

the SAM file, ok, and this is the SAM file that we generated, ok, and we need the GFF file, 

or GTF file. So, I am using this dot GTF and let us see, ok? So, it should run, and it will 

generate statistics, ok, and you can see these statistics, ok. So, what I am going to do is, I 

am going to save this into another file, ok, and in it inside a text file, ok. 

 

So, you can see, right, that we are not getting the output in the terminal, right? 

 

I can, and what I can do is simply run it again so that you can see clearly, ok, and it gives 

you, gives out some statistics, etcetera, right, and what you want to do is, we want to check 

this count file, right, that we generated, ok, because this will contain the data, ok, and this 

is where you can see the raw count now, ok. So, the first column you see is the gene names, 

ok, and the second column is the raw count data, ok. What it simply says, ok, there are, for 

example, in this gene, right, you have 9 reads mapping to this gene. For this read, you have, 

for this gene, 32 reads mapping to this gene, right? 

 

Similarly, you can see this, right? For many genes, you have this kind of statistic, ok? Now, 

you might say that for many genes, we see 0, right? That is expected because we are 

working with only partial data, ok? We are not going to working with the full data, right? 

If you work with full data, we can see counts for all genes, which is almost okay. So, what 



I have actually done is processed the full data with HISAT 2 before and I have created this 

file, which is actually present here. 

 

You can see this HISAT map out here, ok, and this is the processing of the full FASTQ file 

here, ok. It took some time—right, a few hours. So, that is why I have to run in the 

background, and then I have generated this sample so that I can show you what the full 

output would look like, ok, and then I have processed this with the htseq-count, and you 

can see this raw count HISAT map out dot text, right? So, let us have a look at that raw 

count file because this is after processing the full data, ok, not just the part data, and you 

can now see that for most genes you have some counts, and for some genes the counts are 

very high, right? For example, you can see this gene here, right? You have 48,000 reads 

mapping to this gene, ok, but still, you have some genes that are probably not expressed 

because you see these 0 counts, right? And now, because you have so much data, you can 

be sure, ok? These genes are probably not expressed or have very low expression, but what 

you see for most genes, you have expression, right? 

 

You can see some read counts, and this is the raw read count, ok, and this is the way; this 

is a very important step for all subsequent data analysis, ok. So, hopefully this is clear how 

we actually simply generate this kind of raw count data from the mapping, ok, using a tool 

like htseq-count, ok. So, what we will do is now talk about some of the more sophisticated 

tools that can actually deal with these multiple mappings, etcetera. So, let us go back to the 

presentation and let us continue our discussion on some of the other tools that are available 

and that can deal with this multiple-read mapping, ok? 

 

So, one such tool is called the RSEM, ok? So, this tool in its full form is RNA sequencing 

by expectation maximization, ok, and so this tool does not require any reference sequence. 



It can assemble transcripts as well as quantify transcripts, ok? So, we have discussed many 

such tools before. Now, there are several steps here, right? So, one is the generation of 

reference transcripts from the read data, right, and then the reads are aligned against the 

reference, ok, and based on this alignment, you have the estimation of transcript abundance, 

ok. 

 

So, what is unique about this tool is that it generates something called a maximum 

likelihood estimate of abundance along with confidence intervals. So, it kind of gives you, 

ok, what is the 95 percent confidence interval for each feature, right? So, it is not just a 

single number for counting.  You also have a confidence interval, right? So, if that 

confidence interval, if that value is like if the variance is very high, right, then you probably 

cannot trust the data that you are getting, ok? 

 

The second unique feature is that it utilizes something called the expectation maximization 

algorithm. Again, we are not going into details about this. So, it is again related to the 

maximum likelihood estimate, but it goes through two steps. One is the expectation, or E-

step, and then you have the M-step, ok? 

