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Hello, welcome to module 2, week 1 of our course on Introduction to dynamical models in

biology. In this  module we will  discuss about essential  features or basic concepts that is

required before you start making a model of a biological system. So let us start with some

basic concept, while making a model we have to keep in mind that no model is actually

exactly  same  as  the  reality.  Every  model  you  make  is  actually  simplification  of  real

phenomena, and the second key issue we have to keep in mind is that as every model is a

simplified version of a real process or real  phenomena,  it  cannot answer each and every

question. So every model can only answer a specific set of questions that you ask to the

model.
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Let me explain this with a simple example. Suppose I want to give you the direction from

airport to our institute and I am drawing map on a piece of paper. So obviously I will not

draw each roads and by lanes of the city, I will not show each and every house, shops all

around the road from airport to our institute, what I will do I will only draw the main street

through which you should reach our place and also some important places which you can use

as marker or flag. So the map that I am drawing on a piece of paper is actually a partial

representation of reality and it is almost like a model of a city and the question that it can



answer is, it can only tell you how and through which route you should reach our institute

from the airport. If you ask the map, how to go to the stadium from airport, obviously that

map will not be able to answer that question. 

So while making a mathematical model of a biological phenomena you have to keep in mind

that the model that we make will be a simplified version of the reality or the real phenomena

or the real biological process that you are trying to model and you can only ask a specific set

of  questions  to  it,  so  that  it  will  be  able  to  answer.  So  let  us  look  into  the  steps  in

mathematical modelling particularly dynamical modelling in biological system.
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The first and foremost requirement is that you have to collect information, information about

the process that you want to model. Suppose you want to model the dynamics of signalling

by insulin in our cells, so you have to collect all the information required for modelling it. So

you have to collect the information about the molecules involved in that signal transduction

pathway, you have to know the processes involved so where do you get that information. You

get that information from published literature, from other people’s model, maybe from some

databases or maybe you will  be doing some experiments yourself  to  generate  some data

which can be incorporated into your mathematical model. 

Once you have collected all this information, you try to make a some sort of simplifying

assumptions. You make some assumptions so that your model becomes simplified, we will

discuss  about  this  simplifications  and  assumptions,  when  we  will  discuss  about  specific

mathematical models in the subsequent modules. Once you have made those assumptions, the



next  third  steps  comes,  you  make  graphical  models.  This  is  where  you  make  a  visual

representation of the problem that you want to sort out through mathematical modelling.

 I will discuss about this graphical models in details in couple of slides. Once you have made

the graphical model the fourth step is making the mathematical model that you essentially

want to create. These mathematical models will be based on the information that you have

collected at the beginning, and then based on the assumptions you have made and obviously

the  graphical  model  will  help  you  to  create  those  mathematical  models.  Remember,

mathematical models are nothing but a set of equations that you write and we will discuss in

details how to write down those equations. Last part of mathematical modelling particularly

dynamical modelling in biology would be analysing that model. 
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So let  us start  with graphical  model,  it  is  not essential  for every modelling you create a

graphical model, but usually I advice that you try to create a graphical model first so that you

will not miss any particular property, any particular process or any particular molecules or

any elements  involved in  the  process  while  making the  mathematical  model.  Essentially,

graphical model will be a map based on which you will write down the equations for your

mathematical models and graphical models are not something new.

As a biology student, we all are very accustomed to graphical model, most of your text books

starting from bio-chemistry text books to molecular-biology text book; you will find this type

of graphical model. For example I have shown one model here, a signal transaction path-way

model; this type of model of graphical representation is very common in biology. We have to



remember most of the biological processes are very complex; explaining that by words to

someone, by text to someone sometimes is very difficult. It is always easy if we make a plot

or a diagram or a network map something graphical, which communicate the information

properly  to  the  other  person.  The  same  thing  is  here,  you  make  a  simplified  visual

representation of a complex biological process that will help you to create the mathematical

model. 
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So when you are creating graphical models, we should try to follow some consistent rules for

that, otherwise we may miss some critical issues in the model. First thing, the first critical

