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Welcome to MOOC course on Introduction to Proteogenomics. In today’s lecture we are
going to hear about a case study relevant for cancer proteogenomics. We are going to hear
from Mr. Deeptarup Biswas about how cancer proteogenomics research could be helpful to
provide some novel insights from the literature reviews some published datasets. His research
is called in proteomics lab at IIT Bombay and he will talk about how proteogenomics
approaches can help in resolving various issues of diagnosing various grades of cancer or
looking at different subtypes of cancer, which is very difficult to understand without having a

very good molecular base understanding.

He will also explain how proteomics and genomics data correlation can provide a much
broader and meaningful picture of progression of cancer. He will try to also provide you the
workflows of some of the case studies published in the areas of cancer proteogenomics. So,

let me welcome Deeptarup for his today’s lecture.

Welcome participants, till now you have learned a lot about proteomics and genomics, how to
design an experiment, how to what are the condition that to be taken into account, but
whether to consider proteomics or whether to consider genomics. Already a number of
debates are going on and you have also heard that whether proteomics is powerful or
genomics. To support this hypothesis of proteogenomics I want to give you a glimpse of how
the powerful tool of proteogenomic can be, you can be used in cancer diagnosis and

treatment.

After the completion of human genome project and introduction of genomics into the disease
pathobiology, there was a hope that genomics can lead to can bring revolutionary change in

the cancer diagnosis and can lead to a path to personalized medicine.
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Success of Personalized Medicine

Many patients do not respond to the predicted therapies based on
o the genomic profiles of their tumours
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But the success of personalized medicine with the help of genomics was not that much
revolutionary. From overall cohort of patients only few patients were respond to the
predictive therapy based on the genomic profile. There were some loopholes that were still

present after the successful outcome of genomics.
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So, recent paper published from Zhang Group there is a clinical potential of mass

spectrometry based proteomics. So, in this paper he has talked how the clinical potential of



the mass spectrometry based proteogenomics can be introduced. The personalized medicine

with the help of genomics was not that much successful due to a number of reasons.

(Refer Slide Time: 03:23)

Success of Personalized Medicine
Molecularly
* Alternative targeted
splcng | CENcer drugs
+ Chromatin and +RNA
epigenetic processing * Protein stability
aberrations *miRNA + Post-translational
DNA * Transcription + Translation modifications
Cancer s Cancer
e mRNA Protein phenotype
mutations '
L
. ( ¢ — e
oy 1
f sl -
MUOC-NPTEL IIT Bombay

If we can see that with the help of genomics solving the problem like cancer is like jumping
from one hurdle to the last hurdle and we are not taking into account a number of conditions

and parameters that is coming in between the two hurdles.

So, we are getting a complete profile of the genomics, different types of mutations, different
aberrations but in the same hand we are missing different epigenetic aberrations,
transcriptional, regulations, alternative splicings and protein proteomics profiling. So, all this
important information need to be taken need to be taken into account to understand the
pathobiology of the cancer and then only this can this tool can be used for the diagnosis and
treatment. So, the message from this slide is that all this information starting from DNA to
mRNA to protein need to be considered to reach to the goal and to diagnose and to bring a

revolutionary change in the cancer and cancer diagnosis and treatment.

So, before I move how proteogenomics is playing a role in cancer diagnosis, I want to give a

brief account of what is cancer driver genes.
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Top driver genes identified in GBM

A cancer driver gene is defined as one whose mutations increase net
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So, cancer driver gene is defined as one whose mutation increase net cell growth, the total
number of driver gene is unknown, but we assume that is considerably less than 19000 which
has been given by Tokheima et. al in 2016. So, from driver DV repository you can see like
the top driver genes includes TP53, EGFR, PTEN, and how this hallmark driver genes are

important in the glioblastoma in the glioblastoma tumorigenesis we all know.
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So, here is the mutation profiles of those driver genes where the top driver genes are PTEN,

TP53, EGFR and we can see the mutational profile in terms of samples which is in the x axis.
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So, if I if we choose one of the top three cancer driver genes that may be EGFR and we can
understand that what is the expression of this EGFR gene in glioblastoma. So, we found that
the expression of the EGFR gene in glioblastoma is pretty high. So, one of the top three
cancer driver gene in glioblastoma is EGFR and if we want to check the expression of EGFR
in terms of in taking into account the other cancer we found that GBM is having the most in
case of GBM EGFR is highly is overexpressed in both primary solid tumor and recurrent

solid tumor.

