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Sauerbrey Equation and QCM-D 

Welcome back to our discussion. We are now in the third week, and today, we'll delve into 

the fundamentals of mass sensitivity in QCM (Quartz Crystal Microbalance). To begin, 

let's explore how changes in mass influence frequency. On the y-axis, we have frequency 

change, and here, we see the basic crystal setup. 
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When molecules are added to the surface of the crystal, a noticeable change occurs. 

Initially, the crystal oscillates at a certain frequency. However, as soon as these molecules 

are introduced, the frequency decreases. You can observe this in the graph, the frequency 



drops as molecules are added. If we continue to add more molecules, the frequency 

decreases even further, a trend clearly visible as the curve descends. 

Now, let's consider what happens when you remove some of these molecules. The 

frequency begins to increase. As you remove more molecules, the frequency rises further. 

This process allows us to directly observe the addition and subtraction of mass in real time. 

The quartz crystal oscillator, when subjected to a constant voltage, oscillates at a consistent 

frequency. However, as molecules begin to deposit on the crystal's surface, this frequency 

starts to decrease. The more molecules that accumulate, the greater the decrease in 

frequency. For instance, if we replace these molecules with antibodies, proteins, or anthrax 

toxins, this system becomes a highly sensitive tool capable of detecting changes in the 

frequency domain. 
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There are two key concepts to keep in mind: the change in frequency (denoted as Δf) and 

the change in mass (denoted as Δm). The Sauerbrey equation provides a relationship 

between these two variables. Specifically, it expresses the change in mass (Δm) as 



proportional to a constant, C. This constant, C, is derived from several parameters, 

including the density of the quartz, the total added mass, the velocity, and the thickness of 

the quartz crystal. 

The Sauerbrey equation can be expressed as: 

Δ𝑚𝑚 = −𝐶𝐶
1
n
Δ𝑓𝑓 

Here, n represents the overtone number, and Δf is the change in frequency. By adjusting 

the voltage, you can maintain a specific frequency, and if the voltage remains constant, the 

crystal will continue to vibrate at that unique frequency. 

This relationship between mass and frequency is a fundamental aspect of QCM technology, 

making it an incredibly precise tool for detecting even the slightest changes in mass at the 

molecular level. 

(Refer Slide Time: 06:09) 

 



When you add mass to a system, this change in mass directly affects the frequency. If we 

examine the relationship described by the equation, it’s almost as if there’s a simple linear 

connection between the change in frequency and the change in mass. As mass increases, 

frequency decreases, which appears to be a very straightforward, linear relationship. 

However, there’s a crucial point to consider regarding where this linear relationship 

actually applies.  

Let’s revisit an earlier slide that I mentioned I’d return to. There are some important details 

here that I initially didn’t elaborate on. Specifically, the change in added mass M on the 

crystal can be considered equivalent to the mass of the crystal itself, but only under certain 

conditions. 
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These conditions are critical: 

1. The added mass must be small in comparison to the crystal mass. For example, if the 

crystal mass is 1 unit, the added mass should be significantly less, perhaps 0.1 units or less. 



Adding a mass comparable to or larger than the crystal itself would disrupt the 

measurement. 

2. The mass must be rigidly adsorbed onto the surface with no slip or deformation caused 

by the oscillating surface. In other words, once the mass adheres to the surface, it should 

remain firmly in place. If it behaves like a viscoelastic material, slipping, rolling, or moving 

around on the surface, the measurement won’t be accurate. The mass needs to stay fixed in 

place rather than shifting or slipping as the surface oscillates. 

3. The added mass must be evenly distributed across the surface. Imagine your crystal 

surface as flat, with a film spread evenly across it. If the film is uneven or clumped, 

different zones of the crystal will resonate at different frequencies, leading to inaccurate 

measurements. The mass should adsorb evenly across the surface to maintain the integrity 

of the measurement. 
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Given these conditions, quartz crystal microbalance (QCM) becomes a highly powerful 

tool for measuring small changes in mass, but only if these requirements are met. Now, 

let's discuss what the instrumentation for QCM looks like. 

The basic setup includes the quartz crystal, held securely in a crystal holder. There’s also 

an oscillator that generates the frequency, which is measured by a frequency counter. This 

whole system is connected to a computer, which processes and displays the data. Although 

this description is highly simplified, it captures the essential components. 

