
Next Generation Sequencing Technologies: Data Analysis and Applications

Mapping Algorithms

Dr. Riddhiman Dhar, Department of Biotechnology

Indian Institute of Technology, Kharagpur

Good day everyone. Welcome to the course on next generation sequencing technologies

data analysis and applications. In the last couple of classes we discussed some of the

methods that could allow us to do read mapping ok. So, we talked about different ways

we can do this and we looked at the drawbacks of those methods. So, in this class we will

continue our discussions on two different mapping algorithms. So, this class will give you

an overview of the process by which we can do the mapping right.

 So, these are the algorithms that drive some of the software tools that we will use in the

future classes when you do the rate mapping hands on ok. So, it is good to know how these

methods work and also we will understand the drawbacks of this method ok. So, this is

what we what will be the topic that we will be discussing in this class it is called hash table

based mapping algorithm. We will discuss what is hash table and how this mapping

algorithm works and then we will take some examples.

 So, that you understand how this process actually operates ok. So, these are the keywords

that we will come across. So, seeds you have seen this before in the last class we discussed

what are seeds that we generate from the reference sequence or from the reach sequence

that is the query. We will come across the term hash and we will talk about the term keys

ok. So, just to give you a brief overview of what we have discussed.

 So, we talked about the trivial mapping algorithm which is the brute force approach. So,

we use a sliding window to map the read against the reference sequence, but as you can

imagine this is a very slow process and we calculated some time right based on certain

assumptions and it appeared to be very very slow right. So, this is not fit for this purpose.

We then talked about the blast algorithm and we talked about the method by which it

works it uses something called seed and extend. So, we generate seed sequences from the

read or the query data and search against the reference.

 It is still slow because this process requires this linear search in the reference sequence.

We talked about an alternative to blast it is called BLAT. So, it is blast like alignment tool

it utilizes something called indexing of the reference sequence. So, the seeds are generated

from the reference sequence instead of the query or the read and we found out this is faster

compared to blast there are also we looked at the data from the paper it was significantly

faster than blast, but it is still not fast enough for our purpose and the purpose is to map

millions or billions of reads right in a short period of time ok. So, the search for better

algorithms continue right.

 So, this is something what we will be looking at right. So, we need more efficient

algorithms. So, by efficient we mean it should be able to process a very large number of

reads and this number is also going up as the technology progresses right this is crossing

from millions to billions now right. So, if you are processing multiple samples you will

probably be handling billions of reads. So, the mapping time for these billions of reads

should be reasonable right.

 So, preferably in hours and not in days especially not in tens of days right maybe couple

of days 3 days for billions of reads that is probably we what we can leave with and it

should be able to handle mutations and errors in the sequencing data right. So, this is

something that is very important it is and it compared to other kind of applications where

we have perfect matches right. So, if you are looking for a pattern in a text or something

we are mostly looking for perfect matches, but here when we are generating sequencing

data we have genuine mutations right these are biological variations that you observe in

our samples and also errors in the sequencing data right. So, we talked about why the

errors come and how these are generated for different technology platforms right. So, these

errors should also be taken into consideration right.

 So, the algorithm should not should not be able to perform just matching perfect data right

it should also be able to get map these imperfections right it should be also be able to

handle these imperfections ok. So, there are 3 types of algorithms broadly that have been

developed to do this kind of task and we will actually discuss all of these in brief of course,

we will get an overview not into the detailed mathematical discussion or the

implementation at the coding level right how these are implemented we will talk about the

algorithm, but if you if you are familiar with programming you can actually implement

these methods yourself ok. So, the first one is called hash table based mapping algorithm

which will be the topic of discussion today. The next one is called suffix free based method

or suffix array based method. So, there are 2 alternative ways of doing this and we will

discuss them in the next class.

 We will talk about the advantages of each of these methods also and then we will finally,

we will talk about the Barrows-Wheeler transform based algorithm ok. So, this will be our

final algorithm for the mapping ok. So, let us begin we will start with the hash table based

mapping algorithm ok. So, so how does it differ from whatever we have discussed so far

the blast and BLAT ok. So, the major idea in hash table based mapping algorithm is that

we build seeds from both the read and the reference sequence ok.

 So, in compared to blast where we build seeds only from the read right or compared to

BLAT where we read where we build the seeds from the reference sequence right here we

build seeds from both the read and the reference sequence right. So, what are the seeds

you remember right these are the substrings of certain length right. So, we can choose the

k value right the length of that length of the substrings of the seeds ok. So, once you have

built the seeds right for the reference sequence we store them in a hash table and along

with their locations in the reference ok. So, we will take an example to understand how

this is done and I will also describe what is a hash table ok.

