
Next Generation Sequencing Technologies: Data Analysis and Applications 

RNA-seq data processing pipeline 

Dr. Riddhiman Dhar, Department of Biotechnology 

Indian Institute of Technology, Kharagpur 

 

Good day, everyone. Welcome to the course on Exercise Sequencing Technologies, Data Analysis, 

and Applications. In the last class, we had an introduction to RNA sequencing. We talked about 

different methods for example, short read RNA sequencing, long read RNA sequencing, and direct 

RNA sequencing. So, we will now slowly get into the methods: how do you actually get the data 

processing right, how do you set up the pipeline, and what kind of tools and methods do we use? 

So, we will discuss this in theory, and alongside having some hands-on experience, I will show 

you the tools in this moment. And at the end, we will also have a hands-on experience with 

differential gene expression analysis, where we will use these tools to actually analyze a real data 

set and identify genes that are differentially expressed between two samples. 

 

So, these are the concepts that we will cover in this class. So, we will talk about the RNA 

sequencing data processing pipeline, and in that pipeline, one of the topics that we will discuss in 

detail is read mapping. So, here is the pipeline for RNA sequencing data. So, we have read data in 

FASTQ format, we do the quality control step, or QC, as before, and then you have this mapping 

and assembly process, ok? 

 

And sometimes, even after mapping, you can do an assembly to do the transcriptome assembly 

right. So, if you are dealing with short-read data, sometimes you would have to assemble the 

transcripts if you were working with these big transcripts. And after this step, we do something 

called quantification. So, we need to quantify how many reads are mapping to each of the genes 

in the genome. So, because, as we have seen, the basic principle of RNA sequencing is that the 

expression level of a gene is proportional to the number of reads that are mapped to that gene. 

 

Of course, then we need to have a lot of statistical methods and models there to actually do the 

final quantification. Now, as we have mentioned, there are a lot of biases that are introduced when 

you actually do these RNA sequencing experiments. And to address these biases, we need to do 



something called normalization, right? So, we will discuss these normalization methods again in 

the subsequent classes in much more detail. What it does is that it kind of accounts for these 

technical variations and biases that are introduced during sample preparation, handling, and next-

generation sequencing. 

 

So, some of these biases can be addressed computationally using different techniques. So, we will 

talk about these normalization methods again. There are different types of normalization methods, 

and each method has its own advantages and drawbacks. We will again talk about that, and we 

will utilize some of these normalization methods for our own analysis. And once you have done 

the normalization, we can then do the downstream analysis, whether we are looking at isoform 

discovery or whether we are going to do the gene differential gene expression analysis. So, that is 

what we can do after we have done the normalization. 

 

So, again, we will talk about them in the subsequent classes. So, I am just mentioning some of the 

tools that are available for each of these steps, some of the tools we have already learned, and, of 

course, other tools that are available. So, the first one is the quality control tools, right? So, we 

have already used FastQC, and you can use FastX. So, similarly, the quality control tool does not 

change because we are dealing with the same read data. 

 

Then we have the mapping tools for RNA-seq data, right? So, and you see this, these are different 

right? We have tophat or tophat 2 star or high star, and HISAT2 ok. So, I will briefly mention these 

mapping tools. Today, we will talk about the algorithms of one of the tools in this class. Then there 

are assembly tools called string ties, or you can also do something called de novo transcript of 

assembly without looking at the genome mapping. So, in that case, it will be a de novo assembly, 

and there are tools for that as well. 

 

Once we have done this right, once we have done the mapping and assembly, we can do 

quantification, and there are tools again that will help in this process. There are HTSeq, or feature 

counts, tools that actually take the mapping data and quantify how many reads map to each gene 

in the genome. There are other tools like Callisto, Salvar, and Cufflinks that will actually analyze 

this data in some different way, and they can actually give us the quantification. So, they do not 



rely on the mapping data, especially Callisto and Salvar; they actually do something called pseudo-

alignment. So, they give us the quantification from the pseudo-alignment. 