However, let's consider a slightly different scenario. When we talk about QCM, we 

generally assume that everything adheres properly and absorbs correctly. This assumption 

is crucial for the QCM to function effectively and provide accurate measurements. 
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When we talk about adsorption, especially in the context of gas molecules or in dry 

conditions, it’s relatively straightforward, molecules adhere to a surface in a predictable 

manner. However, the situation becomes significantly more complex when dealing with 

the types of molecules we’re interested in, particularly those that don’t remain dry and 



function optimally in the presence of water. The behavior of these molecules changes 

drastically when water enters the equation. 

For instance, consider a scenario where adsorption occurs in air. Now, imagine the same 

scenario but with a thin film of water or in a submerged environment. The behavior of the 

molecules and the resulting frequency changes are not the same. This shift in behavior 

highlights a critical issue in biosensing, where the molecules we work with often require 

water to function effectively. 

So, the question arises: will Quartz Crystal Microbalance (QCM) still work under these 

conditions? This brings us to the limitations of QCM and the Sorbet equation. For the 

Sorbet equation to be applicable, the sensor layer must be thin, rigid, and firmly attached 

to the crystal surface. However, biological molecules, by their nature, do not conform to 

these requirements, they are often soft, thick, and not fully coupled to the sensor surface. 

When these conditions aren’t met, the Sorbet equation fails, leading to an underestimation 

of the added mass. 

These limitations explain why, historically, QCM and the Sorbet equation were primarily 

used for gas sensing applications. In such cases, you would dry the gas by removing any 

water, pass it through a chamber, and then measure it on the microbalance. QCM performs 

exceptionally well in these dry conditions, but it struggles in environments where water 

and biological molecules are involved. 

This brings us to the next level of analysis: what happens in wet conditions, the real-world 

scenario for biosensors? This is where Quartz Crystal Microbalance with Dissipation 

(QCM-D) comes into play, with the 'D' standing for dissipation. 

Let’s visualize the situation: Imagine a crystal vibrating in the air, it oscillates freely. Now, 

submerge that crystal in water. Intuitively, you know that its vibration will be dampened 

due to the film of water around it, restricting its movement. 

In a liquid environment, molecular adsorption involves not just the molecules themselves 

but also associated liquid molecules. These liquid molecules contribute additional dynamic 

mass through direct hydration, solvation, and entrapment within the adsorbed film, leading 



to the formation of a soft viscoelastic layer. Picture this: you have the crystal, surrounded 

by water molecules, with your analyte interacting in this environment. The situation now 

resembles a viscoelastic film that is not firmly attached to the oscillating crystal. 
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This lack of firm coupling causes energy dissipation or dampening of the oscillation, as the 

viscoelastic nature of the film leads to slippage and incomplete coupling with the crystal 

surface. Remember the conditions required for the Sorbet equation to hold: the mass must 

be rigidly coupled, there should be no slippage, and the mass must be minimal compared 

to the crystal. In this case, however, these conditions are not met, leading to significant 

energy loss and dampening of the oscillation. 

Imagine pouring a significant amount of water into a system. The oscillation frequency 

would naturally decrease because the added mass makes the system heavier. Now, if you’re 

using a sensor that has already absorbed a considerable amount of water, you’ll need to 

adjust the equation because your baseline frequency has fundamentally changed. The basic 

theory, which states that the change in mass (Δm) is linearly related to the change in 



frequency (Δf), no longer applies in this scenario. This is because the frequency now 

behaves differently due to the dissipation caused by the absorbed water. 

In practical terms, consider a dry crystal onto which you place a sample containing 

antibodies. The water molecules in the sample will adsorb onto the surface, introducing a 

different type of dampening effect. This means the frequency change will now also reflect 

this dampening process, leading to energy loss in the oscillation. As a result, the mass of 

such a film cannot be accurately determined by just measuring the frequency change alone.  

Here’s where it gets interesting: besides Δf (frequency change), there’s another crucial term 

that comes into play, ΔD, which represents dissipation changes. To accurately determine 

the mass change of a viscoelastic film, you need to measure both Δf and ΔD. By monitoring 

these two parameters, you can gain additional insights into the structural properties of the 

film, such as conformational changes, cross-linking, and swelling. 
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This brings us to the utility of QCM-D (Quartz Crystal Microbalance with Dissipation) in 

biosensing. QCM-D is not just about measuring mass; it also provides real-time 



information on the viscoelastic properties of the material, which is particularly relevant for 

biological molecules and polymers, most of which exhibit viscoelastic behavior. These 

properties include viscosity (resistance to flow), elasticity, and density. 