 Now, what this hash table does it actually converts these strings or the substrings to

something called keys ok and for each key there will be a value so that value would be the

location. Now, the moment you do this so this is a data structure the moment you do this

it allows for very fast search ok. You can very quickly look up the hash table and find out

the location of that seed ok. And once we have stored this reference seeds into the hash

table we can generate seeds from the read and we can search against the hash table right.

So, what we are searching we are searching the seeds which are stored as keys right and if

there is a match in the key right we will get a value and that value will give the location of

that seed ok.

 So, this is kind of the brief idea, but we will elaborate this further with more examples ok.

So, there are various options right when you are trying to design the algorithm you can

think about different options and how you want to proceed ok. So, the first option is a seed

size equals to read length. So, we say ok so we choose the seed size as the read length. So,

if you have read length of 50 base pair or 100 base pair that would be our seed size ok.

 So, if that is the case what we would have to do is we then break down the reference

sequence right to generate seeds of that size if it is 100 bases which generate seeds of

length 100 right and then store them into the hash table. So, if you have read size 100 so

there are about 4 to the power 100 possibilities right. Why is that so? Because for each

position you can have either A, B, G or C right. So, if you consider all possible

combinations for this 100 position this will be 4 to the power 100. So, it is it comes out

around 1.

6 into 10 to the power 60 possibilities right. So, this is a really huge number. So, of course,

in a genome sequence perhaps you will not have so many of them right you probably will

not get all of these combinations, but at least you will get a large fraction of this right. So,

even if it is 10 to the power 20 or so that that is still a huge number to store right. So, if

you want to store this in the memory in the hash table right you will need a huge amount

of memory ok.

 So, this is one of the biggest challenges right. So, you probably will not be implement this

in a desktop computer or even a normal server probably you need connection like a

compendium of servers or maybe a supercomputer right. So, that option is not a feasible

option right. So, what what is the feasible option? The option 2 is probably look at seed

size that between that is between 10 to 20 bases ok. So, again this can vary depending on

the read length that you work with and researchers have experimented with different read

lengths and have seen what was based for whatever read size you are working with ok.

 So, again we extract the seeds or generate seeds from the reference sequence and stored

in the hash table and if we have seed size of 10 right. So, this is about 4 to the power 10

possibilities. So, which is close to a million possibilities ok. So, this is quite manageable

compared to the earlier scenario. And once we have done that we generate these seeds

from the read sequence and then search against this hash table right.

 We have millions of million possibilities and among them we have to match right from

the seed ok. So, let us look at how it works right and we will take some examples right.

So, let us take this example where we have this reference sequence this is an arbitrary

example and we are working with small reference sequence are read. So, that it is

manageable right we can complete this example here within this slide and within a

reasonable amount of time ok. The process actually is the same it is just will take more

time more memory and of course, more elaborate right.

 So, here is the reference and then you have the read sequence which is the query ok and

seed size we choose as 5 ok. You can choose any other seed size does not really matter ok.

So, here are the seeds that we have extracted from the reference sequence along with their

positions ok. So, if you look carefully right what we are doing the size is 5 right. So, we

look at first 5 right we take first 5 letters from the reference ok and we build this seed ok

and this is the first key ok.

 And here we have the location. So, the location is 1 this is the first position where the

seed is present. So, we add this in the value ok. Then we move on the next one right g c a

t c right and we add the we add that substring to the hash table we have the position location

which is 2 ok. And then we go on right we slowly move on along this reference sequence

and finally, we see this one here g g c a t and this one was already present right. So, what

we do is we just add the value add an additional value for that key right.

 So, what it means this key this seed is present in two positions right it is repeated in the

reference sequence ok. So, we need to store this alternative locations and then finally, we

have the final one here you see ATA which gives us this here right. So, this is the hash

table that we build as we go along the reference sequence ok. Now, we will utilize this

hash table now to actually map our read ok the read that we have taken. For the read ok

so, here is the hash table right as I am mentioned these are the keys I mentioned and these

are the values ok.

