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Modeling Molecular Processes - 1

Hello. Welcome to module 4 of third week of our course. In the last lecture, we started discussion

on  modeling  large  molecular  networks  in  similar  processes.  For  suppose  an  example  cell

signaling, cell cycle control, something like that and if you remember, we discussed certain key

issues there. First of all, this large network is made up of large number of molecular processes

which are many a times very difficult to model.

Then we discuss  that  there are  something called network motif  or  sub network made up of

multiple but few in number, molecules and the handful of molecular processes, may be 2, 3, 4 of

them. So each of this network motif has a particular architecture as well as they have particular

types of dynamical properties and functions. For example, we discussed about positive feedback,

negative  feedback,  we  discussed  about  incoherent  feed  forward.  Then  we  said  that  these

processes, these motifs can be broken down again into elementary processes.

Each of the motif actually made up of elementary processes like transcription, translation, ligand

binding to receptor, enzymatic reaction in a single step or something like that. So at the base of

all  the  molecular  processes,  there  are  these  elementary  processes  so  if  I  have  to  create  a

mathematical (fo) model for a large molecular network in controlling certain (bio) biological

process, I have to know how to write down the ordinary differential equation for each of these

elementary processes so that I can club them together to create a larger model. So in this lecture,

we will start discussing about that. 
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So before we jump into, we have to remember that there are certain particular key issues in this.

So  let  us  look  into  the  key  issues  in  mathematical  formulation  for  elementary  molecular

processes. The first and foremost issue is that, we will use ordinary differential equation for our

model. As you remember ordinary differential equation will represent the a differential will be

there,  a  derivative  will  be  there  so  that  will  represent  rate  of  change  of  concentration  of

molecules in this case.

In many case, it may be number, change in, rate of change in number of molecules but usually it

is  concentration of  molecules usually  in  molar  term.  Secondly this  ordinary (eq)  differential

equation will be often based on law of mass action, that you have studied in the school level and

we have discussed earlier in the course also. Many a times, the equation may not be exactly

following the law of mass action but it may be inspired from law of mass action and similar to

that because the processes may be not exactly same where are like elementary reactions where

law of mass action is valid but we can get inspired from law of mass action and create a ordinary

differential equation and I will discuss those issues in time.

Another key issue that we have to remember is that many a times, a process may have multiple

steps but we club them together because of 2 reasons, first obviously it reduces my mathematical

problem, secondly many a times we are not sure about how many such processes are involved



and what they are mechanistically for example, if I talk of transcriptional control of (trans) of a

particular  gene  expression,  so  a  transcription  factor  comes  and  bind  on  the  DNA and  the

promoter region then it triggers formation of a complex with other molecules and then ultimately

the  polymerase comes and start transcribing the mRNA.

Now surely if you look at it  from a mechanistic point of view, this is the multi-step process

involving multiple molecules but most of the time, we are not clear about how many such steps

are  involved  and  what  all  others  molecules  are  there.  You  may  know  only  the  few  key

transcription factor and polymerase involved in the process. So I may club all these processes

and consider only 1 single ODE representing the rate of change of the mRNA concentration and

represent the whole process of transcriptional control by that transcription factor by simply that

ODE. So this type of reduction in the problem is done very frequently and we have to keep that

in mind. 
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So let us start with these key issues in mind, let us start creating ordinary differential equation

based model for simple elementary processes. We will start with ligand binding and it is a very

common thing. It’s very common to have cell surface on which you may have your receptor and

a ligand like a growth factor comes and bind so this receptor may be EGFR, EGF receptor and

your ligand may be EGF so ligand binds to a receptor and forms a receptor ligand complex, LR.



Remember this is a binding process. It’s not actually a chemical reaction because there is no um

molecular bond, covalent bond formation or (cro) or no covalent bond is broken here. Binding of

a ligand with a receptor is through non covalent interaction like hydrogen bonds, electrostatic

interaction or something like that so it is actually a process rather than a chemical reaction.

And it is not, does not involve any covalent bond formation, this process is reversible so you will

have ligand bonding through the receptor forming the complex and in the next moment, it will

break down again to give rise to the free ligand and free receptor. So it is the reversible, the way I

have shown here by double arrow and the rate constant for the forward one is suppose K1 and

the backward reaction or the reverse reaction, the rate constant is K2.