 

So, it performs maximum likelihood estimation. So, then it actually does this in an iterative 

process, ok? So, you have E-step, you have M-step, then again E-step until you converge, 

ok? Again, we are not going into the details of this, but again, you are encouraged to 

actually look into these algorithms if you are also interested in the algorithm part. So, what 

we get after this tool is that we get gene and isoform level estimates of abundance. This 

tool can give us an estimate of isoform abundance because it utilizes these maximum 

likelihood estimates, right, using these expectation maximization algorithms. So, if you 

look into the algorithm, you will see that there are variables that cannot be directly 

measured or quantified, but they can be predicted from the data that is there, and this EM 

algorithm actually tries to optimize the parameter values so that it feeds the data. 

 

So, that is the idea behind the maximum likelihood estimate, right? Given the data, what is 

the most likely value of the parameters or the most likely value of these abundances in this 



case? So, this is how it can actually generate these estimates of abundance, and you can 

also see it can handle these multiple mappings, ok? So, now what we are going to do is 

discuss some of the alignment-free methods that are out there, ok? So, what we have 

discussed so far is that most of these methods require some sort of alignment, right, against 

the reference transcript or a reference genome for quantification. Now, this mapping step, 

this alignment step, is the slowest step in the full process, right? 

 

So, if you look at the pipeline, this is a very slow process because you have to align this 

huge number of reads—millions and billions of reads, right? So, that is why these very 

efficient algorithms were designed, like the BWT, etcetera, and also the HISAT2. Now, if 

you can completely skip this alignment step and if we can still get to the abundance, right, 

directly from the read data somehow, ok, and this is what these alignment-free methods 

actually do, ok. And there are several methods that we will discuss very briefly again 

without going into the full statistics, the algorithms, etcetera. 

 

So, these tools are called callisto, salmon, and shellfish. So, these are the tools we will 

discuss. There are other tools out there as well. So, let us discuss the first tool, Callisto, ok? 

So, it quantifies the abundance of transcripts, right? This is one of the tasks that this tool 

does, but it does so based on something called pseudo-alignment. 

 

There is no real alignment. So, that is why it is called the pseudo-alignment or alignment-

free approach, ok, and the advantage is that this is much faster than the alignment-based 

approaches, ok. So, you do not have to do this alignment or mapping. So, it is actually 

much faster. In addition, it is less sensitive to sequencing errors. So, because you are not 

aligning exactly, you do not have to worry about these mismatches in the read data, 

etcetera. 

 

So, this is actually less sensitive to sequencing errors than you can get, ok? So, what is this 

pseudo-alignment approach? So, the pseudo-alignment approach is that it actually tries to 

identify transcripts, from which a read could have come, So, given a read, we want to 

identify which transcript this read could come from, right? That will serve the purpose of 



quantifying abundance, ok? And again, it is based on a deep brain graph approach for the 

transcriptome. We are not going into the exact algorithm and details, right, but this deep 

brain graph approach we have mentioned also in the transcriptome assembly, and it will 

come again when you talk about a genome assembly, ok? 

 

So, if you are interested in the full algorithm and the details, here is the reference and also 

the tool you can download from this link, which is given here. So, feel free to look into the 

paper and also the tool and see the options that are there, ok? Then, we have another 

method, which is called shellfish. So, again, this is an alignment-free method, and it can 

also help in isoform quantification, ok? 

 

So, as I mentioned, this is an alignment-free method. So, what it does is actually utilize 

something called an indexing of transcripts, ok? So, it is a very similar idea to what we 

have talked about earlier: seed, seeding, etcetera. It creates indexes of certain length, right, 

k-mars of certain k value, ok. And then it looks for these k-mars, right, from the read data. 

 

So, it is kind of like a hash-based method. So, it searches for these indexes from the read 

data against the reference transcript, ok? And from that, it can quantify the transcript 

abundance. And similar, it can actually generate what the k-mers are from isoforms, 

different isoforms, and it can find whether these k-mers are present in the read data, 

etcetera. So, this method can also account for different biases in RNA-seq data, ok? 

 

So, we will talk about these biases in much more detail in the next class. And you will see 

that this model and this method can actually model those biases when processing RNA-

sequencing data. The other tool that is very popular is SALMON, ok? So, again, we will 

not go into the statistics. I will just very briefly mention what it does. 