So, till now the genomics has given a lot of information about glioblastoma, but if we taken
into account the correlation between the exon and protein we will found that the driver score

related to protein and exon is also giving some new information.
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This panel is to display that driver score distribution of exon and protein position which help

researchers quickly find the region of the gene with abundant deleterious mutations.
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So, now we understand that we are look, we did not consider a lot of things between the

genomics and the precision medicine that not all mutated genes are stably expressed as
proteins and genes that are expressed, can be post translationally modified. Therefore
precision medicine that relies solely on genomic based assay will exclude a lot of potentially

relevant information like miRNA, microRNA.
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So, to support the previous statements and to give you a complete glimpse how the powerful

tool of proteogenomics can be can be very helpful to solve different kinds of cancer.
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So, in this study they have taken 169 ovarian tumor samples from TCGA meta data and they
have they tried to analyze rather correlate the genomics, transcriptomics, proteomics, and

phosphoproteomics.
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So, before going into the paper let me give a glimpse of this kind of mutation and how this

mutation can be very can lead to lethality of a cell. So, the schematic I have to so the diagram
has been taken from Walsh et. al, 2015, where we can see the functioning of PARP enzyme
and how PARP enzyme is helping in DNA DNA repair of single strand DNA break. If PARP
enzyme is inhibited so there is no repair takes place and which helps which rather lead to
collapse replication fork and the BRCA deficiency do not allow homologous recombination

to happen.

In C the deficiency in the HR, homologous recombination and base excision repair together
lead to synthetic lethality than the correlation. So, the sample information tumors were
selected by examining the associated TCGA Meta data to select tumors. On the basis of
putative homologous recombination deficiency presence of germline or somatic BRCA1 or
BRCA2 mutations, BRCA1 promoter methylation or homozygous deletion of PTEN were

taken.
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So, this clustering will is giving us the complete landscape of what are the different pathways
are involved and how protein and mRNA are playing role and what is the correlation between

the protein and mRNA in this pathway.

So, till now we understand that the protein and mRNA correlation is there and how this
protein and mRNA correlation is also playing a role in terms of biological pathway, but now
they also tried to understand that how CNA that is copy number aberration in each tumor is

playing a role with protein and mRNA correlation.
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Proteomic Analysis of CNA Effects
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The blue one are the complete profile of the data generated where is the black one is the data
that is present that is or that is already present in the database. So, from this CNA mRNA

correlation and CNA protein correlation.
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They found that two important two important protein that is CHD4 and CHDS are having the
maximum number of CNA CNAs. So, when the further studied they found that these two

proteins are involved in chromatic organization.

So, to understand the complete biological pathway they take they took phosphopeptides,

proteins, transcripts, and CNA.
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And they found that these are the top pathways that is playing a role in this cancer
pathobiology. So, out of which PDGFR beta which we all know is a angiogenic receptor is
also showing and important correlation in terms of biological pathway. To understand the
complete landscape of the cancer pathobiology they incorporated mRNA, protein, and
phosphopeptide data into one picture and where we can we see that the PDGFR beta is up
regulated in both mRNA and protein.
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So, this up regulation of the PDGFR beta is not only giving a clue to our active angiogenesis,
but also showing that how what are the different downstream regulatory factors that are also

up regulating or down regulating in terms of mRNA and protein.

So, further they tried to do a DDN analysis. So, DDN analysis is differentially dependency

network analysis where the proteins curated from the literature and from the ¢ Bio portal.
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So, ¢ Bio portal helps you to get the data out from the TCGA and they identified a sub

network of 30 protein that displayed co-expression pattern differentiating from HRD from
non-HRD patient and from these DDN analysis they found that histone acetylation or
deacetylation proteins are coming are playing are coming into the clusters and which includes
HDAC 1, RBBP4, RBBP7, EP300 and HUSI. So, from the last part of the study they
understand that histone acetylation and deacetylation are playing an important role. So, this

clue was enough to give them give an idea that acetylated peptides need to be studies.
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So, from the global proteome data they prepare acetylated peptide database, search strategy
and identify and quantify the acetylated peptides. From there they identified around 399
acetylated peptides and 15 acetylated significant peptide between HRD and non-HRD. So, as
so from this 15 acetylated significant peptide they found that K12 and K16 whether that is
acetylation of lysine in 12 and 16 were found. So, they validated the K12 and K16 using
synthetic peptide and targeted analysis using SWATH MS.

(Refer Slide Time: 13:35)

Validation of K12 and K16
K12 and K16 was verified using synthetic peptides and targeted
analysis using SWATH MS
Global iTRAQ data SWATH data
T * pvalue=0028 & s — pvalue=0039
g . - ¢ 8 ‘
gt 3o ;
] g & '
8. L S 0cg !
27| | L3 e
§s2 ;l —
8y o8¢
i i
B g " : e
HRD negative  HRD positive HRD negative  HRD positive
HRD status HRD status
-

ME0CNPTEL IIT Bombay




In the same thing they found that the K12 in terms of iTRAQ data were upregulated in HRD
negative and same thing has been validated in SWATH and they found the same up
regulation of same up regulation in HRD negative. So, they went back and further such in the
literature and they found that the acetylation of the H4 has previously reported to be involved
in the choice of DNA double brake double strand break DSB repair pathway.
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The relationship is regulated partially by HDACI a protein also identified in DDN analysis.
The potential role of HDAC in modulating the choice of DSB repair pathway has been
identified.
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Conclusion
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So, the conclusion from the study we understand that the activation of PDGFR pathway in
patient good portion potentially stratify selective enrollment in trial of anti-angiogenic
therapy; recombinant human humanized monoclonal antibody Bevacizumab that blocks the

angiogenesis by inhibiting VEGF-A has already been trialed in patients.