So let us write down what will  be the forward rate. So using the law of mass action,  I can

consider, see remember stoichiometry here is 1 and 1 forming 1 molecule of the complex so

using the (rate) or law of mass action, I can write forward rate is equal to K1, that is the rate

constant into L∗R . There is the concentration because that’s why I have used square brackets

and I will advise you to use that and these concentrations are usually in molar unit and remember

L and R, these are free molecules so these are concentration of free ligand and free receptor.

Similarly using the same law of mass action, I can write the reverse rate will be K2, K2 is the

rate constant for the reverse reaction and again in square bracket, LR is the concentration of the

complex formed. So now these are forward and reverse rates. Using this I can write down the

ODE representing change in concentration of the complex LR so that is  
d [ L−R ]

dt
=¿  first

term, this is coming this forward reaction, that is  K 1∗L∗R , this is how it is formed and

minus the backward (rea) reaction because reverse reaction because by this process, this reverse

reaction, the concentration of the complex is decreasing, that’s why I have a minus sign here so

that is as I know is K 2∗LR .

Now what will be a differential equation for rate of change of free R so that will be 
d [ R ]
dt

so

obviously the free R is getting reduced by the forward reaction, that’s why we have a minus sign

here and that is −K 1∗[L ]∗[R ]+K 2∗[L−R ]  because when [L−R]  is breaking down it is

forming free R so it is the positive sign here so you can see 2 are (equi) equal except there is



(mine)  multiplication by a  negative sign actually. So this  has  become negative and this  has

become positive, as a stoichiometry of this reaction, I have shown here is 1 is to 1, 1 ligand is

binding to 1 receptor so the ODE for the ligand will be also exactly same as that of the receptor.

So  
d [ L ]
dt

 is representing the rate of change of concentration of free ligand and that will be

same as that for the free receptor that is −K 1∗[L ]∗[R]  because by forward reaction, the free

L is  getting  (exe)  used  up  +K 2∗[L−R ] ,  the  concentration  of  complex  because  by  this

reverse process, free ligand is formed. So what I have done, I have written down the ODE, 3

ODE’s for for the free ligand and free receptor and also for the complex [L-R]. 
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So now let us look into certain particular issue which is typical to uh ligand receptor binding. Let

us look into the steady state of the system so at steady state if you remember, the rate of the

process should become zero so I can write 
d [ R ]
dt

=0 so if DLRDT by the ordinary differential

equation that’s just I have written in the last slide, I can write K 1∗[ L ]∗[ R ]−K 2∗[L−R ]=0

because that is equal to 
d [ L−R ]

dt
 so if this is equal to 0, I can rearrange these terms and I can

write K 1∗[ L ]∗[ R ]=K 2∗[L−R] , this is the complex concentration of the complex.



So now take out this constant term in one side and the variable term on the other side so what I

get,  I  get  
K 1
K 2

=[ L−R ]/ [ L ] [ R ] .  This  ratio  of  K1 and K2 is  called equilibrium constant  in

biological literature. Remember I started by saying I am considering a steady state, I have not

said  equilibrium  but  in  literature,  this  steady  state  is  actually  called  equilibrium,  if  you

remember, we have discussed this  issue earlier  and usually  we try to  avoid use equilibrium

because equilibrium may mean thermodynamic equilibrium also and that  may sometimes be

confusing but in this case, they are same and equivalent.

So I have K equilibrium which is a ratio of K1 and K2 and that is equal to [L-R] that is a

concentration of (co) complex divided by concentration of free receptor and free ligand. Now in

biological, biology literature, this K equilibrium is actually is not discussed or measured. Usually

biologist  measure  dissociation constant  and the affinity  of  a  ligand is  described in  terms of

dissociation constant. If you look into textbook, you will find, uh affinity of a antigen for a for a

antibody for a antigen is (co) discussed in terms of its dissociation constant.