point is that you define the boundary and compartment of the system that you are dealing

with. For example, this diagram I have drawn here, suppose I want to simulate a model and

simulate a process, which involves a particular process in a cell. So a cell can be represented

by an external boundary line like this as I have drawn by the bigger circle, inside that I have

shown the nucleus. What I am trying to model here? I want to model a process by which a

molecule A gets transported from outside into the cytoplasm and then from cytoplasm it

enters into the nucleus. So in this case I have to show three different compartments, the first

compartment  is  outside  the  cell,  second  compartment  is  my  cytoplasm  and  the  third

compartment is the nucleus.

 In this particular case I have to show the nucleus separately because the molecule is entering

into the nucleus from cytoplasm. But in some other cases you may not have to show nucleus

as a separate compartment because there is no particular process going on in the nucleus

which you want to model. So in that case you have not to show the nucleus as a separate



compartment, so you have to judiciously identify which are the compartments involved in

your process and what is the boundary of it. The second point is that you have to identify all

the players involved in the process that you want to model. For example in this case, this

example that I have drawn here as a graphical model, the molecule is present initially outside

as I have marked it as AO, means molecule A present outside the cell, it enters I have marked

the same molecule when it is in cytoplasm as AC to remind you that this is the A molecule but

it is present in cytoplasm. 

The same molecule when enters into the nucleus, I have marked I am marking that as AN

representing that it  is A molecule in nucleus. This type of naming the same molecule by

different name when they are in different compartment has a particular advantage because

now I can count and keep a track how many A are present outside the cell because I will

record the number or the values of that as the value for AO. I can also keep a record of how

many AC are there that means how many A molecules are in cytoplasm and I can separately

record how many AN are there inside the nucleus that means how many A are present inside

the nucleus. 

So note the crucial issue here, all the A present outside the cell, inside the cytoplasm and in

the nucleus are same molecules, we have named them separately because they are present in

3 different compartment. Now suppose AN comes back to cytoplasm, these molecules that

comes up to back to cytoplasm will not be marked as new molecule but rather it will be same

as the AC that we have already drawn here. So in a sense what I want to communicate is that,

once you have decided the boundary and the compartment then you start showing all the

players involved in them and mark each of the molecules or elements or component present

in each of these compartments uniquely so that you can keep a track of them.
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Then comes the third point, till now we have represented compartments, we have represented

molecules or elements, a player in the process, now we want to represent molecular events or

processes. In most of the biological problems that we deal with, we will have certain common

type of processes involved and I have only shown some of them in the slide that does not

mean it is an exhausted list, but I want to give you an example how we consistantly draw

certain  molecular  processes.  The  first  one  is  simple  reaction;  A is  becoming  B  so  you

represent that by A to B by a arrow with a arrow head in the product. 

Suppose just like the previous example, A is present outside so I have marked as AO that is

going inside the cytoplasm so it is AC which is just transport process. I can represent the

transport process also by an arrow just shown here, so AO is getting transported to AC in the

cytoplasm. Many chemical reactions in biological system will be reversible reactions the way

I have shown here; A + B making a complex AB and it is reversible that means A + B will

form AB, also AB will break down into A + B. As you know that many reactions in biology

are  enzyme  catalysed.  For  example  see  the  example  given  here;  A  is  becoming

phosphorylated  by  a  Kinase,  so  this  is  my  forward  reaction.  A  is  becoming  AP

phosphorylated, who is controlling that? K, the Kinase is controlling that.

 Notice, how I have written K, I have not written A + K, I am not writing A + K because in

this process K is enzyme and by this process of phosphorylation of A, K enzyme does not get

used up. Remember, your basic bio-chemistry knowledge that a enzyme or a catalyst does not

get used up in an enzymatic reaction, it only controls or modifies the rate of the process. So I



am not showing here it as A + K, rather I am showing that A is becoming AP and that is

controlled by K as represented here by an arrow. 