 So, these keys if we can find these keys right we can get the values we can retrieve the

values by just calling the keys ok. So, this is a specific data structure which we call as hash

and because we have many of them we call them as hash table ok. So, now, how do we

search a read location right using this hash table we have built. Now, once we have built

this for a specific reference genome you can store this in a file right you do not have to ah

rebuild this hash table again and again for the same genome right. So, let us say we have

we have built the hash table for human genome human reference genome and we can store

this in a file right what are the locations what are the keys that we have for a specific seed

size ok, but if the seed size changes then of course, you will have to rebuild the ah the hash

table ok.

 Now, this read ah that we have now we actually have to generate these seeds again from

the read sequence. Now, again we have two options we can say we generate a single seed

and try to find that out ah in the hash table right and find its location or we can go with

multiple seeds ok. So, let us look at what actually would happen what are the advantages

or drawbacks of each of these right. So, if you are looking up a single seed we have

generated the single seed again the k is 5 right seed length. So, C A G A we have ah

generated the seeds its here right single seed and we then look for this ah seed in the hash

table and here it is right we have this C A G A and we get the value right so, which is 6

ok.

 So, this is in the 6 position of the reference sequence we have the seed present. So, what

it means is that these read starts at the 6th position right. So, that information is now

available to us after we have managed to search the seed in the hash table. Now, once we

have done that we can simply extend and align, but we can use an alignment algorithm to

see what are the matches, mismatches etcetera and get the final results ok. So, that that

sounds quite easy and this is really straightforward right and its also ah does not it does

not take too much time right.

 So, you just search for the single one it is a it is an incredibly fast ah process if you

searching through an hash table. Now, what what what would be the major drawback why

do not you use this ah most of the time is because if you have a mutation or sequencing

error in the read this may lead to no match ok. So, you may not be able to find that seed in

the hash table. So, imagine this example right instead of this ah A here you have a T right

in red this is the mutation that we have in the read or sequencing error in the read and when

you compare against the hash table of the reference sequence we do not see any match ok.

So, if you do not see any match right we cannot look at the read we can say ok that we do

not find the read in the reference genome and we discard it right that is what, but that

would be wrong right just because of a single mutation if you discard that read you cannot

map that read that that means, you are losing data ok.

 So, this is something that we want to avoid. So, probably better way of doing this would

be actually going from multiple seeds there is another disadvantage right. So, if a single

seed it matches to multiple positions in the genome right ah we have seen it can right if

you have for example, this seed here it can match to 1 and 14 right 2 positions you have to

now see align this for at both of these positions right you have to do this extend and align

for both this position and see which one actually aligns better right. Again the alignment

part is a time consuming process and if you have to do this for more than 2 or 5 or 7 right

that will actually take up time.

 Now, what you can do is ok. So, here is this right. So, again if you imagine instead of 6

you have 16 24 right for 3 positions here you have this match for the seed ah then you have

to do this extend process ah extend and align process for all 3 positions ok. So, this takes

time right. So, the probably this is better to it is better to work with multiple seeds ok. So,

what what we mean by multiple seeds is that again for the same seed length we have this

CAGGAA right we are generating all possible seeds here right we just slide in this window

again and we get these 5 seeds ok.

 Now, what we will do now is we will search each of these seeds for ah for their positions

in the hash table ok and let us do that right and what we see is that this seed actually

matches with this one here right this seed here the second one matches with this one here

right, but the rest of them they do not match there is no match and I have highlighted this

C base here because this is a mutation ok this is a change ah that is in the region could be

a mutation or a sequencing error right. So, these 3 reads ah are not matching, but the 2

these 2 the first 2 have matched ok and the first one is matching let us say to this 3 positions

ok. So, there are 3 values for this first match. Now, in the earlier method you would have

to extend for all 3 right, but in this method we can see the first one matches at position 6

the next one matches to a single position position 7 ok. So, this is closest right this is close

by and there is no other option for the second match right.

 So, what it means is that the full read right it comes from probably position 6 7 it covers

that position right and not 16 24 right. So, if you have this multiple matches and in nearby

locations you can probably be sure more or less is that this is where the read will map ok

and you can go ahead with probably that only one alignment ok. So, having that multiple

seeds we can actually do this much faster because we do not have to extend for those

multiple positions ok all right. So, it is something it is a process that we call ah chain and

align right. So, we are kind of chaining these locations right these ah they are mapping to

the seeds are mapping to neighborhood locations and you can simply do chaining and

alignment ok.

 So, so this is the these are the 2 steps that we have for multi seed hash table based mapping

ah. It is a 2 step process it is seed and search and then you have chain and align ok. So, let

us look at another ah exercise right let us look at this take this example and ah let us

illustrate right what we ah will how we will find this ah ah read position in the reference

you know right also the seed size is given k equals to 3 right. So, let us build those seeds

from the reference stored in the hash table and then also generate the seeds from the read

and we will try to find them in the reference hash table ok.