So what is a dissociation constant, let us look into it. The dissociation constant K d  is nothing

but inverse of K eq . 1/K eq  so if K eq=
K 1
K 2

 then K d  will be 
K 2
K 1

 and as we know

here, K eq  is ratio of complex of the complex formed between receptor and ligand divided by

that concentration of free ligand and free receptor then K d  is [L][R], L is the free ligand, R is

the concentration of the free receptor divided by the concentration of the complex. So what we

have  done,  discussed  till  now is  how to  write  down the  ODE for  ligand,  receptor  and  the

complex (forma) complex formed by binding of the ligand and receptor. 
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So suppose now I want to simulate this system numerically obviously ultimately you can use

Jsim to stimulate this one so I have ODE’s. One representing the rate of change free R, the other

representing rate of change of free L, the other one is for [L-R]. And we are interested mostly in

how much complex is formed in particular time point so I have to create a model, mathematical

model for that, I will do some basic corrections here. For example, to reduce this system further,

what I can do, I can assume that a total ligand and total receptor remain constant. For example, I

will consider that total concentration of ligand is LT and total concentration of reception is RT

and they are all constant and that’s quite a valid assumption because when you do a antigen and

(bi) antibody binding assay, actually you have a fixed amount of antigen which is allowed to

bind with the fixed amount of antibodies.

So so total amount of antigen and total (anti) (concen) uh concentration of antibody is fixed.

When you have a cells growing in a plate and you give suppose insulin from outside and insulin

will go and bind to the insulin receptor present on cells so for a short duration of time, you can

easily consider that the total number of receptor and the total amount of insulin given remain

constant but you have to remember, with time, concentration of insulin will also get degraded

because it is degrading. Receptors will also (ge) will also get processed and degraded so number

of receptor will also change but for a short period of time, I can consider the number of total



ligand molecules and the number of total receptor molecules remain same so their concentration

is always constant for that period of time. 

So if I have assumed that these 2 things are constant then I can represent free R and free L in

terms of these equations, (math) algebraic equation given here. So concentration of free L will be

equal to nothing but total concentration of the ligand minus the concentration of the complex

because  that  complex  has  sequestered  some  amount  of  ligand  so  the  concentration  of  the

complex should be deducted from the total concentration of the (liga) ligand, that will give me

free (co) concentration of free ligand. Similarly concentration of free receptor should be equal to

concentration of the total receptor, all receptor minus concentration of the complex because that

complex also has receptor in it, so once you have these conservation rules then what I can do.

See here in this case, L can be (re) replaced by this thing,  
L

[¿ ¿T ]−[L−R]
¿

.  
L

[¿¿T ]
¿

 is a

constant so I don’t require a differential equation for 
L

[¿¿T ]
¿

. R which is, for which you have a

differential equation here as d
[ R ]
dt

, R can be replaced by 
R

[¿ ¿T ]−[L−R]
¿

. Again 
R

[¿ ¿T ]
¿

is constant so I don’t require a ordinary differential equation for  
R

[¿ ¿T ]
¿

 so I am left with 1

dependant  variable  that  is  [L−R] ,  that  is  a  concentration  of  ligand.  That  means  I  don’t

require  these  ordinary  differential  equations  representing  the  rate  of  change  of  (recept)  free

receptor, I don’t require the ordinary differential equation for L because I have considered L in

terms  of  a  constant  that  is  
L

[¿¿T ]
¿

.   and  [L−R] .  What  I  require  is  only  the  ordinary

differential equation for  [L−R]  because at  any moment, if I can calculate the amount of

[L−R]  then I can easily calculate amount of free ligand and free receptor by these 2 algebraic

relationship.



So from 3 ODE, I have reduced to only 1 ODE so let us see how far I can change this only 1

ODE that I have to deal with so I am left with only 1 ODE that is representing the rate of change

in concentration of the complex [L−R]   so 
d [ L−R ]

dt
=K 1∗[L ]∗[R ]−K 2∗[L−R]   . Now

L is free ligand. R is also free (li) receptor so if I use these algebraic relation, I can replace these

L and R by these algebraic relations. That’s what I have done. So the equation after replacement

of  free L and R will  be  
L

[¿¿T ]−[L−R]
K 1∗¿

 ,  this  is  nothing but  [R ]∗RT−[L−R ] ,  this  is

nothing but [R ]−K 2∗[L−R]    as it is. 

So what I have done, I have started with 3 ODE, I have assumed a conservation of both receptor

and ligand, that helped to reduce number of ODE from 3 to 1 which is a non redundant ODE. So

now I want to simulate it and I will discuss now the code of stimulating this in Jsim and I will

advise you to try this in Jsim. Yourself and you can follow the code exactly here. 
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So the code is given here.  If you remember it  should start with the tag math so it’s a math

receptor model, you can put any other name there in place of receptor model and you have to

decide the initial  time point that is 0, maximum time point I have taken 3600 because I am



configuring the time scale may be in second so 3600 so 60∗60  so there is 1 hour. Then I have

only 1 ODE so I have only 1 dependant variable that is LR concentration of free (lai) uh (comP)

concentration of the complex form between L and R and that is a dependant variable on t ,

that’s why LR (t). 