Similar thing for a phosphatase, once your A has become phosphorylated and becomes AP it

can  become  de-phosphorylated  by  a  phosphatase  enzyme,  again  P  is  representing  here

phosphatase and it is controlling the reverse reaction. So remember what I am doing here, I

am representing the control or the modifier or the controller of the reaction by these two

enzymes K and P, and they are drawn as vertical arrows on the reaction that is controlled by

these individual molecules. 

Now here in this example AP is getting de-phosphorylated to A, so that means P, phosphatase

which is removing this Phosphate group from A is actually working opposite to the Kinase

reaction phosphorylation. So sometimes some people may want to represent it as if P is a

molecule or enzyme which is inhibiting phosphorylation of A. So that can be represented here

as I have shown A to AP that is a normal process by which A gets phosphorylated to AP and P

is inhibiting it. Notice that we do not have an arrow head here, we have a hammer head,

usually these types of hammer head represent inhibition. 

So what I want to represent here, I want to represent that P is inhibiting the phosphorylation

of A to AP. So in brief you use an arrow to represent an activation or reaction or transport

whereas,  you  use  a  hammer  head  to  represent  inhibition.  We are  drawing  these  unique

processes, we will club these unique processes like reaction, reversible reaction, inhibition

control by enzymes to create a larger map of particular processes, let us see that example. 
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Suppose we want to model how each EGF controls cell cycle. We know by cell cycle, cell

initially remains in G1, and then enter in S phase then into G2 phase and M phase where cell

divides. This cell cycle which controls division of cells is activated by molecule signalling

molecule like EGF- epidermal growth factor and we want to model that. And from literature

we know EGF eventually inhibits and activate multiple processes and here in this particular

case we want to model how EGF controls a particular inhibitor P15. P15 is an inhibitor of cell

cycle,  so if  you have to  promote cell  cycle,  you have to  inhibit  that  inhibiter  and EGF-

epidermal growth factor just does that. 

So here I have made a graphical model of that process. What is happening? The first step is

EGF is binding to EGFR the receptor and they make a complex called EGF-EGFR complex

and obviously it is a binding process so it is a reversible one. Once this complex have been

formed these complex trigger multiple processes, we have not shown all these processes.

What happens after the activation of the multiple processes is that AKT which is a Kinase

gets phosphorylated, so rather than showing all the processes involved in this I have just

shown a arrow and here AKT is a substrate which becomes phosphorylated to pAKT, so this

is the process by which AKT is getting phosphorylated to pAKT, whereas this complex EGF-

EGFR is actually controlling this process. Once pAKT is formed, pAKT is the active form of

AKT  and  is  the  Kinase.  It  can  phosphorylate  Foxo  to  pFoxo,  pFoxo  is  nothing  but

phosphorylated form of  Foxo and pFoxo is inactive.

 Interestingly Foxo can control or activate expression of P15, so what is happening here?

EGF is forming EGFR complex that is triggering phosphorylation of AKT to pAKT. Once

pAKT is formed, pAKT is active form so that is a active enzyme, that phosphorylate Foxo to

pFoxo, now pFoxo is not active, so transcription of P15 will decrease. So the whole process

is represented by arrows and reversible arrows. Once I have this graphical model, I will try to

create mathematical equation to represent each of these processes. Just remember one issue

here, this P1 and this P2 are phosphatase, so P1 is controlling de-phosphorylation of pAKT to

AKT, whereas P2 is another phosphatase and it is controlling de-phosphorylation of pFoxo to

Foxo. 

Once  you  have  this  graphical  model  we  will  move  into  making  mathematical  model.

Remember, the thrust of this course is building dynamical models for biological processes or

phenomena. By dynamical model means we want the model processes which are changing

with time, which are time dynamics, so we will use primarily ordinary differential equation.



In ordinary differential equation, variables that we are measuring are changing with time.