 

 

So, they are not dependent on mapping. Again, we will talk about these tools when we talk about 

the quantification step. And finally, we will talk about the analysis step later on in much more 

detail, including normalization and analysis. So, when it comes to quality control, we have 

FASTQC, FASTX, or other tools. So, we have used FASTQC already. 

 

So, I am not going to go into that again, right? You already know, and given any RNA-RISing 

data, you should be able to do the FASTQC check yourself now, ok? So, we use the same 

parameters that we have checked before. Right again, we have to check such things as the read per 

base read quality, per sequence read quality, etcetera, adaptor contamination, etcetera. And we do 

data preprocessing if it is necessary, right? So, for example, if you have adaptor contamination, 

you want to do this trimming, or if you have some quality issues again, you want to do quality 

filtering, etcetera. So, as necessary, you have to decide on these data preprocessing steps. 

 

Again, we discussed this in much more detail when we talked about genome data processing. So, 



I am not going to go into that again. So, what I am going to do is I am going to discuss about read 

mapping ok. So, why is this a problem here, or what is new here? So, we have talked about read 

mapping. We have talked about the tools of BOWTIE2 right, and we have utilized their tool for 

read mapping in a small data set. 

 

So, if you remember, BOWTIE 2 relies on Barroshula transformation and is very efficient; it does 

not take too much memory. So, what is the problem? Why can't we use just BOWTIE 2 here? Now 

one of the major challenges with RNA-seq data is that, especially for higher eukaryotes or 

mammalian genomes, these transcripts contain multiple exons. So, if you look at the genes, they 

have multiple exons right, and in the mRNA right, what you will get is that these exons will be 

joined together. You can have different combinations of exons and isoforms, and then you have 

the reads right that come from these mRNA molecules. So, if once you take the reads right and 

you want to map them back to the reference genome, what will happen is that you will, in many 

cases, get split read alignment right. 

 

So, what is this split read alignment or gapped alignment? It means that one part of the read will 

be mapping to one exon right, and another part will be mapping to another exon right. So, this is 

something that you need to do or need to take into account when you are mapping RNA-seq data 

against a reference genome. So, you have seen some examples here. If green, these are reads in 

green, and orange is also right; they are mapping to this exon 3 exon 4 junction. So, when you are 

doing this alignment or mapping, we need to do something called gapped alignment or split 

alignment when mapping is the reference genome. Now, you might actually be able to solve this 

right if you are doing this alignment against the reference transcriptome, but again, for many 

organisms, this reference transcriptome is not available, and also sometimes you might limit 

yourself right; you might not be able to discover certain isoforms of variants that are not part of 

the reference transcriptome. 



 

 

So, in that case, you also want to align against the reference genome, and in that case, you would 

have to do the split read alignment; you would have to allow for that. So, that is why you need the 

special tools that can do this very efficiently, ok? And there are tools that have been designed to 

achieve this kind of alignment. So, one is called TOPHAT or TOPHAT 2. This is one of the earlier 

tools; it is actually based on the Bow Tie 2 program or bow tie program, and this actually utilizes 

kind of this extension of this bowtie using the Burrows Wheeler transformation, and it was very 

efficient and fast. But now that it is not used that much, they have a class of tools called HISAT 

or HISAT2. 



 

So, this is something that is also quite widely used now, and you have STAR, of course. There 

could be other tools, but we are not going to discuss all of them. These are some examples and 

some tools that are very popular, and we can use them as well. So, TOPHAT 2 I just mentioned 

that this is mapping using the bow tie tool, which is only an extension of the bow tie. So, the same 

algorithm, the burrows wheeler transform, and all the processes are similar; if you remember the 

FM index and the last pass mapping, all those principles were still applied. The only thing it 

allowed was this gapped alignment. So, what it did was actually analyze these mapping results to 

identify a splice junction between exons. So, it took the same approach as the bowtie tool, but then 

it identified it. It looked at the mapping results very carefully, and it identified this splice junction. 

