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Good day, everyone. Welcome to the course on Next Generation Sequencing Technologies, Data 

Analysis, and Applications. We have now learned about different data formats, we have learned 

about quality control, we have done the pre-processing steps, and we have done all of those hands-

on. So, you have seen how we can go through all these steps. So, we are now ready to move into 

the downstream analysis or the processing steps, the main processing steps and as part of that, we 

are going to discuss read mapping today.  So, these are the concepts that we covered in this class. 

So, what are the challenges in read mapping? We will talk about the brute force approach, and we 

will talk about the evolution of this mapping algorithm. So, we will talk about BLAST and BLAT 

and why we need better and more efficient algorithms. So, these are the keywords that will come 

across throughout this presentation mapping: seeds, query, and reference. So, again, going back to 

the flow chart right in the NGS data analysis. 

 

Once we have this quality control done, you can do this pre-processing if it is required, and then 

you move into the mapping or assembly, depending on the problem that you are working on. So, 

if your goal is to do signal-equal polymorphism analysis or transcriptome analysis, you will go 

into the read mapping side. So, you will have a reference genome against which you will map your 

sequence reads. If you are working with an organism where there is no reference genome, you will 

do the assembly right. So, today's focus will be this read mapping, where we will discuss certain 

challenges, etcetera, and approach and read assembly, which we will discuss in the later part of 

this course.  So, the mapping problem is just to remind you, right? So, you have this type of read 

on the left, as you can see, and the goal is to identify where these reads come from in the reference 

genome. So, whether this comes from chromosome 1, chromosome 5, chromosome 10, etcetera, 

that is the goal of this mapping, right? So, for example, if we look at this schematic or this 

animation right, we have this read that is kind of like we found a match here in this position here 

in this reference sequence right and this is the mapping that is done. We can continue right with 

these reads, and we see that these three match there, and it is mapped there, ok, and we continue 



this process right for all the reads. Finally,  we get this kind of picture where we have reads all 

reads mapped against the reference genome and we know their location. 

 



 

 

 Now, this sounds very simple, but there are, of course, many challenges that we will discuss today. 

So, what are the major challenges here, ok? So, the first challenge is that we work with large 

genomes, ok? Most of the data that we will see, for example, for the human genome, will be huge, 

ok? So, this is like 3 into 10 to the power of 9 bases, ok? So, if you work with plants or mammalian 

genomes, these are really big genomes, ok? So, what is the problem with big genomes? Why is 

that a challenge? Because then you have many potential locations where these reads can come 



from. So, you have to check all these locations, and this takes time and computational resources, 

ok? So, this is why the large genomes are a challenge for us. Then you have a huge number of 

reads. So, when we were discussing these NGS technologies, we looked at the throughput—the 

number of bases that we get from each experiment on those platforms—and these reads are in 

millions or billions. So, in today's experiments, you can get billions of reads quite easily. So, you 

if you can visualize in your mind that you have to repeat this process of mapping  ok.  For each of 

them ok if you have 1 billion for each of them you have to repeat this process  you have to find the 

position in that big genome ok.  So, you have this at one hand you have this big genomes right 

meaning many potential locations  and at the other hand you have huge number of reads ok.  So, 

if you combine them together the problem is the time requirement ok. 

 

So, you will probably need a lot of time to actually complete this process ok.  So, if you had only 

let us say few reads that you have to map against human genome  then it is fine you can do it may 

be in an hour or 2 hours etcetera, but here we are  talking about large number of reads and that 

actually compounds this problem ok alright.  So, let us look into other challenges. So, we are 

dealing with mostly short reads if you are kind of working with short read data because you want 

to do single leaf filter polymorphism analysis, you want more accurate data, and you can also have 

a lot of mutations and sequencing errors in the data. So, whether you are working with short reads 

or long reads, this sequencing error will be there. 



 

 What does it mean if you have a mutation or sequencing error? It means you will not find a perfect 

match. So, you can imagine this mapping problem as a string matching problem. So, you have this 

read, which is kind of a combination of letters, right ATGC, and on the other hand, you have the 

reference sequence, which is also a combination of letters, right ATGC. So, at the end, mapping is 

a kind of string matching right where there is a perfect match in the genome. So, here, if you have 

a sequencing error, one of these bases will be changed to something else and you will see that if 

there is no match, you probably will not find any match in the reference genome. So, there is no 

perfect match. So, this is something you would have to consider while doing the mapping, right? 