Sometime in some dynamical models we have to use partial  differential  equation.  Partial

differential equations are used when you have more than one independent variable. So you

have to use partial differential equation when you have more than one independent variable. 
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For example suppose you want to simulate movement of protein on a cell surface, so with

time the molecules are moving. So time is changing also the position of the molecules are

changing. So if you have some reaction happening on cell surface involving those proteins, so

with time concentration of this molecule will also change, at the same time the position of the

molecules will also change. That means I have to track or keep record of those molecules

with respect to time as well as space, so I cannot use ordinary differential equation in that

case, I have to use partial differential equation. In this course we will focus primarily on

ordinary differential equation based model where time will only be the independent variable.

That means the processes are such we will keep track of changes with respect to time. 
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I believe most of you are quite well acquainted with calculus and in fact, for this course we

require + 2 level school calculus, we will recapitulate some basic concepts of that and I will

also advice you if you have forgotten some basic concept of calculus, please look into the

basic those basic concepts and try to recapitulate those basic concepts. 

By ordinary differential equation what do we mean, ODE ordinary differential equation is

nothing  but  a  derivative  of  a  particular  function.  For  example  here,  I  have  a  function,

x=f (t )=
t 2

2
+C . If you differentiate this one x with respect to t you get  

dx
dt

 and by

simple  formula  of  differentiation  you  get  
dx
dt

=t .  So  this  
dx
dt

=t  is  a  differential

equation and this is ordinary differential equation because here ‘x’ is changing only with

respect to time, ‘x’ is the dependent variable because it is changing with time and it depends

upon time whereas time is independent variable, so we have a dependent variable ‘x’ and we

have  a  independent  variable  ‘t’  and  together  we  have  got  a  ODE  
dx
dt

=t  that  is  the

derivative of the function x=f (t )=
t 2

2
+C .
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Now we will discuss about some basic difference between certain types of ODE. Let us start

with the simplest one the linear ODE, a linear ODE is such that the dependent variable and if

derivates have power one and there is no product of multiplication of its dependent variable

and its derivate. Let us explain with this example, here this is a linear ODE, 
dx
dt

=a .x+b .

Remember, the dependent variable here is ‘x’, its derivate is 
dx
dt

, the power of ‘x’ is one

here and there is no power higher than 1 for  
dx
dt

 also and there is no product of ‘x’ and

dx
dt

. So that is why as these two conditions are met that the dependent variable and its

derivative have power 1 and there is no product of the dependent variable and its derivative,

this particular ODE, ordinary differential equation is a linear ODE. 

I can have slight variation of this linear ODE also, let us see that. See in the previous example

in this one ‘a’ is a constant, whereas in this equation the second one we have 

dx
dt

=a (t ) . x+b (t) . So ‘b’ itself is the function of the dependent variable it depends upon ‘t’

and ‘a’ itself is a dependent variable and depends upon ‘t’ and changes with time. 



But in  this  particular  equation we have only written the derivate  of  ‘x’ and we have no

product of 
dx
dt

 and ‘x’. And the power of ‘x’ is maximum 1 and power of 
dx
dt

 is also 1,

so this equation is also linear ODE. Let us see some non-linear ODE, the concepts will be

clear. The first one,  
dx
dt

=2. x2
+4  ,  so the power of ‘x’ on the dependent variable is 2

greater than 1 so it is non-linear. Look into this one, the second one; x .
dx
dt

=3.x+t , power

of ‘x’ is 1, there is no issues but we have a product of derivate and the dependent variable of

‘x’, so it is a non linear ODE. Sometimes we differentiate between ODE based on its order,

by order we mean the value it is equal to the highest derivate of the equation.
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For example the first one, the first order equation. Here the derivate is  
dx
dt

 whereas the

second one is second order because we have 
d2 x
d t2

, so this is second order derivative. In

most of the problem that we will model in this course, we will deal with first order ODE. We

may have both, linear and non- linear, we will frequently meet situations where number of

dependent variable is more than 1. In all the previous examples, we have only one dependent

variable which is ‘x’, but you may have a situation and that is much more realistic and most

of the biological problem you will have more than one dependent variable. You may have



another dependent variable ‘y’, you may have a third one ‘z’, so ‘x’, ‘y’ and ‘z’ all of them

are dependent variable.
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So they are all dependent on ‘t’ and they are changing with time, so for this type of system we

have to write separate derivative for each of these variables. So I will write one derivate for

‘x’ that mean 
dx
dt

. I will write one separate variable for derivative for ‘y’ that means I will

write 
dy
dt

 and I will also make a separate variable for derivative for ‘z’. And if you see the

example, the first ODE is for  
dx
dt

, this is my first ODE, second ODE is for  
dy
dt

 and

third one is for 
dz
dt

; 3 dependent variable, 3 ODEs. 