So, the PDGFR pathway the involvement of PDGFR pathway in this cancer is also giving
this recombinant humanized monoclonal antibody role in limelight. Apart from this HRD
acetylation K12 and K16 on histone H4 may provide an alternative biomarker of HRD. A
rationale for this selection of patient in future clinical trials of HDAC inhibitors alone or in

combination with PARP inhibition can be also tried.
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So, the moral from the study we understand the ability of proteomics to complement
genomics is providing additional insights into the pathway and processes that drives ovarian
cancer biology. So, we understand that how not only that complete data which we are getting
from the genomics is not enough to lead to a well profile diagnosis and treatment of cancer.
So, all the important things like mRNA information, protein information, and PTMS the most
translational modification information need to be gathered and further correlated among
themselves and then only we can reach to a conclusion and we can take this information and

further validated in clinical trials.

So, now we understand that how cancer driver mutation mRNA, protein need to be taken into
account to reach to the molecular target or cancer drug. From the last study we understand
that how the group has already has only taken the has only generated the proteomics data and
they have tried to correlate the their proteomics data with the already available genomics
already available mRNA, CNA data from the databases. So, firehouse can be used to
download this kind of data like if we select a disease name that may be glioblastoma
multiforme and we can see like all the data which are available in the TCGA can be

downloaded from here.
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So, TCGA data version from 2016 from glioblastoma clinical, SNPs, methylation, miR
mRNA and mRNA sequencing data and reverse phase protein array datas are already
available. So, we can use this firchouse to download the data. So, now, we are able to
understand how proteogenomics and correlation of mRNA and protein can give us better
insights of a particular disease but to deal with this amount of big data prepare a panel which
can help in the treatment or diagnosis of cancer. We need to think about different predictive

and machine learning based analysis.
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I have taken an example of a paper a neural network approach to multi-biomarker panel
discovery by high throughput plasma proteomics profiling of breast cancer where in study A
and study B 40 cancer types and 40 controls were taken, where is in study C 20 cancer types

and 20 controls were taken. Further they have done they have done the proteomic analysis

and they found that 246 proteins are common between 3 studies.
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After this analysis they have taken the data and tried to prepare a artificial neural networking
model taking study A as a training set, study B has a testing set and study C for validation.
So, in this kind of artificial neural networking in most of the cases for the training set
maximum; that means, around 70 percent or more data need to be taken whereas, for study B

30 percent data need to be given.

The model further validated with blind data set to check the accuracy to check, the efficiency
of the model. In most of the cases the accuracy of the model need to be more than 80 or 85
percent. So, this artificial neural networking gives a panel base three panels with five-markers

and with the accuracy more than 85 percent.
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‘ Artificial Neural Networking (ANN) in solving Breast cancer

Table 2 Best three five-marker panels identified
Panel SSE1 Accuracy
Training Set Testing Set Validation Set
(43PA; HP: ORM1: SAMDS; SRCRB4D 332 0875 085 085
(43PA; STBO!; DOX24; GRASP:CF SE-) 0875 08375 08
C4BPA; CNO; FG; SERPINGT, SRCRBAD 1962 08625 085 085

So, further these panels were taken forward and checked in more checked in large cohort of
samples to understand to validate the data. So, like this we can use artificial neural
networking and different made of machine learning strategies to understand and predict top

candidates that are playing key role in tumorigenesis and further development of the cancer.

So, the main concept is the different protein understand the complete pathobiology and then
only the landscape of up disease can be drawn and from there we can understand and we can
and that can lead to a drug target or precision medicine disease can be drawn and from there

we can understand and we can and that can lead to a drug target or precision medicine.
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Points to Ponder

* Proteomics and Genomics can together give better
information regarding disease pathobiology when
integrated properly.

* Proteogenomics is a powerful tool which have the
potential to bring revolutionary changes in the
precision medicine.

* Prediction modeling and Machine learning can
accelerate future cancer diagnosis.
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I hope from today’s lecture you got a glimpse of what is happening in literature the most
recent and very promising cancer proteogenomic studies, especially the CPTAC National
Cancer Institute based work and those publications have made huge impact and brought the
confidence about using genomic proteomic tools together and trying to provide the novel
insights in looking at different type of cancers. We also got a glimpse of the workflows
involved in doing these experiments which I think can provide you in a good way of thinking
how you can try to utilize these tools of genomics and proteomics in your own research and
then try to correlate the data analyze the data and bring something very novel which may not
be possible otherwise. So, let me thank Deeptarup again for today’s lecture and we will

continue more interesting sessions in the next lecture.

Thank you.