So, any algorithm or tool that does mapping will have to consider that there may not be a perfect 

match, and we would have to find the best match.  So, this is again a challenge. So, just to kind of 

represent this schematically or in an animation here, you have So, if you do not have this mutation 

in red, this is a perfect match, right? You find, ok, there is a perfect match, and this read comes 

from this position. But if you have this mutation in red, then you do not have a perfect match, and 

that makes this mapping problem more challenging. Then you have one more challenge, which is 

the repetitive regions in the genome.  So, human genome or other mammalian genomes contain a 

lot of repeat sequences. So, one sequence repeated itself multiple times across the genome. 



 

 

 So, any read that comes from these regions will have multiple matches in the reference sequence, 

ok? So, here it is, if you can put this in a schematic figure, right here is the read, and this comes 

from a repetitive region that is present in two positions of the reference chromosome. Now, when 

you are doing this mapping, how do you decide, or can you even decide, whether this read comes 

from this location or this location? So, this is again what creates ambiguity here. And finally, there 

is another challenge. This is a specific challenge for RNA-Seq data, right? So, we will talk about 

this in a bit more detail when we talk about transcriptomic data analysis and read mapping in 

transcripts in RNA-Seq data. So, what happens in RNA when you are processing RNA samples 

and this mRNA you have splicing right? So, when you have these splicing events, you have these 

exons right that join together, and they cut out the intron in between.  So, when you generate reads, 

it will just give you the exon sequences; it will not give you the intron sequences right because this 

sequencing is done on RNA, right from RNA to cDNA, and then on, that is the sequence. So, you 

will get these exon sequences only, not intron sequences. 



 

 Now when you go and try to map right, what it means is that you have to do something called 

gapped alignment.  These two parts of the same read will match to two different locations in the 

reference genome. So, the aligner, the program that you are using, or the algorithm that you are 

using needs to know that this can happen because we are dealing with RNA-Seq data. So, this 

splicing event can happen. So, we should be aware that there could be such mappings where you 

will have these two different locations for one read.  So, again, there are different ways to address 

these challenges. We will talk about this, especially this splicing in RNA-Seq data, when you go 

into transcriptomic data analysis. So, we have kind of understood the challenges: we are working 

with big genomes, we have a huge amount of data, and on top of that, we are not working with 

ideal data. So, we have sequencing errors, repeat sequences, etcetera. So, to make our lives more 

difficult, ok? Now, coming to the simple question, this is regarding the search process, right? So, 

this is the major component of the algorithms, ok? How do you find the read sequence location in 

the reference genome, and what is the search strategy, ok? So, this is what we will start with today, 

and we will talk about different approaches and see how these approaches work and what the 

limitations of each of these approaches are.  So, you can start with something called a brute force 

approach or a trivial mapping algorithm, ok? So, what does this mean? We can simply say, "Okay, 

we will have the read sequence. We have the reference sequence, and we can slide that read 



sequence along the reference genome sequence and see if there are certain matches around the 

right. 

 

 

 So, once we slide, we count the number of mismatches compared to the reference sequence, and 

if the number of mismatches is below a threshold, we can say this is an alignment; this is where 

the read maps are OK.  So, this counts for the sequencing errors or mutations that might be present 

in the data and there might not be any perfect match, right? So, let us take some examples, and 

then we will understand how this works and the limitations of each of these processes. So, here is 

the reference sequence for example, right? This is our genome data for example, and we have the 

read, which is the query sequence, right? And what we want to do is find this query sequence in 

the reference genome, and we want to find the location of this read in the reference sequence, ok?  

 



So, based on this brute force approach, what we do is put this read right against this reference 

sequence. Here, we start from the first position, right? This is the reference on top, and then query 

here, and we count the number of mismatches. So, the number of mismatches here is about 13, and 

we put the threshold as 3. So, any kind of position where you have less than 3 mismatches will say 

this is a good match this is an alignment, and the read maps to this position, ok. So, we can set 

these thresholds at different levels depending on what the expected error rate is in our sequencing 

data, etcetera, ok. So, clearly, you have more mismatches than the threshold. So, we cannot say 

this is an alignment right.  

 

 

 

We move along right; we are sliding along the reference sequence, and we now see again and again 

that the number of mismatches here is 12. Again, it is higher than the threshold. 

 



 So, we move forward and continue right here. There is a slight decrease of 8 mismatches again, 

but this is again higher than the threshold that we have set, and we continue this process until we 

reach a point where you see we have 2 mismatches and it is below the threshold that we have set. 