Now this system is called a set of ODEs because I have more than one ODE. One interesting

thing here in this set of ODE is that notice that  
dx
dt

 has ‘y’ term whereas 
dy
dt

 has ‘z’

term. That means if I have to know the derivative of 
dx
dt

, I have to know ‘y’ and that is

controlled by these derivative again. Whereas dz dt also has ‘x’ that means I have to know

about ‘x’ to know  
dz
dt

. So ‘x’, ‘y’ and ‘z’ they are changing with time and their values

depend upon each other. So these type of system or set of ODE is called Coupled system of

ODEs. In most of the biological problem we will deal with we will have Coupled system of

ODE. 
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Now let us look into utilities of ODEs in our dynamical model. You have to remember the

ordinary differential equations will be used to represent rate of processes that is the utility of

ODE in our mathematical process. So take an example, suppose I have chemical reaction, A

is getting converted to B and the rate constant for that is k1, whereas it is as it is reversible, B

is also becoming A and the rate constant is k2 and I want to model this one. When I say I want

to model this reversible process essentially I want to write mathematical equation that will

represent the rate of change of B and rate of change of A. Let us see, so the first ODE that I

have written that represents the rate of change of concentration of B with time.

So how I am representing the ODE, I have written  
dB
dt

. Remember this square bracket

represent molar concentration, so change in molar concentration of B with respect to time is

given by  
dB
dt

=k1 . [ A ]−k2 .[B] . So B is formed by the forward reaction, B is converted

back to A by this reverse reaction or backward reaction. So  
dB
dt

 the rate of change of

concentration of B with time ¿k1 . [ A ]−k2 .[B] .

Similarly I have ODE, differential equation representing rate of change of concentration of A

with time. So I have 
dA
dt

=−k1 . [ A ] , remember by this process that is the forward process,

forward reaction, but by this process A is getting used up that is why I have a minus sign



here,  +k2 .[B ]  which is the backward reaction and remember here I have positive sign

because by this process this backward process, A is created. So actually both these ODE are

exactly the same except the signs, the signs are inverted. So these two equations is essentially

my  mathematical  model  for  this  reversible  reaction  and  the  ODEs  written  here  are

representing rate of the processes; rate of formation of B, rate of formation of A.
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When  we  are  creating  mathematical  models  using  ODE,  we  have  to  make  some  basic

assumptions and those two assumptions should always meet otherwise we cannot create ODE

based model. The first criterion is that the system has to be homogenous or mixed. 

Imagine a chemical reaction happening in a flask, A and B is reacting to make C. 

A+B yields
→

C , if A and B are not well dispersed in the flask or not well mixed in the flask,

then somewhere the concentration of A will be more and somewhere the concentration B will

be more, so production of C will be somewhere more and somewhere it will be less. That

means the process will depend upon the position of A and B molecule inside the flask, we do

not want to do that. So we have to assume we have to make sure that A and B are very well

mixed, so that I can imagine that the concentration of A and concentration of B are always

same across the whole flask. 

So this is one basic requirement if you have to make a ODE based model and you have to 

make sure that in reality it is true for your model. Second criteria is that the system has to be 

very large otherwise you cannot use ODE based model. Let me give you an example, suppose



I take a cell of volume say 4×10−15  L. This cell is usually 1 micron in diameter so if you 

calculate the volume it will come in this range. And suppose I have a molecule A, which is 

also a concentration of 10 nanomolar. If you use Avogadro's number and use the volume of

4×10−15 L , 10 nanomolar essentially means 24 molecules. 