 

So, which exons are combining with which one currently is not maintained anymore? So, this is 

something that you will not use, and even the authors recommend using the HISAT2 tool because 

HISAT2 also combines some of the features from TOPHAT. So, another tool is the STAR1, right? 

So, there are two steps in this process. So, it relies on something called seed searching, and then 

the second step is clustering, stitching and scoring. 



 

So, it sounds very familiar to us: sheet searching. Right, you are searching for generating sheets, 

and you are searching against the reference sequence. We have looked into different algorithms 

that will do that. And what it does is that it kind of involves something called sequential search for 

maximum mappable prefix, or MMP. So, how does this actually differ, and how can it incorporate 

this split alignment? So, here is the reason it right:. 

 

So, what this method does is start with the read right. So, it will start from this sequence in the 

beginning, and it will try to find some part of the sequence of the seed in the reference genome. 

So, this brown is the reference genome, and you see, let us say it finds the seed somewhere here, 

ok? So, once it finds a seed right in the reference genome, it will start extending stitching and 

scoring. So, we talked about this before, right? 

 

 So, what it means it is trying to extending the alignment across the genome and up to this point 

let us say it finds like up to this point here it finds some match and after that the match falls right 

the quality of alignment falls ok.  So, this is what is expected for or sick data right because we 

need to have this capped alignment and sub-digits will not be part of the read right because they 

are not part of the temporary process. So, what it does is then, like, stop the alignment, and then it 

starts taking a seed from this region again right from here and then again starts searching in the 



reference genome, ok? And let us say it finds a match here in this part of the genome and then it 

continues this process, and again, maybe it finds that the alignment drops after this point, right 

after aligning up to this point of the read, and then it will generate another seed from here, and they 

start searching again against the reference genome ok? So, this is where the sequential search 

comes in. 

 

 

So, it is generating this prefix right in the first part of the reads, then taking the remaining part of 

the reads, and they are taking the first part to generate seeds and actually searching against the 

reference sequence. So, this tool works well with, I mean, quite a bit of efficiency, but of course, 

as you remember, the seed searching is quite a tedious process, and it might take a bit of 

computational time. So, we will talk about these two tools, HISAT and HISAT2. This is version 2 

now, and it is used for read mapping in RNA sequencing data. So, the name actually comes from 

hierarchical indexing for spliced alignment of transcripts. As you can see, this is actually 

specifically designed for alignment of transcripts, and consideration of this spliced alignment is 

there in the tool itself. So, this is a tool that actually is based on an extension of BWT for graphs, 

ok? 

 

So, we have a Burrows wheeler transform, but for graphs, ok. So, this tool relies on a graph, 

generates a graph, and then takes a Burrows - Wheeler transform approach for the graphs. We will 



see in a moment a part of the algorithm for this tool, and it generates something very similar to 

this bowtie2, right where we generated this FM index. So, instead of FM index here, it generates 

a graph FM index right. 

 

 

  So, it is a it is for a graph. So, that is why it is called graph FM index, or GFF, and it also does 

something called global indexing as well as local indexing along with some repeat indexes. So, it 

generates something called hierarchical GFF, or HGFF FM. So, what it can do and why it is used 

is that it can actually generate this graph-based data structure from the genome sequence, but on 

top of that, it can give SNP information and code in the graph, so it can produce a graph with the 

SNP information. So, what are these SNPs that are actually probably commonly found in the 

population? So, it can also generate this graph at 5 of these SNPs, plus it can also have the 

transcriptome in the graph. 



 

 

So, it can generate this complex index containing this genome sequence SNP's plus transcriptome. 

It can do so because it is based on a graph instead of substrings. So, it is much more flexible here 

again; it works in two steps. So, the first step is index building, as we have seen in Bowtie 2, right? 

So, it is an index building, right? It would have to do this graph structure generation, followed by 

the read mapping or searching, ok? 

 

So, what we will do now is very briefly look at the algorithm, of course, without going into a lot 

of details about the implementation, and a part of it you will understand very easily because we 

have done the Bowtie2 discussion when we are discussing the genome analysis. So, how does this 

algorithm work? So, let us take this as an example for a reference genome: GAGCTG from the 

paper that actually proposed this algorithm. So, what it does is generate this graph from the 

reference sequence. So, here you have these six bases in the genome. 