Then you have to define the parameters, so the first parameter is K1 that is the forward rate

constant,  it  is  104  and  I  have  annotated  saying  that  unit  is  
1

molar . sec
.  The  second

parameter is K2, that is I have taken as 10−5 . It is, unit is actually 1/sec . Remember these

units  are  written  in  annotation,  that  means  Jsim  will  not  consider  this  unit  so  the  whole

calculation  is  based  on consideration  that  everything  is  unitless  but  I  have  written  them in

annotation so that we can remember what is the unit we are using. 

So if you look into it, the K d  in this particular ligand receptor case is nothing but 
K 2
K 1

, it is

nothing but 1
10−5

104 . So this is  10−9 molar so a nanomolar affinity for ligand and receptor

are considered. I have considered micromolar considered micromolar concentration for ligand

and receptor both so LT is the total  amount of ligand. Remember we are assuming the total

amount of ligand remain constant so that’s why LT ligand total is equal to 10−6 . In annotation,

I have written down that is molar unit so it is actually micromolar, 10−6  whereas RT is a total

concentration of receptor so that also is considered as 10−6 molar, unit is written in annotation,

unit will not be considered during calculation. 

The initial  value for LR is obviously 0 because at  the time equal to 0, there is  no complex

formation so LR=0 . Then comes writing the ODE, following the equation that we discussed

just now in the last slide, LR: T which means essentially 
d LR
dt

 is equal to so this is nothing

but 
¿−LR

d LR
dt

=K 1∗¿
) so this is nothing but L∗(RT−LR)  that is nothing but R−K 2∗LR

so this is the reverse, last part is the reverse reaction. So that’s all. So just 1 ODE and I have all



this parameter K1 and K2 and LT and RT, these are the constant term and I can I am ready to

simulate so I will advise you to write down this code Jsim and simulate it. 
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I have already simulated it and you can see the result here so here, what I have plotted, I have

plotted time, I have written in second scale and obviously on the vertical axis, you have the

concentration of LR, the complex in molar unit. As we can see, with increase in time, it reaches,

slowly increases (sa) sharply and then reaches the saturation. This is a typical ligand receptor

binding curve that you get repeatedly in most of the ligand receptor system and interestingly you

can see here by much before 1 hour, that is 3600 seconds, actually the system has reached a

steady state or equilibrium so suppose you are doing an experiment, using real experiment using

an antigen antibody interaction involving the affinity of nanomolar then actually the reaction is

over.

The complex formation is over. The steady state is reached by 1 hour and you can then further

process the experiment. I can also plot the concentration of free ligand like this because free

ligand is nothing, concentration of free ligand is nothing but [L]T t−[LR ]  so that I can do in

case of Jsim simulation, Jsim will give me the LR concentration that’s what plotted here so I can

plot L as free L is nothing but [L]T  there is the total concentration which I activate constant

minus  LR.  Right?  That  is  the  concentration  of  the  complex  so  I  have  taken  [L]T  as



10−6
−LR  at any time point so you can plot that and if you plot L versus time, L versus time,

you will see just reverse of this complex plot, I will get a something similar to like this. You can

try this one. 
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So what I have discussed till now is actually binding of a ligand to a receptor. For example,

insulin going and binding the insulin receptor or suppose EGF going to bind EGFR or something

like that but many a times, actually receptor can have 2 hands.  So I  receptor will  be called

bivalent, for example antibody. If you remember, the antibody is a Y shaped molecule so you

have identical 2 hands in a antibody and the same (antig) one antigen molecule can bind here and

another molecule can be bind here so 2 ligands can bind to 1 receptor. You can have opposite

where the ligand has 2 hands and it goes and bind to a 1 receptor and another receptor side by

side, so this type of complex situation complicated situation can arise so let us look 1 example

where I have monovalent ligand but the receptor is bi-valent.

