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Welcome to MOOC course on Introduction to Proteogenomics. In today’s lecture, Dr. David

Fenyo  will  talk  about  training  a  model  and test  model.  It  will  be  continuation  from the

previous lecture where Dr. David Fenyo will briefly discuss testing error and training set size

where he will also discuss about low variance and high variance.

He will provide a detailed idea about regularization and how regularization helps in training a

model. He will then talk about how to divide dataset between training and test and how to

deal with situation where your dataset is a small in number. I hope some of these discussions

and points will be very important for you to consider when you are planning a big clinical

study for your own project. So, let us welcome Dr. David Fenyo for today’s lecture.

So, in another way to say this is that if you have a dataset you should divide it into tests and

training set. Now, the problem for us again which is always the case that we do not have very

much data. So, if we separate out a large chunk into the test set we do not have much left for

training.

(Refer Slide Time: 01:53)



And, that is not good because I mean as we said before the larger your training dataset the

better you will do, the better the model. So, now we are going to come back to this, but what

people do is cross validation where they do this separation one way and then do with the

separation another way and so on, but we will get back to that a little bit later.

(Refer Slide Time: 02:19)

So, now if we separate outs the training set. So, we saw now this is the same data, but the y

axis is on a log scale. So, we saw that the training error can go down we can by making the

model complex we can make it go to 0, but if we then compare it to our test sets that is the

test error goes up as we make it make our model more complex.



(Refer Slide Time: 02:53)

And, so, one way the to get around that is if we really have a lot of data that helps. So, in this

case now we are looking at the test error as a function of training data sets and as you see

sorry the y-axis is not labeled, but as we increase so, the numbers there that are shown are the

number of points that is we have.

So, you see that when we have few points like 10 we have we just increase our complexity

the model complexity little bit the test error, but if we have large number of sample so, that

the other two curves that are not labeled which have low errors are 1000 and 3000 points. So,

that is one way of; so, the best way actually of doing what we will talk about later which is

regularization to get around this problem is to have just very large data set.

So, I am going to just skip this ok. So, now, let us say we do not have now so far we have had

lengthier dataset now we are going to have a little bit more complex dataset and we are going

to do the same analysis.



(Refer Slide Time: 04:21)

So, here now it is good to increase the complexity little bit because our data I mean as you

can see we cannot fit that function well with the line. There is no way that we can get a good

approximation and that is why we see that if we have a first degree polynomial which is a lot

we do not and both 1 and 2 gives us very high errors, but then it goes down.

But, as also before in the example when we continue see when we continue increasing their

complexity the training error goes down and down and the eventually evolved it is very low,

but  then at  some point  the testing  error  goes  up.  So,  that  is  why we should  choose the

complexity  somewhere  here  close  to  the  minimum  and  it  is  usually  better  to  be  more

conservative. So, I mean probably better not to choose 5 or 6, but rather 3 or 4 the. In this

case that is sort of a rule of thumb that since we have this flat region it is better to be more

conservative yeah.

Student: Sir, I ask you few questions. So, slit how to interview when you training error is

going down with increasing polynomial or number of errors why should the testing error go

up because your I mean training it well but, when you are testing it that error goes?

Yeah. So, I mean the reason is that you over train it; so, you over fit your model. So, you

train it to the particular noise that is in your training set.

Student: Yeah.



So, it learns something that is not relevant to the process, but just because you have a finite

set that you are training on that will have some by chance some noise and that is what you

learn that noise and, but that does not generalize.

Student: How to determine it when the training is complete like we are not going to be over

fit the over fit the training data+ the testing area it going to again like at what limit how we

will we can dept like the training.

Yeah. So.

Student: We ask we are going to said actually this is not going to be over fitting again.

Yeah. So, we will talk a little bit about that I mean over fitting is always more even if you

take these into account, but the way we are going to talk about that and usually we do it

through cross validation that is, but we will get back to that later and this I am going to skip

this.

(Refer Slide Time: 07:29)

So, now regularization; so, again Mani mentioned this. So, what we little bit formal way to

that we are going to look at so.

I do not know how familiar you guys are with mathematical notations, but this is sort of what

we  do  one  way  of  describing  what  we  do  when  we  train  a  model.  So,  we  have  w  or

parameters. So, w here is bold. So, meaning that it is a vector. So, we have many values of



the parameter. So, w 1, w 2 and so on and then we have a and a function L which we call the

loss function and in the case of linear regression we mentioned that it is the sum of the square

deviations that are a good loss function.