So, this is the location of this read, ok? Now, as you can see, this is a very tedious process, 

especially for big genomes, where you have a huge number of positions that you have to search 

through.  And how do you also count these mismatches? You also have some algorithms that will 

actually count these mismatches, but these are also very slow. So, we can look at the drawbacks, 

right?  

 

So, one is the time requirement ok, the sliding window approach along with this mismatch counting 

right both contribute to the time required ok. So, let us take this example right, let us say genome 

size is about 3 billion bases, right, like the human genome. We have a number of reads, which is 

about 30 million, that we have generated. This is actually on the lower side because many times 

you will get even more right billions of reads from the sequencer, and let us consider that the read 



length is about 150 bases.  So, now you can imagine the scale of the problem. So, you have to 

check this 1 base read along this 300 3 billion base long genome, okay? So, about so, we will have 

about 3 billion comparisons, approximately slightly less, but it is approximately 3 billion. Now let 

us assume that this time for each comparison is about 1 nanosecond, ok? So, about 10 to the power 

minus 9 seconds, right? This is again quite optimistic. This will again depend on the computer that 

you are using and the system that you are using. So, let us be optimistic and say, OK, this is quite 

a fast process with this mismatch counting, and so, for each comparison, you have this 10 to the 

power minus 9 seconds. So, how much time do you require if each comparison takes about 10 to 

the power minus 9 seconds? It is about 3; you have 3 billion comparisons right into 10 to the power 

minus 9, and you have to do this for 30 million reads. So, we multiply by the number of reads here, 

which is 30 million. So, it comes about 9 into 10 to the power of 7 seconds, which is about 1000 

days, right? So, it will take approximately 3 years to complete this mapping if there are 30 million 

reads. So, you can do the sequencing experiments within a week or 2 weeks, and then the mapping 

takes 3 years, right? That is not a good process. So, this means this will not work right. This is 

something we cannot utilize for 30 million for mapping NGS data, ok?  

 

In addition, what you have is that you may not always find the best match. So, as we said, we have 

this threshold. The moment we have a match where the number of in-spatches is below that 



threshold, the algorithm will stop, and this means we might not always find the best match right; 

there might be some match somewhere else that is even better. So, if we stop there, it will actually 

kind of miss the best alignment, right? So, this is one of the thresholds. Another thing that might 

happen is that if you want to find repetitive sequences again, if you stop after this and reach below 

the threshold, you will not find these repeated repeat sequences in the genome. So, multiple 

mappings, but if you want to find these multiple mappings, you have to scan all the positions again, 

which will probably take more time. Now you probably understand the drawback. So, we cannot 

utilize this brute force approach right now because it will take too long. So, the question is, are 

there alternatives? So, can we do better in certain ways? So, as we have seen, trivial mapping is 

very inefficient because most of the comparisons will give you a large number of mismatches. So, 

these are like unsuccessful attempts, right? So, we are making a lot of unsuccessful attempts, and 

we have just one or two successful attempts, right? So, only a few locations will show some 

matches, ok? Now, what we can do is maybe find some way to reduce the number of comparisons 

in this unsuccessful process. So, that will reduce the time, ok? So, again, if you want to compare 

the whole rich sequence for match or mismatch, this is also time-consuming, and it also requires 

memory because we utilize something called dynamic programming for mismatch checking. So, 

if we are using this dynamic programming using the Needleman-Wunsch and Smith-Waterman 

algorithms again, this takes a lot of time if you are doing this for the whole sequence. So, these are 

the limitations of this brute force approach, right? So, there might be some other alternatives that 

can do better, perhaps. One alternative that comes to mind is the last right. 

 

 So, we probably have used this BLAST for searching some sequences against databases. So, it 

seems quite fast, right? If you are searching one sequence, you can get this data within a few 

seconds or so, right? You have seen this itself, right? So, let us look at how BLAST works and 

whether we can apply BLAST to our problem right to mapping problem ok. So, BLAST works by 

something called seed and extend right and it does something called local alignment ok. 



 

 So, what are the steps in BLAST right? So, you have to generate seeds from the query sequence, 

which is the read here right. So, if you run BLAST, you will see this query sequence and subject 

sequence. So, here, the query sequence is the read, and the subject sequence is the reference 

genome. We can specify that this is the reference genome against which we want to do this 

BLAST, OK? So, first, you generate seeds from the query sequence. 