So what we are doing here is actually I have this type of thing where 1 ligand can bind here,

other ligand can bind here so these circles are ligand, R is the Y shifting is the receptor. So I can

break down this whole process into 2 steps. 1 ligand binding to receptor to form ligand receptor

complex so this  can be like this,  ligand is  bound here or it  can be like this  two (configura)



configuration are possible right. So both of them are actually LR, both of them are complex

where there is only 1 molecule of ligand and 1 molecule of receptor. 

Then once they are formed then the second ligand can come and give rise to the final complex

where the both the hands of the receptor are catching the binding the ligand. So that is L binding

to [L-R] to give rise to [L-R-L]. All these binding processes are noncovalent interactions. So they

all are reversible, that’s what I have shown here and here and what I have done here, to for

simplify the process, I have considered that the forward rate constant for this reaction, that is the

first ligand binding is K1 and it is same for the second ligand binding also.

Here also K1. So similarly, I have simplified the whole thing by considering that [L-R], the

reverse  rate  constant  from [L-R]  to  L and R is  K2 and the  same rate  constant  is  there  for

dissociation of [L-R-L] so this K2, this K2, this K1, this K1 are same so this uh in reality, they

may be different but for simplification and discussion here in the class, I have considered them as

same thing. So now if I have to make, write down the ODE’s, what I will do, so obviously, I can

write a ODE for L, I can write down a ODE for R. I should write down ODE for [L-R] that is 1

ligand, 1 receptor complex and also I have to write down ODE for [L-R-L], the final complex so

5 ODE (shou) sorry, 4 ODE’s should be there. 

Now if you remember in the last example, I have considered, conservation of L, total ligand and

total receptor, similar conservation can be assumed here and therefore, we are left with only 1

variable [L-R] and the other uh dependant variable [L-R-L]. So let us look into the ordinary

differential  equation  that  will  represent  rate  of  change  of  concentration  of  [L-R],  the  first

complex where 1 ligand is bound do 1 receptor. That is given here. That would be equal to the

rate of formation of this complex that is K 1∗[ L ]∗[R] , L is concentration of free ligand, R is

concentration of free receptor and it is multiplied with K1.

Now see, I have multiplied this whole thing with K2 because as you have seen here, ligand can

come and bind here also to give a product and it can bind to the other arm also, both of them are

actually nothing but [L-R] for us mathematically so that means 2 processes can give rise to [L-R]



so that means I have a double variant so I have 

L
¿
R

2∗K 1∗¿

. Minus K2LR is representing the

reversal of breaking down of [L-R]  to L and R. So that’s why the minus sign is there. Now

remember, [L-R]  is also getting used up in formation of the second complex where another

ligand come and binds so that rate is represented by K1*[L], that is the concentration of free

ligand into concentration of the first complex [L-R].

So this process, this process is actually using of [L-R], that’s why I have a minus sign here plus

this [L-R-L]  is breaking down. Now, [L-R-L]  is nothing but like this. Now it can breakdown

where this one will break first or it can also breakdown from here so I have 2 processes by which

I  can  get  back  [L-R]   from  [L-R-L]   .  That’s  why  I  have  2  here  so  it  will  be

2∗K 2∗[L−R−L]    that is the concentration of the second and final complex. Now look into

the ODE for the second complex  
d [ L−R−L ]

dt
=K 1∗[L ]∗[L−R] .  That is the forward rate,

this one by which the [L-R-L]  is formed minus again 2∗K 2∗[L−R−L]    as explained just

now because I have 2 arms, both are occupied by the ligand, first this ligand can break and also

at the same time, in another molecule, this ligand can break so there are 2 paths by which I can

get back back to 1 ligand state so that’s why I have 2 here.

So this example shows that when you are writing down the ODEs, you have to be very careful

about stoichiometry, at  the same time, you have to look for all  the processes involved here.

Although this graphical representation show both reverse and forward processes, it is not clear

directly from this diagram that the complex can be formed, [L-R]   complex can be formed by 2

way as well as [L-R-L]   can be broken down in 2 way. That you have to imagine and incorporate

into your ODE. So if I have written down this ODE and if I assume that total amount of ligand

and  total  amount  of  receptor  remain  constant,  I  can  have  some  conservation  rules  that

algebraically represented here. That is total amount of receptor in the system is equal to free R

(con) concentration, there is a concentration of free receptor plus concentration of free ligand

plus the concentration of the second complex that is [L-R-L]  .