 

So, we will have six nodes in the graph. So, we have GAGCTG, and each node is connected by an 

arrow. So, if you traverse an arrow, you traverse a part of the reference sequence, okay? So, if you 

traverse this part, you get GAG right, and if you traverse this part, you get AGCT right. So, you 

traverse along the direction of the arrow, and you traverse part of the reference genome, okay? 



Now, what you can do is, in this graph representation of the reference genome, you can also 

introduce this variance. 

 

So, here, if you imagine, you have a variant instead of this GAG. So, GAGCTG instead of that it 

has this GTGCTG ok. So, in that case, you have to traverse this path here, right? So, GTG, not 

GAG, but GTG. So, what you can do is have a node and add appropriate arrows. 

 

So,  you can traverse through this GTG path here, and you can also generate this variant genome. 

You can have another case here; for example, you have one base insertion, ok? So, you can do one 

base insertion A right. So, in that genome, So, if you are traversing that genome, you have to 

traverse in this direction, right CTAG, because of this insertion here. 

 

So, what you see is that you can have this flexibility, right? You can have this deletion, you can 

have insertions, you can have SNPs, and you can have multi-base insertions and places as well, 

right? If, for example, you have this T deleted in another genome, that is a variant that is observed. 

So, you can simply have an arrow from C to G. So, that would be a valid path right because you 

can traverse then GAGC to G right, and that will give you that variant genome, ok? So, you can 

see these examples in this paper where they actually consider a lot of these variations, and for 

example, they also show how a deletion would look in this graph. 



 

 

So, once you have built this graph, what you do is something called prefix doubling and pruning, 

and you generate something called a prefix-sorted graph. I am not going into the algorithm and 

how you generate this prefix sorted graph. This is discussed; this is actually developed in this 

paper, and they use it here to generate this prefix sorted graph, which would look something like 

this. Again, we have to understand the process of this prefix-sorted graph before you actually get 

here, ok? So, what you get is something like this, and you also have ranks added to these nodes, 

ok? So, what are these ranks again? So, rank 1 means any substring right that originates from this 

node should appear first lexicographically. 

 

So, there is a lexicographical order again. We are coming to the Burrows-Wheeler transform right? 

So, there is this lexicographic sorting. So, if you have rank 1, this is the first substring that will 

come when you do lexicographic sorting, right? So, any substring that is originating from this 

node, for example, A G C T, is a substring, and this will be the lexicographically first substring if 

you sort all of them. And it is actually very easy to generate this rank if you just simply look at the 

subsequent bases and then compare against the rest of the things. 

 

So, a is lexicographically first right. So, this will come first. So, you have two options, 1 and 2, 



and among these, it is easy to decide which one is right. So, you have A G C, and here you have 

A G Z. So, now, notice this z was not part of the sequence. This has been added to the graph to 

denote that this is the end of the sequence, and this is lexicographically the highest value. 

 

So, this will come last. So, if you have A G C and A G Z, then this one is the first one, right? So, 

this will get rank 1 and this will get rank 2, and then you can follow the same principle. So, you 

have c right; this will get rank 3; then you have g right again; you can look at the substrings that 

are generated from those nodes. So, you have GAGGCT right or G Z or G T right, and you can 

rank them accordingly, right again based on the lexical order, and then finally, you have t and then 

the z ok. 

 

 

So, this is the last one. So, what we do next is have a tabular representation of a prefix-sorted 

graph, which actually talks about outgoing edges and incoming edges. And as you can see, they 

are actually sorted by this node rank from 1 to 11, and we have 2 columns called first and last. So, 

this is something that is interesting, right? So, it is very similar to what we have talked about when 

we discussed Paracela transform. 



 

 

So, what is this first and last right? So, let us consider this rank 1 right. So, this node rank 1 means 

this is here, right? So, this is the first node, right? So, we are simply writing the nodes in the first 

column. So, for the first rank, it is the outgoing edges, the first set of columns here, and the first 2 

columns there under the outgoing edges. 