 

 So, we will talk about what these seeds are. These are actually substrings, only a small part of the 



full sequence of the read.  Then we generate neighboring sequences of the seeds for a given match 

threshold.  So, we say we also kind of account for sequencing errors or mutations, and we kind of 

look at these neighboring sequences or neighborhood sequences. So, what will we take as an 

example to understand this better? Then we search these seeds against the reference sequence and 

find seed hits OK.  So, we find the locations where these seeds actually hit right, and then we 

extend these seed hits until we reach an alignment score. Again, we can set a threshold for 

alignment score, and once we reach that threshold, we extend those seeds, ok? So, we will take an 

example to actually understand this process better, ok? Again, we come back to the same example; 

we have the reference and the query. 

 

 So, here the query is the read sequence, ok? So, the first step is to break down this query into 

seeds. So, we can choose different seed lengths, which we say k right, which we denote by k here, 

and we can take k equal to 5, for example, in this example here, but you can choose a different 

case ok? So, we are breaking down this query into seeds of length 5 right. How do you do this? 

So, you start with the seed, right? The first five will give you the first seed, then you have the next 

five, and so on. So, you can see that we can write this down. You kind of have a sliding window 



and take 5 bases at a time, and that gives you the seeds, ok. 

 

 

 So, for each seed, we need to generate these neighborhood sequences, ok. So, we take one seed, 

right, and what are these neighborhood sequences? So, the neighborhood sequences of the seeds 

have four matches right. Again, we can specify whether we want 4 matches or 3 matches, 

depending on the sequencing error that we want to accommodate in our analysis.  So, for seed 

CAGA, we look at the neighboring sequences with 4 matches, which means that 4 bases will be 



identical to the seed and only one base can vary. So, here are all the neighbors of this seed, ok? 

Now what it means now is that we are accounting for this sequencing error at different locations 

of the seed, ok? So, in the next step, we search these seeds and the neighborhood sequences in the 

reference sequence, and since we are considering all the variations, there should be a perfect match, 

ok?  

 

And again, if you kind of slide across this reference sequence, you will see at this position you 

have this match. Now you might ask, How is it different from the earlier brute force approach? So, 

here we are taking actually a small part of the sequence, and this actually finds this and can check 

for match only, right? You do not, and we are not looking for mismatches. So, we do not need to 

use something like dynamic programming or more time-consuming algorithms because we are 

looking for a perfect match. We can simply kind of look at identity, and so that process is much 

faster. But we still have this sliding thing right; we are kind of looking at linearly across this 

reference sequence.   



 

So, once we find this match, we kind of extend in both directions, and we extend until we cross 

this alignment score S. So, if we cross this threshold score S, then we say we have found some 

match, right? We have mapped the seed. And then we stop, right? When we stop after we have 

crossed the S, we stop if we see that the alignment score is falling below a threshold, ok? So, we 

can define these S and T depending on our requirements. So, this is the whole thing, right? So, the 

idea is that instead of matching the full query sequence into the reference right, we are taking a 

part of this query sequence and mapping it against the reference right. So, this kind of speeds up 

the matching or mismatching process. 

 

 Now, the drawbacks are right. So, as I said, there might be some improvement in this match 

mismatch step, right? So, again, take going back to the same example. We are looking at the same 

data: we have 3 billion bases in the reference sequence, we have 30 million reads, and we have a 

similar number of comparisons. But let us assume that the time for each comparison now is 10 to 

the power minus 10 seconds. So, we have improved there, right? So, we are doing that faster. So, 

what you do mean is that the total time that will be required right now will actually be less, but 

still, it is quite high right now; it is about 100 days, ok? So, it is still not acceptable right now; it 

takes about 3–4 months, which is not acceptable for us. Can we do better? Is there any way we can 

improve on this? So, the question is, how do you actually improve on this? Now, one of the things 

you probably have noticed now is that whether we are going with the brute force approach or with 



blast, we are kind of linearly searching through the reference sequence, and we are kind of sliding 

through the reference sequence. Instead of that, can we also seed or index the reference sequence? 

Can we create some of the fragments of the reference sequence right? We can take out parts of the 

reference sequence right and then search against the query right. So, why is it better? Why is it a 

better idea than what we have done so far? It is because our query sequence is smaller than the 

reference sequence. So, if you are searching linearly through the reference sequence, it takes more 

time to search a single seed or single sequence, but if you do the opposite, if we create those seeds 

from the reference sequence and search against the read sequence, this will be faster because the 

read sequence is smaller in length, ok? So,  we may have to search more seeds, but the process of 

comparison for each seed is much faster. So, this is kind of the idea and there is a tool that kind of 

does this is called blast  like alignment tool or BLAT ok. 

