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Supplementary - 1
A perspective on Proteogenomics

Hello, my name is Dr. Henry Rodriguez and I am the director of the National Cancer

Institute Office of Cancer Clinical Proteomics Research.

(Refer Slide Time: 00:35)

I  think  the  beauty  of  protogenomics  is  that  it  offers  the  ability  to  provide  a  more

comprehensive picture of the underlying biology of cancer. And, I think that was already

unequivocally  demonstrated  by  the  National  Cancer  Institute  CPTAC program;  with

actually demonstrated the ability when you combine proteomics comprehensively about

a comprehensive layer of genomics both in colorectal cancer, breast cancer and ovarian

cancer. You are able to pull out additional biology that is either difficult to obtain or

simply not feasible through one omics based approach.



So for me, it is the convergence of these disciplines that begins to shed new light on our

ability to not only understand the biology, but hopefully we could translate the biology

towards better patient care.

(Refer Slide Time: 01:31)

I  would  say  from  a  short  term  perspective,  the  main  one  is  to  take  the  genomics

information and they better connect it to a functional environment. From a long term

perspective is that you want to take not just the data but the knowledge you are able to

extrapolate from the data and potentially take that biology the additional biology is going

to be more comprehensive, and again potentially move it towards better patient care. 

The  reality  is  I  believe  that  a  protogenomics  perspective  provides  a  more  systems

perspective  of  the  biology  itself.  And,  we  would  like  to  do  is  potentially  use  that

additional fundamental knowledge to better identify what type of treatments to provide

our patients.  And, also at  the same time try them to understand how they would be

responding to not only existing therapies, but potentially next generation phase therapies.



(Refer Slide Time: 02:25)

Actually what can I see more is as technologies are maturing and our ability to measure

more things not only at a tissue level, but even at a cellular level; I am firmly a believer

that you are going to see more-more a convergence of different disciplines. You will see

genomics  converging  with  the  proteomics,  the  proteomic  converging  along  with  the

genomics any imaging you throw into the mix and even metabolites. So, for me it is the

blending of these disciplines that you are going to see more-more over the let us say the

horizon of a 10 year window. 

But, more importantly is that the information that is being developed the data; the big

data as a lot of people refer to it I think that is going to be a key array that is going to be

very promising in the years to come. For me quite frankly, I actually see data as the new

oil and our ability to be able to not only look at the information, but the ones it is going

to be able to actually apply a lot of artificial intelligence deep learning and extrapolate

the knowledge; I think that is we are going to see a lot of fundamental breakthroughs

when it comes to precision oncology.



(Refer Slide Time: 03:34)

Absolutely;  so, ICPC the beauty of that I think that is one of the initiatives that was

inspired by the United States Cancer Moonshot effort. Today it is an incredible program;

currently it involves 12 countries that spans over 31 institutions collectively. All these

institutions in these countries are now working together to try the better understand over

a dozen cancer types at the molecular  level.  I think the part that also makes it  extra

special  is  that  each  one  of  these  institutions  in  these  countries  have  pledged  of  the

molecular data that they generate, they are going to make it available to the public.

So, for me the idea of ICPC the goal, the ultimate goal is actually quite simple and that is

ultimately to develop an international database, that is now is going to be representative

of the diversity of people along with their cancers around the world and making that

accessible to the rest of the population across the globe. 



(Refer Slide Time: 04:43)

You know for me the idea of putting data in the public domain actually sends from three

fundamental principles behind it one, I think a lot of the information quite frankly is

going to be pre-competitive. But the part that is quite nice about it is that by putting it out

in the public domain, it allows other individuals to look at the data sets and hopefully it

stimulates new hypotheses along the same cancer that most likely was not hypothesized

prior. So, it stimulates new research at a fundamental level. 

