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Welcome to MOOC course on Introduction to  Proteogenomics.  In the last two lectures

Dr.  Kelly  Ruggles  have  talked  to  you  about  some of  the  advancements  of  genomic

technologies.  In  today’s  lecture  Dr.  Kelly  is  going  to  talk  to  you  again  about

Transcriptome studies, especially how to utilize RNA sequencing with reference to the

various  type  of  data  basis  available  and  what  are  the  challenges  of  using  these

technologies. She also talks about extended RNA sequencing workflow, which includes

alignment of genome, count coverage per gene or transcript and differential expression

study.

Today’s  lecture  we will  also  talk  about  various  software  available  for  gene  isoform

quantification and for differential expression analysis. Dr. Kelly is going to talk about the

effect of gene fusion where genes from different chromosomes come together, because

of chromosomal translocation, inversion or interstitial deletion. The concepts of UCSC

genome browser will be elaborated with all the data for each human gene is studied and

mounted  till  now.  Dr.  Kelly  is  going to  talk  about  the  advancement  in  the  field  of

transcriptomics where now one could also perform RNA sequencing using single cell.

So, let us welcome Dr. Kelly Ruggles to give today’s lecture. 

So, standard RNA-seq workflow you again, you do your next gene sequencing, you have

to align it to the genome, the most commonly used the liner for RNA-seq at this point a

star. So, I would very much recommend you use that aligner if you are doing RNA-seq

analysis.



(Refer Slide Time: 02:06)

Then you use coverage,  you  count  coverage per  gene or  transcript  and then you  do

differential expression. So, some outputs to this are things like volcano plot. So, if you

are  familiar  with  those,  so  you  are  looking  at,  let  us  say you  have  disease  and not

unhealthy, you can look at the fold change of different transcripts versus the significance

level of those transcripts and you are looking for things that are sort of either here or here

in your data, you can do hierarchical clustering of your data. So, you can see if your

disease versus healthy or different subtypes cluster together based on the expression of

different genes.

(Refer Slide Time: 02:44)



But there is some challenges  to RNA-seq alignment,  this includes the facts that you,

there are introns, so with whole genome sequencing right you have chunks of DNA that

you can just map back to your reference genome. Here, because you are looking at RNA,

you have exons that have been spliced together. So, you have places where there will not

be, there will be a gap and you have to account for that gap in your alignment. 

And, so the aligners  that work with RNA-seq have to be a little  more sophisticated,

because they have to deal with the fact that there are these gaps and they have to figure

out where they are and where the boundaries are and then record the junctions of the of

these boundaries. So, that is something that you have to keep in mind with these aligners.

And, then if the reads are in introns or in intergenic regions what does that mean, if like

we do not expects that to be in RNA, is it real. And, I did want to mention some of the

different ways that people do these counting the reads per gene, because there is a lot of

different ways to do it.

(Refer Slide Time: 03:53)

So, there are, you need a gene model. So, in meaning you need a database that says these

are where your  exons are,  this  is  where your  start  sites are.  So,  we have these gene

models,  we  have  these  databases,  some  there  are  lots  of  databases  available  with

different levels of complexity



So, for example, RefSeq or ENSEMBL these are all databases that exists that have files

that say this is what we expect to see at the transcript level and you can kind of use those

to  measure  how  much,  how  many  counts,  how  many  reads  you  have  of  different

transcripts or genes based on what we know about how those genes are structured in the

genome. And there is lots of ways of mesh of actually reporting, how much expression

there is at the transcript or gene level. So, there is RPKM which is Reads Per Kilobase

Million, there is FPKM which is Fragments Per Kilobase Millions. So, these are similar;

the  FPKM  is  typically  used  for  these  paired  end  reads  versus  the  RPKM  back  to

expression units.

So, as I mentioned there is, there are several ways that people will express the reads. So,

you have to normalize the reads, you have reads, but certain genes are long right. So, if a

gene is long you are going to have more reads that map to it, because it is just longer,

that does not mean there is more of that gene that just means its long right. So, we have

to take that into account. We also have to take into account that maybe a certain sample

just was had more reads in it, but that does not mean are all of the genes in that sample

are up that just means there is more reads in that we ended up getting in that sample.

So, these are two things that we have to normalize for. So, there is really two different

ways of doing this; the first one normalizes by the depth. So, how many reads in the

sample first and then normalizes by the length of the gene, so that is this RPKM and

FPKM. The other one normalizes by the length of the gene first and then by the number

of reads in the sample second and that is this TPM. I do not know which one is better, I

do  not  know  if  anyone  knows  which  one  is  better.  There  is  a  review  here  on  the

differences between both and they have again strengths and limitations. 

So, whatever your problem is just spend some time thinking about this and know that

there are different ways of doing this and they have different effects on your downstream

analysis ok.