 



 

 

So, how does it work it seeds the reference sequence ok.  So, these are the steps so it sees the 

reference sequence and then it searches through the  query sequence ok.  So, again we go back to 

the example right where we have this reference sequence and  we have the read sequence or the 

query sequence and we take the same seed size and we generate  seeds of length 5 from reference 

ok.  So, again we follow the same process right we start from the beginning we take seeds  of 

length 5 right we start we count only 5 bases that is a seed then we move on right  to the next base 

take next 5 and move on right so on and these are the seeds that we will  get right as we move 



along right you can do this for the whole reference sequence ok.  Now once you have found this 

right you can also generate neighborhood sequence of the  seeds considering all the variations and 

then you can search through the query sequence  ok.  Now, it is the reverse right compared to what 

we have discussed now before right blast. 

 

  So, the whole thing, the whole process has reversed ok. So, without going into all the details, 

because we have seen how you generate these neighborhood sequences you generate those for the 

seeds here, and then we search through the query sequence something like this, and then you find 

hits ok. Again you expect perfect matches because we have considered these variations. Right 

when you are considering these neighborhood sequences with certain matches, we are considering 

sequencing errors. So, you should find perfect matches, and you do not have to apply dynamic 

programming or something else to actually find the number of mismatches, etcetera, right? So, 

once you find this hit, you just extend again until a threshold alignment score is reached, ok? So, 

this is something that you might want to see to see whether this actually works and whether we 



actually improve on time. 

 

 

 We can actually look at that time calculation again, and maybe we can say we have improved 

upon it a lot more. So, now, every comparison takes even less time: 10 to the power minus 11 

seconds, and you can calculate the total time, which is still about 10 days. So, this is something 

again that is probably not enough, ok? For 30 million reach, if it takes 10 days, if you increase the 

number of reach, if you are processing millions of reach, it will take even longer. So, if you are 

processing 300 billion, it will take 100 days. So, this will increase the time, and that is still not 



acceptable, right? We want to do this within a few hours, maybe a day or two, not 10 days for 30 

million.  So, what it means is that we need a more efficient algorithm. So, whatever we have 

discussed, the brute force approach plus plus they are not good enough for this problem, ok. And 

this is because the number of reads that we get from the data is often more than 30 right billions 

and will require a lot more time, ok. 

 

 And one of the problems here with all these algorithms is that the majority of comparisons are not 

successful comparisons, ok. So, we are doing these comparisons, and most of them will not give 

any positive results. So, we are spending a lot of time doing these unsuccessful comparisons. So, 

can we reduce the number of such comparisons? So, if we can reduce this number of comparisons, 

then we can improve on time. So, we can probably focus on the successful comparisons, and we 

can get to the results much quicker, ok? So, these are the references that we have talked about 

today. And to summarize, we have seen that if you want to map a large number of reads, this is 

quite a challenging problem that requires a lot of time and probably computational resources. So, 

this is something we would have to think about carefully, right? There are two important 

considerations, one of which is time. You do not want algorithms that take too much time because 



that is not what you want because you will be done with sequencing within a few days or a week. 

And if your program takes a few weeks, that is not good enough, ok? And also, you do not want 

to use too much memory. This is again very important because if you can run this analysis on your 

desktop system, that will be great, but if you cannot, if it takes a lot of memory, if you need 

sophisticated servers with large computational resources that will again limit the accessibility. So, 

these are two important considerations. What you have also seen is that blast is too slow right? So, 

we cannot, of course, use the brute force approach at all; that will probably take forever, but even 

blast that people used for searching through databases; this is also too slow for mapping when you 

have this large number of reads; this number approaches billions; this process takes too long. We 

have seen an improvement over blast, which is that blast takes less time than blast, but it is still 

inefficient if you are going with billions of reads, ok? And this means we need more efficient 

mapping algorithms, ok? And this is something that has developed with the advancement of 

sequencing technology. As people have seen, we are getting more throughput from the sequencers. 

There was a need for more efficient mapping algorithms, and that is why we will see that in the 

next class there will be a plethora of algorithms that can do this job in a much more efficient 

manner. So, we will discuss these algorithms over the next few classes, and we will then look into 

the best one. We will do a comparison, we will look into the best algorithm, and then we will also 

discuss the tools that can do this very efficiently. Thank you. 