So inside a cell of 4×10−15 L  volume, I have 24 molecules. Now suppose by this reaction

A+B yields
→

C , one molecule of A is used up, so that becomes 23 molecules. Now if you

convert this 23 molecule in concentration term it will become 9.58 nanomolar, so from 10

nanomolar  it  becomes  abruptly  9.58  nanomolar.  So  there  is  abrupt  change  in  the

concentration just because one molecule has reacted to create C. 

Now imagine in the same volume, if I have 10 millimolar of A that is equivalent to almost 24

into 10 to the power 6 molecules. Now if one molecule of A react that becomes 23999999 and

this is equivalent to 9.9999958 or similar to that. So what I want to show here is that see if

you have 10 millimolar this is also millimolar, change in one copy of the molecule will cause

a slight change in the concentration. So remember here concentration change is not abrupt, if

you  have  to  model  this  system  using  a  ordinary  differential  equation,  the  variable  the

dependent variable should not change abruptly, this should be changing continuously. 

So for this type of system if the concentration is higher at 10 millimolar than I can easily

assume that these changes are happening smoothly, continuously, but if the concentration is

very low suppose 10 nanomolar, then a simple change of one molecule will cause a abrupt

change in concentration and I cannot use ODE for this type of systems. So the two key issues

here if we remember, is that we have to remember that the system has to be homogenous or

well mixed so that all molecules or all elements can interact with each other freely and the

size of the system, number of molecules, number of people, number of bacteria that is all the

elements involved in the process should be large in number. 
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So let us briefly discuss one important issue in modelling bio-chemical reaction using ODE.

Bio-chemical reaction can be very complex but in sometime we may use the law of mass

action to simplify those processes. We all know law of mass action, if you do not remember

please try to recapitulate it from any bio-chemistry book or physical chemistry book. In a

sense, law of mass action says the rate of reaction is proportional to the product of molar

concentration of reactants raised to power. 

So  take  a  example,  A is  reacting  with  B;  the  small  ‘a’ and small  ‘b’ are  stoichiometric

constant and giving rise to M and N with the rate constant k1. So the rate of reaction should

be proportional to the concentration of each of these reactant A and B raised to the power. So

it is written as rate of reaction ¿k1 .[A ]
a ' . [B]

b ' ; remember both these in square bracket are

molar concentration. And the individual rate, the rate of change of A is given by this, the rate

of change of B is also equal to this but its formation will be different,  
dM
dt

 is rate of

change of M and 
dN
dt

 is the rate of change of N. And remember each of them is divided by

a stoichiometric constant.

And notice the sign here, these are ‘minus’ because there will be decrease in A and there will

be decrease in B whereas, these are ‘plus’ because M is increasing and N is increasing by this

process. So whenever possible we will try to use this type of law of mass action equation but

remember in all cases you cannot do that.
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So let us jot down what we have learned in this module. If you have to create a mathematical

model, first collect all relevant information that is critical, once you have collected all the

information,  try  to  simplify,  keep  the  bare  minimum  essential  thing  then  make  some

assumptions.  And  once  you have  made  the  assumptions  to  simplify  the  model,  create  a

graphical model. In all cases you do not need it, but in many cases it is better to draw a

graphical model because it will help us to write down the mathematical models. 

Once you have done the graphical model, go for mathematical model. A mathematical model

is  nothing but a set  of equations representing the processes. In this course we will  write

ordinary  differential  equation  to  represent  each  of  the  processes  and  remember  a  ODE

represent  rate  of a  particular  process.  Remember, when you have to  make a  ODE based

model, I have certain key assumptions; the first one is system is homogenous that is well

mixed and the system is  very large.  That means the number of molecules involve in the

reaction are large in number. If I am modelling a cellular process involving multiple cells, so

the number of cells will be large in number.

If I am modelling a process of a population of human being, the number of human  being in

that population should be large in number. So these two keys assumptions have to be met and

then only we can use create ODE based dynamic models. Thanks for watching, in the next

modules we will learn about creating simple models.