 

So, it actually uses something called the dual-phase statistical inference procedure. And it 

can also take into account RNA-sequencing biases, for example, sequence-specific biases 

or GC-content biases. Don't worry about these biases which we will discuss in much more 

detail. So, there are two phases in this algorithm, as you can see, right? So, this is the first 



mapping model that actually estimates expression levels and model parameters. 

 

So, it is a model, and it is a model-based estimation of the abundance. And then, after the 

estimation, it kind of refines these expression estimates, ok? So, using these two steps, ok. 

So, here is a reference for SALMON, and you can have a look into the original paper. You 

also have the tool available for download from this link, and you can, again, explore and 

learn a lot more about these methods. So, here are the references that we have used for this 

class. So, what we have discussed is how we actually go from raw read data to raw count 

data, right? 

 

So, this is the quantification step in RNA-sequencing, and this is a very important step, 

right? So, we have now the abundance of transcripts, quantified in terms of numbers, as 

you have seen. So, we have done the hands-on and we have seen, right, we have these 

abundance values generated from the map data, ok? And we have talked about some of the 

tools that can do this very simply, right? 

 

We have this htseq-count and the feature counts. We have not used feature counts, but we 

have used htseq-count in our analysis, and we have generated the raw count data. And this 

raw count data serves as a proxy for the expression level. Of course, you cannot take this 

count data immediately as the expression level because there are a lot of biases in the data 

that we need to account for before we can actually compare expression levels. So, we will 

talk about these biases in the next class, ok? And you will understand, right, how we 

actually go from the raw count data to the actual expression level, right? 

 

So, that is the idea, right? We want to measure the expression level of genes from the read 

data that we have. So, we have proceeded a bit, right? We have now got the raw count data, 

and we can generate it. And from this one, we now want to go to the actual expression 

levels of these genes, right? 

 

So, we need to account for a lot of biases along the way. We have also talked about all the 

algorithms that can account for these multiple mappings of reads. So, this is a problem with 



simple tools, right, to HTseq-count, or the other tool that we have just discussed is that they 

cannot decide, right, whether this comes from a specific isoform or it is just counted as a 

gene, right? So, in those cases, this is something that can be a problem, right, where the 

isoform expression is of interest in your experiment, right? So, this is something that some 

of the tools can deal with. For example, the RSEM, which we have discussed, can provide 

gene and isoform level abundance estimates. 

 

It utilizes something called the expectation maximization algorithm. Again, without going 

into a lot of details, it fits a model and tries to generate this maximum likelihood estimate 

from the data. There are other tools, and that kind of tool does very similar work. For 

example, we have something called ISOEM that can also give you isoform-level abundance 

estimates. We then talked about some of the alignment-free approaches, right? 

 

So, for transcript quantification, we talked specifically about three tools; just mention them. 

So, one is Callisto, the other is Selfish, and the third is Salmon, right? And these tools do 

not require any alignment, right? So, they can go from the read data to the quantification 

part, right? 

 

So, there is no mapping or assembly step. So, this is actually jumping through the mapping 

part, right? So, again, this kind of reduces the time requirement because mapping is the 

most time-consuming process. If you imagine, you have to map—let us say billions of 

reads. The other advantage is that you do not have to worry about sequencing errors too 

much because these are less sensitive to those types of errors. And these methods are 

substantially faster than mapping approaches. 

 

So, that is why they are quite popular now. So, you can have, you can look at, you can look 

into those references, and you can see, right, there are time comparisons between these 

different tools in those papers. And you can see that these algorithms, Callisto, Selfish, and 

Salmon, are significantly faster than all those tools that we have discussed that rely on 

alignment. And some of these models can also incorporate models for biases, right? So, we 

have a lot of biases in RNA sequencing data, and some of these tools, these alignment-free 



methods, can also take those biases into account when quantifying this transcript 

abundance. So, we will talk about these biases in much more detail, as well as the methods 

to deal with them, in the next class. Thank you. 