But, it is not necessarily the only one, there are other ones also you could also you do not

need to take the square you could have the absolute add their up the absolute values. So, we

choose some kind of loss function actually the L should not be bold sorry about that because

it is a function with one it is has many a vector as an input, but output is just and then we try

to find the w which minimizes the loss function.

So, that is why we call it least squares fit. So, the so, that is what we are doing, but again. So,

we saw that is if we do this we and have many large vectors or many w’s we run the risk of

overfitting. So, what we can do is add an extra sum here where this is some kind of function

of the absolute value of w. So, meaning that we are going to force w to be pretty small and

then this parameter lambda is the one that governs that.

And, and there are two that are pretty off the news is either you add in the square of the

length of w or you can and that is called ridge regression or you add in just absolutes with the

length of w. So, those are two ways to regularize and minimize the risk of overfitting. But,

again remember that even if we do all these things that we are going to talk about more thing

that to try not to over fit; even if you do this there is a risk that we over fit and we should

always be worried about the overfitting.

So, let us have a look at what happens here.



(Refer Slide Time: 10:45)

So, now these are just 10 points here again we do a linear regression, but with a polynomial

of degree 9 and it is a will be widely oscillating curve that is cut off over here. And, we see

that coefficients are these are for a linear case it would be these two that is we would give us

a line, but then we see that the other coefficients are very high.

Now, as I mentioned the best way to regularize is to have lots of data and if we have instead

of 10 points 10 measurements, 100 measurements you see that we get reasonably good fit a

little bit bigger and we see that it is. So, our most mainly dominated by the two first ones

which would be aligned and if we get even more data it looks even better. But, outside the

region of course, anything can happen where we do not have any data.

So, now if we look at the same thing we add some regularization and so, we instead of just

minimizing the loss function we minimize the loss function plus a lambda times the in this

case such believe it was the square of the parameters. So, then the same thing today here is

the inserts.  So,  this  is  what we looked at  previously without regularization those are  the

inserts and we see that with regularization we see that we get the much better fit than may it

is dominated by the two first parameters in all the cases and So, that is we definitely need to

do that.

Student: Sir, inside one is the regularized one you are saying?



Now, that the large sorry the last bases the regularized one and this is the same as I should

un-regularized that is the same as the previous slide. So, if you look at this and we go I go

back to the previous.

So, this one is the same as the insert in the next one ok.

(Refer Slide Time: 13:17)

(Refer Slide Time: 13:21)

So, then another way of doing it which is to do nearest neighbor regression; so, in this case

we want to see what these red points out of ones we are interested in. So, for example, if we

take the three nearest neighbors we would take an average of these values and approximate



where the red ones would be. So, that is a the linear regression we have a very a sort of fixed

model, but here it is really we just looking for data points that are similar.

So, it becomes can become very flexible, but often with high dimensions there are no points

that are similar because it is. I do not know you should try to think about how a very high

dimensional space looks like and it is it is not easy to think about. So, think about try to think

about instead of in this case we have two dimensions just hundred dimensions. Something so,

in 2-dimensions you often have points that are reasonably close not so much in this case, but

in hundred even you spread out all your points in a much bigger space and it becomes like

nothing is  near anything else if  you do not have an enormous amount  of data which we

usually do not have.

(Refer Slide Time: 15:09)

Its often even if the linear model is not the we know that let us say the linear model is not

right and it is often still better to assume a linear model because in most of the our cases we

do not have that much data. So, that is another thing ok.

So, we looked at a little bit about model complexity now. Now, I will switch to how do we

train the model. So, we already mentioned that we define a loss function which gives us a

energy landscape that we try to find minima.



(Refer Slide Time: 15:49)

So, and usually we have our function defined and then a most often we start at a random

place let us say here we just at first we just randomly assign our parameters and then what we

want to do is to go from our randomly assigned space to the minimum. And, but we do not I

mean and also we have this 10000 dimensional space that we have to work around them and.

So, we, but what we know is the local environment.

So, in we what we can calculate is if we are here we know we can see what the slope is in

which direction should we go through at  least  get further down and so, we calculate  the

derivative locally and then we go take a small step in the direction of down. And, so, then

maybe we are go down then repeat this, take another step, go even further down and then

continue again, but now what can happen when we get close to the minima is that we take too

big over step.

So, we over jump and we are going to see that that is it is often good to start taking big steps

and then at the end take smaller and smaller steps. 