(Refer Slide Time: 06:28)

So, in terms of RNA-seq software that I just wanted to point out there is a lot of different

ways of doing gene or isoform quantification. So, there is several I have listed here, there

is one of these papers this one goes into lots and lots of details about them and more. So,

you can look into this, if you are interested in learning more about how to quantify at the

gene or isoform level. There is a several differential expression analysis packages DESeq

2 is a really commonly used one, there is also a EdgeR, this last paper actually compares

the two and talks about one you should use one versus the other.

So, I have leaving these papers here for you guys in case this is something that you are

going to do and you want to learn more about, but if you have specific questions about

this just you can come find me and we could talk about it.



(Refer Slide Time: 07:24)

So, one of the things that you get from RNA-seq, if you have, I think for a lot of these

packages you have to specifically ask for this. So, if you want this you should make sure

you are near setting. So, you are asking for it, but you can get junction files which we are

going to talk about that are in BED file format, also a lot of these like RefSeq in these

annotation databases use the BED file to say this is where an exon is, this is where an

intron is. So, these are the files that sort of tell you the structure of the actual genome,

and so this is just an example BED file here I have included what the columns mean.

So, the first column is the chromosome, the second is the start and end of that of that.

Sorry that is actually should be gene I can correct that and send it out again. So, it is gene

start and gene ends a name, a score, a strand, and then there is this display info, because

there is these browsers we will talk about, a little bit where you can change colors and

you can have the display if you want to put it up on a specific browser you can have it

look a certain way. So, there is columns for that. The number of exons or blocks, the size

of the blocks or exons and the start  of the blocks, and I am going to go through an

example about what this looks like. So, for example, here we have one row from a BED

file.



(Refer Slide Time: 08:50)

So, we have chromosome 5, we know that this gene starts at this coordinate.

(Refer Slide Time: 08:59)

And, then we have block size and block starts, so these are the exons. So, we know that

the exon is 126 base pairs is long and this is where it ends. So, it is the start is, the block

start is this plus 0 and then the block end is this start of the gene plus the block size plus

126.



(Refer Slide Time: 09:22)

And then you have the second block or exons. So, you have again you start from the start

of the gene and you add the block start number two which is 4509. So, this is where the

second exon starts and you know that the second exon is 78 base pairs long. So, now you

know where your block 2 ends.

(Refer Slide Time: 09:44)

And, then for block 3 you have again the start of the gene plus this block start 24849,

you know that this starts here and it is only 3 long and ends there. So, then you know

exactly where your exons are, based on what the BED file tells you about, about the



coordinates of these exons. So, what these junction files from the RNA-seq data will give

you is not just reads that cover different exons, but also where the exons connect right.

(Refer Slide Time: 10:11)

So, if you have this alternative splice, the splicing that is occurring where you have exon

1 spliced exon 2, there will be a read where there is a, it will show that these two are

connected which is called a junction read, and it will be in this bed format. And so here

like if you have exon 2 and exon 3 you would have another junction; junction 2 that

would connect these so you would end up getting this or if you had a junction connecting

exon 1 with exon 3 you get something that looks like this.

So, these junction files are something that comes out of RNA-seq and in addition to the

expression analysis data and the last thing that can come out of this RNA-seq data is

gene fusions.
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So,  gene  fusions  are  when  a  gene  from  one  gene  that  is,  can  be  from a  different

chromosome or from far away on the same chromosome, it is actually fused with another

gene. So, here we have gene X on chromosome 1 and gene Y on chromosome 2, and you

can see here  that  these two are  connected,  because  of  chromosomal  rearrangements,

which typically can occur and in cancer. So, this is a pretty cancer specific analysis. This

is just a schematic showing each of these is a different breast tumor and each of these

lines connects them based on how the genome has been rearranged.

So, you can see some of them have a lot of rearrangements, some of them do not. So,

you will get fusion genes in certain samples and not others, but it is another thing to keep

in mind when you have this RNA-seq data, this is another thing that you can look at as

well.
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And so, there are two browsers I am going to talk about that you can actually look at,

you can take your data and upload it or you can look at the gene annotation for a specific

gene, and so there is UCSC genome browser has anyone use this, it is pretty common

and useful. So, if this is something you think you are going to be doing, I would spend

some time exploring it. So, here you can see, you can look at a specific gene or part of

the chromosome. 

So, it has these really exons here and introns, you can have, there are so many tracks you

could put  hundreds  of  tracks.  There  is  so much data  on here  you  could spend days

looking at it, exploring maybe your favorite gene, seeing what is available, they have lots

of different publicly available datasets that have already been mounted. So, you can just

click on them and see is this gene you know they have epigenetics data that is up there

from encode, there is all sorts of things that you can look at. 
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And in addition to that there is this integrative genomics viewer, where this is something

it is a IGV from the broad that you actually download to your desktop and then you can

upload your own data and also look they have different genomes and annotations there

are already available in your, there are like mounted to it. So, for example, the human

hg19 is up there and you can just already look at the annotation within that. And, so this

is just I have uploaded a bunch of different dating. 