 So, let us do that for reference ok. So, for reference 1 we have k equals to 3. So, what we

will do is we will generate this ATG right its location is 1 we have TGC location is 2 we

have GCG location 3, CGA location 4, GAC location 5, we have ACG location 6, CGG

location 7, GGA location 8 ok. So, we we need to just check whether there there are kind

of repeated ah seeds right. So, we do not see any repeats right if we see repeats then we

have to merge the locations right the values will be will be one of them right.

 So, we will we can ah separated by a comma ok. So, once we have ah generated the seeds

now right from the reference we have to generate the seeds from the read itself ok. So, for

the read 1 right we have same seed size right CGA, GAC and ACT right we have generated

these 3 and we can now search the hash table right. So, this is the hash table here we have

the keys and the values ah and let us search ok. So, the first one will search CGA ok and

we see is here right and the value is 4 right. So, its matching to fourth position what about

then the next one which is the GAC right.

 So, it seems GAC is here right 5 what about ACT can you find ACT anywhere right I do

not find ACT in the hash table right. So, we cannot find this one ok, but out of these 3

seeds from the read we have located 2 of them right and they are located at position 4 and

5 in the reference sequence ok. So, it kind of gives us an idea that probably the read will

start from position 4 or so, its its in the region of this position right around this region 4 pi

ok. So, and as you can see its actually in the reference if we go back its actually matching

here right.

 So, this is where it should be mapping right. So, if you write CGA C T ok and this is the

reason why we did not we did not match or we we could not get the seed in the hash table

this seed ACT right because there is a mutation right G to T mutation, but the other seeds

actually work well right they could give us the location of the seed right. So, in in this

simple example I hope its clear right how would you generate this hash table right for the

reference sequence and then how do you generate the seeds from for the read and then how

do you map these seeds to the reference hash table and in the in that process you will

identify the location of the read ok. So, this such process is very very fast right. So, you

remember it in the last class when we were talking about blast and blood right one of the

problems one of the drawbacks we had is that we are doing a lot of comparisons right most

of them were unsuccessful comparisons right and one of the discussions we had is that we

want to minimize this number of unsuccessful comparisons right. So, here you see like we

are kind of trying to maximize these successful comparisons right we are we are not going

to do a lot of these unsuccessful comparisons So, I hope this this this is clear how it actually

works right.

 So, there are lot of tools for that utilizes this hash table right hash table based mapping

tools here is a list of them right and you can of course, look up search and see how this

work. So, we might ask why do we have so many different tools if they are based on the

same algorithm of course, they are using slightly different implementations and how they

actually go about implementing the algorithm right. So, you can of course, have variations

in different in the implementation process and probably you can also add a few bit of

optimizations here and there right. So, this is why you have so many of these algorithms

ok they combine different ways of doing the same thing, but they are based on the same

algorithm that we have just described ok.

 So, what are the advantages of hash table based mapping ok. So, one of the first thing is

that it is very fast right and if you just go and read literature for some of these tools you

will see you can map millions of reads per hour ok. So, that is that is a very good number

ok if you if you can let us say even map 1 million read per hour right. So, that is that is

within few hours you can map a few millions right. So, this is a very fast algorithm

compared to whatever we have we are we have discussed right blast and blast ok. So, this

this this is very important for us and it can handle or map reads with mutations and

sequencing errors as we have just described right.

 We have seen that even if you have mutations or some sequencing errors there are there

are generate mismatches with the reference sequence this process can easily handle those

right because we are working with a lot a large number of seeds from the read right at

maybe some of them will contain mutations right, but rest of them will match perfectly to

the reference sequence or the hash table right increasing the hash table ok. So, that kind of

allows for this mapping process right. What are the drawbacks then? If this is I mean we

have seen this is very fast and we can handle reads with mismatches what are the

drawbacks? So, as you can probably imagine right storing that data in the storing the hash

table in the memory it will take a lot of space ok. So, if you if you want to store this in a

hard drive also you need to give space right. So, during running the algorithms right we

are running the tools you will have to load that data in the memory right that is why that

is why the whole process is very fast because this whole hash table is in the memory of

the system and you can simply search the seeds from the read against this hash table ok.