QCM-D is incredibly sensitive, capable of detecting mass changes as small as less than one 

nanogram per square centimeter. This is no small feat. Depending on the rigidity of the 

film, the technique can measure film thicknesses ranging from a few nanometers to several 

microns. 

QCM-D’s wide range of applications spans various scientific fields. It’s used to study 

molecular interactions, such as protein-protein interactions and the affinity of biomolecules 

for binding sites on functionalized surfaces. It’s also employed in analyzing the buildup of 

polymer films, their interactions with different constituents in a liquid medium, and the 

effects of surfactants on various coatings. In biosensor applications, QCM-D proves to be 

an exceptionally robust tool. 

One of the key strengths of QCM-D is its ability to monitor real-time changes, including 

protein conformation and molecule-to-surface interactions. For instance, you can observe 

how a protein’s shape changes over time or how two sets of proteins interact. You can also 

coat a surface with different materials, whether hydrophobic or hydrophilic, and analyze 

its viscoelastic properties based on viscosity, elasticity, and density. 

This is the beauty of QCM-D: it allows for comprehensive monitoring of multiple 

parameters, providing a deep understanding of the interactions and changes occurring at 

the molecular level. 

You can clearly observe the changes taking place, how much interaction is occurring and 

the nature of these interactions. The buildup of polymer films, the process of film 

formation, and whether it results in a continuous layer or not are all aspects that can be 

monitored. For example, polymers sometimes create a continuous layer, like self-

assembled monolayers. Other times, they form fragmented films, and with QCM-D, you 

can monitor such unique molecular events, which are otherwise challenging to observe 

with other sensor types. 
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Additionally, QCM-D allows you to understand how different liquid mediums can 

influence the conformational geometry, movement, and self-assembly of molecules. QCM-

D deviates from the classic Sorvay equation because the linear relationship between 

frequency and mass, as defined by Sorvay, does not hold true for viscoelastic films. 

Therefore, it's crucial to account for dissipation when quantifying viscoelastic mass. Keep 

in mind the term "viscoelastic mass." Dissipation, in this context, is defined as the inverse 

of the crystal's quality factor Q, expressed as 𝐷𝐷 = 1
𝑄𝑄

, where 𝐸𝐸dissipation  is the energy 

dissipated in one cycle, and 𝐸𝐸stored is the energy stored in the oscillating system. 

There are two primary ways to define QCM-D: using the equivalent circuit model or the 

mechanical model. When defined by the mechanical model, we focus on the mass. When 

a piezoelectric quartz crystal resonates, both the electrical current and mass oscillate 

simultaneously. Consequently, quartz can be represented by either its equivalent electrical 

circuit or a mechanical circuit. 
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The electrical circuit model comprises an inductance (L), capacitance (C), and resistance 

(R) in series, with a parallel shunt resistance. The mechanical circuit model includes mass 

(m), connected to a spring with a constant (k) and a dashpot with a damping coefficient 

(y). The components of these models can be compared as follows: L1 represents the 

oscillating mass, C1 represents elasticity, and R1 accounts for energy loss in the system. 

The shunt capacitance C0 arises from the electrode overlap on the crystal surface and is 

purely electrical, with no mechanical counterpart. 

When analyzing energy dissipation using the electrical circuit model, it is defined as 𝐷𝐷 =
1
𝑄𝑄

= 𝑅𝑅1
2π𝑓𝑓

, where f is the frequency. The two most common approaches to measuring energy 

dissipation using the electrical circuit model are resistance analysis and impedance 

analysis, with a third, more recent technique also in use. In resistance analysis, the 

resistance of the crystal is measured by introducing a small resistor into the circuit and 

observing the voltage change. The current in the equivalent circuit of the resonating crystal, 

after canceling out the shunt capacitance C0, will be proportional to the crystal's resistance 

R1, which sums up the losses. However, this approach does not provide an absolute value 



because the inductance L1 is unknown in this measurement. Moreover, achieving valid 

cancellation of C0 can be problematic if the crystal is significantly loaded, making 

resistance analysis useful for obtaining relative structural data rather than absolute values. 
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You don't obtain unique absolute data from this method, but impedance analysis offers a 

more refined approach. In impedance analysis, QCM-Z provides a well-defined method 

for measuring energy loss. This technique allows you to determine all four elements of the 

crystal’s equivalent circuit: L1, C1, R1, and the shunt resistance. Here’s how it works. 