Secondly,  I  think  by  other  people  getting  access  to  data,  if  further  stimulates  the

development of new computational tools and we hope that those computational tools are

able to identify new discoveries within those original data sets. And quite frankly, what I

have noticed is  by putting this  data in the public domain,  you actually bring in new

people into the research and you make it a much more multidisciplinary than it prior

would  existed  in  the  years  past.  And,  by  bringing  new  individuals  making  it

multidisciplinary,  bringing computational sciences along with the people that produce

the  data,  I  hope  you  could  take  the  fundamental  biology  and  extrapolate  the  new

knowledge that hopefully will be translated towards cancer care. 



(Refer Slide Time: 06:03)

So, one of the lessons that I have now learned over the past just over 10 years of having

the privilege  and the honour to  kind of lead  the National  Cancer  Institute’s  Clinical

Proteomic Tumour Analysis Consortium is that the fundamental belief. And, truly now

the  knowledge  that  by  having  more  disciplinary  research  groups  in  the  space  of

oncology, actually accelerate science. 

The  other  component  that  really  inspired  me  was  to  call  for  the  US based  Cancer

Moonshot  and  its  overarching  objectives,  which  are  very  simplistic:  one  accelerate

cancer research. For me a lot of that involves in developing these team based programs,

but the other two which were very key in the cancer moonshot was one and first and

foremost is greater cooperation in collaboration amongst researchers not just within one

institution within a country, but across countries.

And secondly, is making the information available to the public and that is something I

have been very passionate about, we have been doing for over 10 years now. In fact, 15

if you look at genomics landscape of what NCI is done within TCGA now CPTAC and

now expanding that to other people across the globe. So, for me the Cancer Moonshot,

what  it  represents is  hope;  hope that  is  going to  be offered not  just  for the research

community,  but also towards patients and their loved members that are afflicted with

cancer.



(Refer Slide Time: 07:36)

You know one of the things  have has always  drew me in life  is  the ability and the

willingness to take a risk and I know the NCI when they actually asked me years ago

they actually join. One of the things that I have admire about the NCI is that it is an

organization that enjoys taking risk and what I am and what I mean by that our two

initiatives that are very dear to me and standout. The very first one is the Cancer Genome

Atlas that was a big risk for the NCI; we did not know what would come out of it. 

But  we always  had this  feeling that  by looking at  a  tumor,  looking at  cancer  at  the

molecular level that we begin to better understand and ravel the mysteries of nature when

it comes to that disease. And, at the same time we took the same risk when it came to

proteomics specifically with the CPTAC program.

So, for me one of the driving factors is the willingness to take risk along the same lines

now, I think that we have taken with the Cancer Moonshot both in the APOLLO and

ICPC. It is that fundamental belief that if we just take that low risk, go and explore an

area of science, that we think that there is a glimmer of hope; the belief is that taking the

risk you will have rewards and the rewards ultimately for us is to translate it towards

better patient care.



(Refer Slide Time: 09:01)

So, the simple answer is absolutely; the reality is technology is technically ambivalent to

the biology we are trying to go after. So, if at the fundamental core we are trying to find

out is can I identify very key molecular signatures that could better help me understand

the disease as a whole than both genomics,  proteomics and even the convergence of

those two from a proteomic perspective will absolutely be beneficial.

Furthermore you could also look at these different technologies and the disciplines and

potentially,  then  begin  to  develop  diagnostic  techniques  to  be  able  to  detect  such

infectious diseases and not really within a city, but even in remote villages if that it its

going to be even more important.  So, I fundamentally do believe and I think a good

understanding is technology is really not specific towards a disease that is the beauty,

when you develop technology from one discipline it could easily be applicable to another

discipline.

So, I am D. R. Mani, I am a principal computational scientist at the Broad Institute of

Harvard and MIT. I am in the proteomics platform there and my primary role is to apply

statistics and machine learning methods to the analysis of all kinds of proteomics data.

So,  we look at  discovery proteomics,  targeted  proteomics,  proteogenomics  we apply

computational methods and algorithms to the analysis  of all kinds of proteomics data

with the hope of achieving a  rigorous approach to  analyzing data.  So,  that  whatever

comes out is defensible.