So I can represent this R here by this relationship. So I don’t require a separate ODE for R

because R=RT−¿  this whole thing. Similarly I am considering total ligand LT is equal to

constant which is nothing but summation of free ligand plus LR that is the first complex because

it has 1 copy of the ligand plus 2* [L-R-m], remember [L-R-m] is the final complex where 2

ligands are bound, that means 1 complex molecule will have ligand so the total concentration of

ligand consumed by this is nothing but 2 into concentration of this complex that is 2 into [L-R-

L].

So that is the conservation rule so I can replace this L anywhere else using L will be equal to

concentration of L will be equal to nothing but LT−[L−R]−2∗[L−R−L] So I don’t require a

separate ODE for L so I have only ODE for [L-R]and [L-R-L], these 2 are the dependant variable

in my system. All other things are represented in terms of these 2 dependant variables and now I

can again use Jsim to simulate it considering certain numerical value for K1, K2 and rT  and

LT . Till now what I have discussed the about uh only about the ligand receptor interaction and

obviously this is the elementary process as we have discussed earlier. Another elementary uh

process is process is formation of a molecule and breakdown of a molecule. 

If you remember all these molecular processes are actually nothing but molecules interacting

with each other involving reaction and physical processes. So molecules are produced and at the

same time, if a molecule is produced, after some time, it will also get degraded, distracted so

production  of  molecules  and  their  degradation  are  elementary  processes.  Protein  will  be

produced by translation and protein will be degraded, mRNA will be produced by transcription

and mRNA will get degraded. Lipids will be produced by metabolic pathways and eventually,

lipids will be broken down so production and degradation are basic elementary processes. That

happens in most of the large network that we will deal with.

Now how should we write down ODE representing production of a molecule or breakdown of

molecule or  degradation of  a  molecule.  Remember  production of  a  molecule  can  be  a  very

complicated process. For example I have discussed few minutes back about production of uh

(sorr) the production transcription of a molecule so in a transcription of mRNA in is multiple

steps are involved are there. For example, few transcription factor has to come first bind to the



promoter  then  a  large  complex  is  formed.  That  complex  incorporate  the  polymerase  then

polymerase start transcribing. 

So a transcription is a multi step process, translation is a multi step process and if you remember,

we sometimes club them down into 1 single step and write a simple ODE for that so it is many a

times advantageous that we don’t look into each of this mechanistic complexity and reduce the

whole process into a simple 1 step process. So that type of (as) thing I will try to discuss today

for production and degradation. Although the production of the molecule, there is a protein or a

lipid or a mRNA or DNA is multi step, I will consider them a single step simple process for

degradation and production. Remember we can do this assumption for make this simplification

as long as there is  no compulsion on us that  we have to  assume a mechanistic  complicated

process here.

There will be cases where we have to explicitly understand how transcription is controlled by a

transcription factor, for modeling those processes, we may have to write a complicated ODE but

for other, we will always try to write down a simplest ODE possible. 



(Refer Slide Time: 35:16) 

So let us look into the simplest one. Constitutive production of a molecule. Say for a protein. For

constitutive production, we mean the cell is producing that molecule without any external queue

or any (in) external induction so it  is continuously produced. So there are certain molecules

which are (conti)  constitutively produced in cell  because they are required continuously. For

example, enzymes involved in your glucose metabolism. As long as the cell has to survive, it has

to metabolize sugar so those enzymes required for the sugar metabolism (ha) have to be in a high

concentration in the cell so they are produced almost constitutively continuously so that’s what I

have shown that X is produced and there is nothing. 

It is it may be coming from transcription, translation, that’s why I have not written anything here,

nothing is here so X is produced so what can be the simplest ODE representing this rate of

change of X, (conc) concentration of X in this case. The simplest can be like this. 
d X
dt

 that is

rate of change of concentration of X is equal to a particular rate constant, KS, K synthesis. As I

said,  I  can  (as)  put  a  complicated  ODE  here  representing  the  mechanistic  details  of  the

mechanism by which X is produced but as long as I do not have compulsion to do that, I will try

to put this type of, use this type of simplest ODEs. Now suppose the production of X is not



constitutive but a signal S come and tell the cell that you have to produce X so it a inducing

thing. 