First, you have an equivalent circuit setup that includes a frequency generator, which 

supplies varying input frequencies to the circuit. At each sweep frequency, both the current 

and phase are recorded, enabling all four components, L1, C1, R1, and the shunt, to be 

numerically fitted. However, there’s a limitation: this fitting process is only effective when 

the crystal is in a steady state. The crystal must stabilize at each frequency step, making 

data generation extremely time-consuming. This is one of the drawbacks of the impedance 

analysis QCM-Z process. 



(Refer Slide Time: 24:45) 

 

(Refer Slide Time: 26:21) 

 



I also mentioned a fourth method that is rapidly gaining popularity: Quartz Crystal 

Microbalance with Energy Dissipation, or QCM-D. In this technique, the quartz crystal is 

briefly excited to its resonant frequency by applying a driving voltage across it. The crystal, 

along with the electrode, resonates for a short period, and then the driving voltage is turned 

off. Afterward, the decay of the voltage over the crystal is recorded as a function of time.  
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The voltage decay over the crystal follows an exponentially dampened sinusoidal pattern, 

described by a specific mathematical expression where A is the amplitude, τ is the decay 

time constant, f is the frequency, and θ is the phase angle. The decay time constant τ is 

directly related to the dissipation factor, making this method highly effective. 

By numerically fitting the decay curve, you can simultaneously obtain both the frequency 

and dissipation of the crystal. The decay time constant provides insights into the rigidity or 

softness of the mass adsorbed on the crystal surface. For instance, in rigid materials like 

metal films that couple well with the oscillating quartz, the decay of oscillation is slower, 

resulting in a longer decay curve. 
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Conversely, if the adsorbed mass is soft or viscoelastic, such as proteins or lipids, the 

coupling with the quartz is weaker, leading to faster decay and a shorter decay curve. 

To help you understand, here's a schematic of the decay curve. Notice how the curve 

behaves differently based on the material's properties. Before the material interacts with 

the surface, the decay curve behaves a certain way. But once the material, especially 

viscoelastic substances, engages, the curve changes significantly. For example, rigid 

materials like metal films couple effectively with oscillating quartz, resulting in a more 

extended decay, as described in this increasingly popular QCM-D approach. 

In this method, the quartz crystal is initially excited to its resonant frequency. If you 

observe the process closely, you'll notice that the crystal begins oscillating at this resonant 

frequency, which is key to the analysis. Now, the main objective here is to monitor how 

this resonance frequency changes over time. 
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Here's how it works: You start by applying a driving voltage across the crystal, which 

induces the resonance. Once the crystal is resonating, the driving voltage is then switched 

off. Even after the voltage is cut off, the crystal continues to resonate for a brief period. 

During this time, the decay of the voltage across the crystal is recorded as a function of 

time, which allows you to measure how quickly the resonance diminishes. 

The voltage decay follows an exponentially dampened sinusoidal wave, a pattern described 

by specific mathematical expressions. By numerically fitting the decay curve, you can 

simultaneously determine both the frequency and dissipation of the crystal.  

It's important to note that the decay time constant is a crucial factor here, as it depends on 

the rigidity or softness of the mass adsorbed on the crystal surface. For instance, if the 

adsorbed material is rigid, such as a metal film, it couples well with the oscillating quartz. 

As a result, when the driving voltage is turned off, the oscillation takes longer to decay, 

resulting in a longer decay curve. 



On the other hand, if the adsorbed mass is soft or viscoelastic, such as proteins, lipids, or 

other biological molecules, it doesn’t couple as effectively with the quartz. This poor 

coupling leads to faster damping of the crystal oscillation, resulting in a shorter decay 

curve. 

To help visualize this, consider a schematic where the mass contacts the surface. In cases 

where surface contact is minimal, the materials slip over the surface, leading to faster 

damping. Conversely, better surface contact results in slower damping. This schematic 

representation illustrates the principle of QCM-D: as mass adsorbs onto the crystal surface, 

the oscillation frequency decreases. Rigid masses lead to longer decay curves due to 

effective coupling, while viscoelastic masses result in shorter decay curves due to poor 

coupling. These are the fundamental concepts behind understanding how QCM-D works. 

Thank you. 