 

So, we have the A here. So, the first rank is a, the second one is also a right, and the third one is C 

right, but since it has two outgoing edges, we have to write it twice. So, that is why we are writing 

the C and C OK. We just have one c in the graph, but because there are two outgoing edges, we 

would have to write this twice: C. Then you have 4 5 6 7; these are all G's and T's, and then finally, 

11 right, which is the z here, ok? So, why do you write it twice? Because if you remember this 

Burrows Wheeler, transform this rotation, right? 

 

So, what does it mean? So,  j. So, this is connected to both of these G's here, ok? So, you have G 

here. You have G here. So, both of the G's are right. So, this j is connected to both of them. So, 

you have outgoing edges. You can imagine these outgoing edges; these are not actual ones, but 

because these are, that's right. 



 

So, this means we are connected to the start, right? So, this is the letter that occurs. G is the first, 

right-first letter of these strings. So, this z is connected to these 2 G's, ok? And so, this completes 

the outgoing edge part. Now you have the incoming edges, and again, we have now given this 

node ranks 1–2. 

 

What are we doing here? So, we are actually writing the corresponding last or the corresponding 

incoming edge for this first node, ok? So, for this node, what is the incoming node? So, this 

incoming node actually comes from G here, right? So, that is why this base is G-ok. So, the last 

node that was visited right before this would be this. 

 

So, G would be the node that comes before that. Similarly, for this one, a right, what is the last 

node, which is T right? You can see this right. So, before A, you have T. So, that is why you have 

written T here, okay? And we can now continue right for this C node. Even though we have written 

it down twice, it is always G right that comes before this C. And for the incoming edge, we just 

write it once because we have just one incoming edge. 

 

In some cases, for example, this 5 here right this G 5 here right, you have two incoming nodes; 

you have one from the left and another from the right. So, that is why you have written it down 

twice: A T for G 6, right? So, this one here, you see, we have written it down as z because, as we 

have talked about, there is a connection from Z to G, which we imagine is okay. And we can 

complete this table this way, right? So, we have completed this right, and what you get is this last 

first mapping property ok? 



 

 

And you remember the first mapping, right? So, the first occurrence of a letter in the first column 

and the last occurrence of that letter in the last column correspond to the same letter in the reference 

tree, ok? So, we talked about this in the burrow-wheeler transformation. So, this is what applies 

here, right? So, this G corresponds to this G because of this last mapping property, ok? So, what 

you can do now is utilize this last part mapping property in this table, and we can map certain 

reads. 



 

 

And what you see here that we have seen is that it is very flexible, right? You can actually 

accommodate mutations. You can accommodate this splice variance right because of these graphs, 

right because you have converted this reference into a graph. So, we have these global plus local 

indexes plus some repeat indexes, which give us this h g f m ok. So, how do you search for a 

substring now? So, let us take this example: we have G C T G, right? 



 

 



 



 

 

So, we can start with the last one, the G, and see where these G's are. So, these G's are here; their 

correspondence is given by these red arrows, and we can go to the last column right. So, which 

one is the letter that occurs before g? Remember, this is the principle that we had in the first 

mapping. So, the T is the letter that occurs before G, and we have found T here in two cases. So, 

we need to follow up on those two parts and this T because, because of the last mapping, they 



correspond to these two T's here in the first column right. 

 

And only for one of them can we find C, right? We are looking for C. So, we can find C, and this 

C corresponds to the one there right? This is the second C, and then we have G, ok? So, we have 

found the substring G  C T G ok. So, it follows the same way that we have discussed before, and 

we can find any substring that we want. So, what you can now imagine is that we can extend this 

graph to generate a graph with splice variance, and we can do split field alignment because of the 

flexibility that is built into this algorithm. 