For example, you may be growing bacteria having plasmid carrying a gene of interest under the

control of Lac Operon you may add ITPG from outside to induce the Lac Operon for production

of the gene, gene product. So in this case, IPTG is the signal given to bacteria that it has to

produce the gene product so I have represented graphically here. S is the signal that comes and it

tells the cell to produce X so what again be the simplest way to representing the dynamics here,

it will be 
dX
dt

 that is the rate of change of X concentration is = KS * S because when S = 0,

there is no production so is it is simple multiplication of KS, that is the rate constant for synthesis

into S, that is the signal intensity.

Here signal intensity can be nanomolar molar term or in other unit, accordingly that you have to

change the unit of KS also. If your molecule is produced, it will get degraded, that’s obvious so

again degradation can be controlled by many mechanism. For example protein degradation are

many a times controlled by complicated mechanism but we will not consider that for here but

unless  and  until  we  have  a  compulsion  to  consider,  it’s  always  wiser  to  consider  a  simple

degradation. 

Just the way I have shown here, X is getting degraded and the simplest ODE I can think of using

the law of mass action is a first order ODE where 
dX
dt

=−K d∗X  will be equal to minus KD

into X, KD is the rate constant for the degradation, X is the concentration of the molecule present

at  time and minus sign I  have given because by this  degradation,  the concentration of X is

decreasing so that’s why you have minus sign here. That you have to be very particular about.

Now degradation can be also induced. Sometimes a a signal generated within the cell or from

outside can go and tell the cell that you have to degrade a particular molecule so in that case,

what type of ODE I will write? 

Taking the  Q from the  induced production  I  can write  in  this  case  for  induced degradation

dX
dt

=−K d∗S∗[X ]  So Kd is the rate constant for the degradation, S is the signal for (deg) uh



degradation, X is the in a square bracket is the concentration of X free uh at that time so minus

sign has been given again because by this process the concentration of X is decreasing. Now note

that when S = 0, when S = 0, this rate will be 0 obviously because we have assumed that S is

inducing the degradation of X in absence of S, there is no degradation of X.

So now let us club this degradation and production together. So suppose I have a small process

where X is induced, production of X is induced by signal S and it gets constitutively degraded so

what  will  be  my  ODE  for  X  so  combining  this  equation  and  this  equation,  I  can  write,

dX
dt

=K s∗S−Kd∗X , that is a degradation term.

(Refer Slide Time: 40:27) 

So let now jot down what we have discussed in this module. We have discussed that we want to

create  ODE  based  ODEs  for  elementary  processes  that  will  represent  rate  of  change  of

concentration of molecules involving this elementary processes. Many of ODEs will be based on

law of mass action.  Many a cases, actually they are not elementary reaction but still  we get

inspired by law of mass action and try to use similar type of equations. Another interesting and

crucial issue that we have to keep in mind that many a times, multiple steps are involved in the

process but we club them together and we consider them a single step. 



Now 1 thing I will always advise to you is that try to keep the ordinary differential equation that

you like to represent a process as simple as possible, make assumptions, look into literature,

discuss with the biologist who is doing the experiment to know what is the bare minimum thing

that I have to include and try to discard the other. Unless and until you have a requirement to

make it complicated, do not write a complicated ODE. So it is better to keep ODEs as simple as

possible. Whenever possible, we will try to use conservation rule. 

The way we have did in we have done in case of ligand receptor. I have considered total amount

of ligand and total amount of receptor as constant throughout the process and in many case, in

other biological processes also, you can assume this type of conservation where the total amount

of particular type of molecule does not change with time. So if you can configure conservation,

number of ordinary differential equation in your model will reduce so reduce number of variable

by considering conservation. We have discussed ligand receptor binding in system and we have

written down ODE using law of mass action, we have tried to reduce the number of ODEs there

and ultimately I have discussed about the Jsim model for this particular system.

Please  try  to  simulate  that  using  Jsim,  using  the  code,  if  you  require,  you  can  change  the

parameter value or the model code. One important thing that we discussed while discussing a

bivalent receptor and that everybody should keep in mind is that many a times, the graphical

representation hides the stoichiometry or the multiple way a particular process so when you are

writing down the ODE keep in mind the stoichiometry involved in these processes, stoichiometry

of the molecules involved in the processes and the number of processes which are there and

giving  rise  to  or  removing  a  particular  molecule.  That’s  all  for  this  video.  Thank  you  for

watching.