(Refer Slide Time: 10:57)

So, the main reason for using label proteomics methods is to make sure that you can

achieve  higher  throughput  than  is  currently  possible  in  proteomics.  So,  right  now

genomics  can do really high throughput you can sequence genomes very fast,  but in

order to do proteomics and get a proteomic profile for a sample it takes quite a while.

And so,  it  helps to be able to multiplex samples  so, that you can hopefully increase

throughput by 5 fold or 10 fold in many situations. In order to do that in a large study

you really need to be able to run many of these multiplexed experiments and then we

able to connect them together.

 So,  if  you  have  100 of  samples  in  a  relatively  large  study,  you  would  need many

different experiments to accommodate all those if you are doing multiplexing 5 or 10

samples in each experiment. And when you do that you have to have some kind of a way

to link all the data together so, that you can put all your samples together and then do a

statistical analysis.

And so, in order to do that the primary tool that we use is what we call the reference

sample, and in most situations this is created by combining a pool of different samples in

your project. But it is done in such a way that you either use all your samples or if you

are using a subset you sample the subset to represent the groups in your original project.

So, that there is no bias in terms of what went into the reference pool, but once you have

that you kind of create a large vat of a sample that you can put on every one of your



multiplex experiments. So, that at the end of the project you can use that pool to read out

variation from experiment to experiment in some way normalize on a experiment  by

experiment  basis.  So,  that  you  get  data  that  now you  can  compare  across  different

experiments. So, that all your samples can be put together into one table and then you

can perform your statistical or machine learning analysis.

(Refer Slide Time: 13:27)

So, in proteomics missing values are a bigger issue because the proteomics methodology

of  how  you  obtain  a  proteomic  profile.  So,  you  inject  a  sample  into  the  mass

spectrometer and then you do what is called data dependent analysis or even if you do

not do that. But use other methods there is no reliable way of obtaining a measurement of

every protein in your sample with genes. For example,  in genomics if you are doing

RNA profiling it is more easy to get a catalog of all the transcripts you would like to see,

and  then  put  them  on  a  chip  or  even  if  you  are  doing  RNA  sequencing  without

microarray or a chip you can still kind of see almost all the genes that are expected to be

present. 

But with proteomics the issue is that it is a very stochastic, the measurement is a very

stochastic process and so, you end up not measuring many of the proteins that are present

in your sample. So, in most situations in proteomics if something is not measured it does

not mean it was not there, it could also be because it was there. But you were not able to



see it with your measurement methodology that is less of a problem with genomics and

so, missing values have to be treated more carefully in proteomics. 

And if you go to looking, if you start looking at post translational modifications like

phosphorylation or acetylation, then the problem is even more compounded because a

phosphorous site that might be phosphorylated in one sample may not be phosphorylated

in another sample. And, when you are measuring these phospholipids; those phosphor

peptides may not be seen in many other samples and so, the missing value problem is

much more compounding.

And so, analysis of proteomics data now requires more careful thought on what to do

with missing values.  There are many ways to approach the problem, but I  think the

bottom line is that when you are analyzing proteomics data you have to be constantly

cognizant of the fact that there are missing values, the fact that these missing values are

related to abundance. So, in other words the values are missing because the abundance is

most likely low.

And,  in  those situations  statistically  you  have to  be very careful  how you  deal  with

missing  values.  And,  in  many  cases  you  might  want  to  use  tools  that  can  either

systematically handle a missing values or if you are going to remove missing values it

has to be done in a very careful and thoughtful manner.

 (Refer Slide Time: 16:17)



So, when we are talking of proteomics or genomics or proteogenomics we are talking of

experiments where a large number of things are measured. So, in genomics you could

measure like 15, 18 or 20,000 genes. In proteomics you measure 10 to 15,000 proteins or

if  you  are  looking  at  phosphosites  in  a  study  you  might  have  25,  40  or  50,000

phosphosites you have measured.

And, when you are trying to use this  data to find what is differentially expressed in

groups of interest for your study like cancer versus normal or different cancer subtypes,

you  do what  are  called  marker  selection  or  marker  analysis.  Where  you  try  to  find

markers that are up regulated or down regulated in subgroups or of the sample set that

you are looking at and when you do that you apply standard statistical tests like t-test or

f-test or rank test certain and many different tests. And, the problem with these tests is

that if you repeatedly apply them on a large number of features in this case genes or

proteins. 