 



 

 

So, these are the references that we have used. So, what I wanted to do now is just show you the 

HiSAT2 program right before we actually conclude this class. So, I will go to this HiSAT 2 

program now, ok? So, let us see  right ok. So, here is the website where you can actually get this 

program from, and you have the manual you have download options on the right-hand side; you 

can see the download option; you can download any version of this one; and also, as you will see, 

you have some of the index files that are already built and available. 



 

 So, here is the here are the  versions of for you have the for OSX or for Linux right. So, you can 

download any version that is appropriate for your system's operating system. So, in this system, 

we are running WSL. So, we can use the Linux version, and we can use any of these binaries in 

any of these versions of HiSAT 2. In addition, you will see some index files that have already been 

built. 

 

So,  this is very useful, right? So, which means you can skip the first step if you are working on 

any of these organisms and you have this index file available, you can skip the first step when you 

are running this program, right? So, you have this already-given genome and transcriptome, right? 

So, you have this here genome SNP transcriptome, right? So, where do you have the SNP data and 

part of the index? So, if you have these files available, you can simply download them, use these 

index files, and do the mapping very easily. 

 

And you have the manuals here; this kind of describes how this method is developed right and also 

what the running mode is, etcetera alignment summary that you will get, etcetera. So, what I will 

do is actually run it from the command line. So, I have actually downloaded this program. So, here, 

we can go to this directory, cd RNAseq_data_analysis, and inside this, we can see HiSAT2. So, 



you will probably notice this here; it is already highlighted, right? This is the program that I have 

downloaded and extracted. 

 

 

 

And I can simply go inside after extraction. I can go and call this program OK. One of the things 

you might want to check is whether you have permission to run otherwise, you can change 

permission through chmod ok. So, this is very simple; actually, once you download the program, 

you can simply access it, and you can also say minus minus help. You can simply call this from 

here, or you can add it to Path. Right in the last hands-on, we discussed how we can add this 

program to Path, and you can do that as well. So, you can simply call HiSAT2, and it will be 

available everywhere in the system, ok? So, I will just simply run high set 2 minus minus help and 

you will see certain options here, and what you will notice right away is that the usage is very 

similar to the program that we use, bowtie2. 



 

So, it is very similar to what we used earlier, ok? So, high set 2 minus X ht2 index. So, if this is 

the base name of the index 5, then you have the input file options right minus 1 m1 minus 2 m2, 

or unpaired data, or if you want to give an SRS accession number, this is from a database, and I 

can directly run that accession number and the output in SAM format. So, this is very good, 

because we already learned all these things with Bowtie 2. So, we can simply follow that and do 

the same thing here, ok? So, there are a few extra things you will probably notice. 



 

 

 

So, when you come down to these options, right? So, the options again look very similar to what 



we have discussed before, right? So, you have this thread 33, etcetera, with all these options: trim 

5, trim 3, etcetera, fast sensitive, very sensitive, these options again, right? So, these kinds of things 

are there, but along with that, what you will see now is another set of options for spliced alignment. 

So, you can see this right whether you want a novel spliced site out file, or if you say no spliced 

alignment, you do not want this spliced alignment because you are mapping to a reference 

transcriptome. 

 

So, you do not need this. So, you can also have this option. So, these options are actually extra 

compared to Bowtie2, and then finally, the output is also in an SAM file, which means we know 

the SAM format and can interpret the data very easily. So, we will use these tools right later on. 

When we do the hands-on, I will demonstrate further, and we can go back to the conclusion, ok? 

So, to conclude, right. So, we have discussed the read mapping step and some of the algorithms 

that are used for this process, and this is one of the first critical steps of the RNA sequencing data 

processing pipeline. The challenge we have discussed is that, in many cases, we need this split 

read mapping right if you are aligning against the reference genome. 

 

So, we cannot just use Bowtie2; we need some sort of other modification to that algorithm. We 

talked about this STAR and HiSAT 2 bit in detail, and we have seen that HiSAT 2 uses a BWT 

for graphs. So, the Burrows Wheeler transform for graphs creates a very similar HGFM index for 

read mapping, ok? And it utilizes this HGFM index to actually search for splice variants and reads 

in the reference genome data. Thank you. 