 So, if you have to load this whole thing in the memory it will take a lot of space ok. So,

for example, here if you if you are working with a large genome like human genome it can

take up to 12 to 15 GB of memory right. So, the it means you are not going to run this in

your desktop computer right. So, that is that is a limitation means it it prevents accessibility

right. So, if you if you do not have an access to a let us say a workstation with a large

amount of memory or a server where you have a lot of memory you will not be able to run

this ok.

 So, this requires specialized systems ok. The other process which is the seed building

from the reference or the hash table that we generate ok that actually takes quite a bit of

time right because as you can imagine you have to go through the go through this window

right sliding window approach you have to go through the whole genome right to generate

this hash table. And if you if your seed length varies like the k that we have discussed here

if that varies then you have to build this every time you are working with some data right.

So, again the question is can we not keep the seed length same right can we not let us say

set k equals to 10 or k equals to 5. Now, the this actually is a problem right we cannot keep

this fixed because if you are working with let us say different data from different platforms

right they come with different yield length right and also they come with different

sequencing errors ok. So, if you think about this carefully right if your sequencing error

actually increases which is the case for long lead sequencing you have to design seeds to

be shorter ok.

 So, that a single seed most of the seeds will have some match against the hash table and

they will not contain the mutation or the sequencing error right. So, this is something that

will kind of impact your choice of seed length ok. Now, the other problem we have is that

if you have reads that are mapping to repeats right you have you probably will have some

increase in time right because if you see there is like a lot of matches for two regions you

have to again then extend align and make that decision right whether these read is mapping

to multiple regions or not ok whether it is read is coming from repeat sequences or not.

Now, this is a problem that we have just mentioned right you you have to design smaller

seeds right you have to reduce k as the sequencing error increases right. So, so, as to avoid

that some seeds will contain a perfect match with the keys in the hash table.

 Now, the moment you do that what will happen is that you will get too many hits right

you can imagine right if you have a if you take a 3 mar right versus say 7 mar you will see

more hits for 3 mar in the genome compared to the 7 mar right. So, so, as you increase the

length of k you tend to pick up more unique sequences or unique combinations right. So,

if you reduce the length you will get too many hits and again we have the same problem

right we are getting too many hits means you have to again check probably through this

alignment against multiple regions ok. So, this will again increase time for the whole

algorithm. So, what are the alternative strategies that we have? So, this is an alternative

strategy where you have something called seed filter and align right.

 So, we have this seed right and this is implemented by a tool like a GSSSST right. So,

what you have is a single seed match right. So, you so, this tool actually takes a single seed

it matches against the reference hash table right. Now, let us say it finds multiple matches

right multiple locations multiple values ok. Now, instead of trying to extend or aligning

against all these matches all these locations what it would do it will quickly search right to

this neighboring region for match ok.

 So, for match with other seeds ok. How does it actually quickly check do you think it is

just align or extend method it is not actually it is a very fast algorithm based on distance

ok. So, it is just counting number of bases in the seed versus the neighborhood and see

which is likely to be a match which is not likely to be a match right. So, if it is a match

you are likely to have similar number of bases right in the neighborhood of that seed ok.

So, it is not using an exact alignment method such as dynamic programming which is time

consuming, but it is a it is a very fast distance based method right.

 So, it works pretty well ok. So, there are other ways you can reduce now this storage

requirement or memory requirement it is called gap seeds you can instead of generating

all seeds from the reference you can say I will store only seeds at certain distances right

maybe non overlapping seeds right. So, that will that will reduce the number of seeds and

that will require less memory right. You can also encode the basis in some ways that you

actually require less storage or less memory right this optimization can be done without

going into too much details of that and you can of course, parallelize the whole process in

case you have this multiple matches of a seed in the reference sequence. So, after this

discussion what we need actually. So, we need really fast mapping which these tool

actually does mapping to repeat sequence you should be able to handle this multiple

matches very well which there is some problem with this method able to handle errors.

 So, this method actually does that very well low memory requirement right again this is

where this method would fail because it requires a lot of memory or storage ok. So, these

are the references that we have covered and to conclude. So, this hash table based mapping

algorithms are really fast and they can map reads containing sequencing errors. So, there

is no issue with mismatches, but they require large memory right. So, this is this means

you have to have special machines special servers for doing the mapping and it also

becomes inefficient for its mapping to multiple positions or repeat sequences right and

also increase in sequencing error which long lead sequencing platforms have right you see

in this sequencing error it will require lowering of seed size which will mean multiple hits

and it will increase mapping time that is it. Thank you.