You can end up with things that appear to be statistically significantly differential in your

groups just by random chance. And so, the more tests you do, the more likely it is that

something might appear to be statistically different between your groups while it is not

really the case in reality. And so, to account for this and to have results that are more

robust and kind of more believable from a biological perspective, you would want to

apply what is called multiple testing correction. 

So, here the statistical significance that is assigned to a test is adjusted because you are

doing many many tests like thousands or tens of thousands of tests. So, once you take

that into account your statistical significance is reasonably adjusted and then you can get

results that are more believable with fewer false positives. Even after that you still have

to be careful to make sure that your cognizant that there could be false positives or other

false discoveries in your data. But, using multiple testing correction is the first step to

kind of getting results that are more robust and are worth following up from a biological

perspective. 



(Refer Slide Time: 18:52)

So, most  studies whether  its proteomic or genomics start  off  by doing normalization

where you are trying to put all the samples on an equal footing. So, that you can compare

across samples  and analyze  them and any minor  differences  in  how the sample  was

prepared or how much was loaded on the mass spectrometer are kind of subtracted out.

So, that what is left is mostly the biological differences between the samples. And one

way of  doing that  kind  of  normalization  is  called  quantile  normalization  where,  the

quantiles of the observed values of the proteins or peptides are kind of made the same; in

other words the distributions are marked to kind of make all of them similar. 

So, when you do that things that are extreme in other words so, you were doing a cancer

normal comparison and there was a protein that was very highly regulated in cancer, but

not, but the proteins that are regulated in a normal sample,  do not have that extreme

values  that  they have achieved.  When you  do quantile  normalization  then it  kind of

squashes, the signal in the cancer or the extreme subset of samples kind of pulling them

together towards the kind of pulling them towards the mean.

And, what that does is your ideal biomarker signal will now be either not strong or could

actually  get  obliterated  because  of  the  way you  did  your  normalization.  And so,  in

general quantile normalization is not as approach to use on an average project, in other

words it is not the standard approach one would consider using and if it is used, it has to



be used very carefully and you would need to think about why you want to use it and if it

makes sense. 

(Refer Slide Time: 20:51)

So,  I  think  the  way  computer  science  has  evolved  in  the  last  few  years  artificial

intelligence and machine learning and all those areas that the buzzwords that you hear

are becoming actually more and more useful in doing analysis and kind of making sense

of large amounts of data in a large number of fields. So, they started in computer science,

but now they are almost universally percolating to all other areas.

And, I think in biology as we go into the era of omics with genomics and proteomics and

proteogenomic data we are going to collect more and more data. And the biologist who

has the domain knowledge of the kind of things they are looking for in their studies will

need to be will need to have some knowledge of the kind of tools that can be used and

how to correctly apply them.

So, I think the biologists of the future will need to have more significant understanding

of what computational tools are available, when they are applicable and to some degree

also be able to apply them at least for simple everyday settings where they are generating

data.  They  should  be  able  to  analyze  their  data  without  having  to  wait  for  a

computational or a bioinformatics scientist to come and look at their data. 



So, on a day-to-day basis I think the future biologists should be comfortable doing their

own data analysis and when it comes to special or one off analysis or analysis with more

complex study designs then they definitely should collaborate with the computational

scientist.  But,  they  should  also  be  in  a  state  where  they  can  understand  what  the

computational  scientist  is  doing,  be  able  to  speak  their  language  and  to  be  able  to

understand whether the techniques applied are appropriate or not.

And, to some degree it also applies in the other direction, computational scientists should

also know enough biology to have a common language with so, they can carry on an

intelligent conversation with biologists. And, strong collaborations with people who have

deep roots in computation and deep roots in biology I think is the future of good research

and so, both teams should be able to converse with each other and be able to understand

each other’s fields a little more than is currently done I think.