And then I did want to touch on single cell RNA-seq this is the hot field right now,

people are really excited about it. And, so with this you can actually measure the RNA

expression and a single cell versus what we normally do which is we just take a chunk of

something. And, we look at the expression across many different cells, but you know

there is heterogeneity especially in cancer.

So, you may be measuring normal tissue, you may be measuring a certain clone of a

cancer one cancer you know you are, so you are kind of diluting out your results, but

with single cell RNA-seq you do not get the same coverage right. So, you only get about

a 1000 genes that you are measuring versus with RNA-seq where you are getting almost

all, if not all of the genes, but it is still very cool; what you do with this there is a couple

of ways of doing this.
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So, this I am just going to talk about one way which is droplet bar coding. So, you have a

cell and you encapsulate it into a droplet ok. So, you have all your cells and you put each

one in a droplet, and within that droplet there is lysis buffer and there is everything you

need essentially to do your library prep within the bubble, within the droplet. So, you

lyse  the  cell,  you  release  your  RNA and  you  then  can  barcode  it  and  do  a  cDNA

synthesis and get it all ready to do sequencing essentially and you have bar coded it. 

So, you know this is the one cell, everything in this droplet comes from one cell. And,

then you just break the droplet and you do like the same kind of multiplexing you would

do with lots of samples you just do them with lots of cells. So, then you just measure all

of your RNA and then later after you have done your RNA-seq you can pull out each of

the different cells based on the barcode.

So, that is currently have one of the ways that people are doing single cell RNA-seq and

getting cell based data. The one thing that I have not seen, I know that some people are

doing it, but I think it is a lot harder it is doing SNP calls from single cell data because it

is just there is not enough coverage. So, that is something that is not currently happening,

but I am sure eventually we will figure out how to do it and somebody will do it and it

will be exciting yeah.

Student: What are these adaptors we are adding?



Say that again sorry.

Student: Bar coding.

It is similar to bar coding like the multiplex samples right, it is like adapter bar coding.

Student: PCR also involves lot of errors, how do you account for that?

Yeah. 

Student: So, the PCR also. 

Yeah.

Student: Involved a lot of error so.

Yes of course.

Student: So, how do you account for that?

 I mean there is always error that that is we have to deal with in experiments, I mean I

think we; so, how do we account for the PCR amplification error. So, what happens is

especially with,  so when you make those clusters in your  library seq,  when you are

making your libraries right, you are making many many different copies. So, if only one

of them has a certain SNP you are going to say that that was because of a PCR error.

So, it is usually just based on the, the genome aligner is kind of have all of that built in, I

do not know the answer to that. The question was what if the errors is early enough that

it is in every copy, I do not know that is a good question.

Yeah.

Student: We are having or some particular length of the gene whichever taking in the

fragments and when we were bar coding that, but in this case.

Yeah. So, the question, that is a good question. So, the question is with alumina there

was a size filter essentially right, like you knew that your fragments were a certain size. I

think actually they do I did not put that here, but I do think that is incorporated into this.

So, you have kind of the similar size that you would have in like your bulk RNA seq, but



you are just have, it is just within every things kind of included in the droplet that you

would do at the bulk level. So, you are, it is a very similar sequencing process, it is just

there is less, there is less RNA. So, your coverage is lower.

Student: Coverage is lower.

Coverage is much lower with single cell RNA-seq than it is with a whole bulk, because

with bulk you have lots of copies and you can you know with single cell you only have a

certain number of copies, so you only measure up to like a 1000 genes versus 20,000

genes with bulk. 

(Refer Slide Time: 18:04)

So, in conclusion you have seen that how studying transcriptome can be very useful to

provide the first level of functional information obtained from the genes. If you think

about  the  central  dogma  from the  DNA,  the  RNA  being  formed  in  the  process  of

transcription  and  then  from  RNA  the  proteins  are  being  formed  in  the  process  of

translation; so, the first set of functional information comes in the form of transcripts. In

today’s lecture we have seen how introns become problem in the RNA sequencing data

alignment  as  to  the  reference  genome  sequences,  you  also  learnt  about  read  and

understand the BED file in sequence alignment for data analysis and representation.

I hope you got the concepts of RNA sequencing and how the droplet bar coding can be

done for single cell RNA sequencing along with the pros and cons of this technique. In



the next lecture Dr. Ruggles will continue discussion about genomic and epigenomic

technologies  with  more  focus  about  epigenomic  analysis.  So,  let  us  continue  this

discussion about genomic revolutions in the next lecture.

Thank you.