(Refer Slide Time: 17:23)

Another problem that we can run into is that if we start in a region where it is very flat, there

is no gradient almost or maybe not at all and then we and the stuck there since we always

want to take a step in the direction of the gradient and the size of the step is also proportional

to the gradient. So, then we have that is not that is a problem.

(Refer Slide Time: 17:53)

And, another thing that can happen is that when we get stuck in minima so, that is those are I

think the main problems that we run into ok. So, let us look at how this error landscape looks

for linear regression.



(Refer Slide Time: 18:07)

Now, as you probably remember from undergrad for linear regression we do not need to do

gradient descent because we can actually solve this analytically and we, but we still going to

a since it is such a simple case I still wanted to walk you through how it looks if we would

need to do gradient descent with linear regression.

So, again so, we have a few points. Here now we have the slope of this and the intercept. So,

we have to just look at the slope, if you change the slope from this is the optimal position this

is where we have the minimum that is mention. It will the energy the sum of the square errors

will be increase.

And, we can look at this in different ways. So, this is the 3-dimensional if you look both the

slope and intercept and that rotated.



(Refer Slide Time: 19:11)

We can look at it from above where we have 2-dimensions intercept is here slope is here that

is the optimal place where we have the best solution for the linear regression.

And, we can look at it is like this like a map showing the minimum here and the gradient.

(Refer Slide Time: 19:43)

So, if we have two different lines same number of points here and same number of variation

we get slight variation in how this energy landscape looks like. But, if we have really a lot of

points they the energy landscape is well defined with nice concentric circles which of course,

is helpful.



(Refer Slide Time: 20:13)

So, we mentioned that it is actually we do not need to use the sum of the square errors, we

can also use some of absolute errors. The energy surface becomes a little bit more jagged and

not as round, but it is also a possibility and especially when we have outliers that is could be a

better solution.

(Refer Slide Time: 20:37)

And, so, another thing if we have very little variation so, that is lots of points that define the

line well. We get a very sharp minimum, but when we have more error we get a much more

much less well defined minima ok.



(Refer Slide Time: 21:03)

So, let us go through a case now we are going to walk down this surface. So, we randomly

start here. So, this is again intercept and slope. So, we have our data here this is our randomly

assigned line you see that it is not great, but it and it is also because we are pretty far away

from the optimal solution.

So, now, we are going to take a small step in the direction downhill at the gradient. So, the

gradient is perpendicular to the to these height lines. So, the first step we take would be going

perpendicular here and depending on what we choose the step size to be we will take a small

step here. And, then we take another step now because of the curvature changes we are going

to curve in and then we continue going down following the gradient and eventually and on

the side there you see now when we reaches close to the middle the line fits very well.



(Refer Slide Time: 22:19)

And, and we can randomly start from different places and we end up in the same location

because with the linear this is a very nice surface.

(Refer Slide Time: 22:33)

Some threshold here that gives us a lot of true positives and very few false positives. But, in

another case if we have these much closer to each other we cannot do that distinction, but we

can still use this to select where to set our threshold.

And, then we can see what happens if there is an uneven distribution.



(Refer Slide Time: 23:03)

And, so, the other thing we can do is if we have the false positive rate and a true positive rate

we can create what is for the receiver operator characteristic an ROC curve. So, how many of

you have made ROC curves? So, that is a very common way to evaluate classification, and

then when we do comparisons one thing that we in this case we have good separation. So, the

ROC curve will start down here and go almost up to the corner here.

So, we have that true positives or separated from the false positives and we can use their for

example, the area under this curve to as a characteristic how well we are doing. And, and so,

if you have completely random distribution they will be completely overlapping we would

just have a line along the diagonal. And, then these are just for a other case where we have

done much closer you see that here the curve ROC curve is much closer to the diagonal and

these are just cases for the other ok.



(Refer Slide Time: 24:21)

So, none of them probably know conceptually easiest way methods is the nearest neighbor.

So, here what we do is we just see where what is the nearest neighbor, what is it what class is

it is in and of course, if you do evaluate this on the on the training sets you are going to get

that error is 0 because it is. So, here is one example of where it is definitely one it shows that

why one should not use the training set to valid.

So, here now we have the two groups and the near if you use one nears neighbor we get a

good separation between them, but in another case if we take the nearest neighbors when they

are more intermingled we see that we get a very complex decision surface and where no one

would claim that this is really what it is less. So, this is a very clear case of overfitting.

And, so, now, they can of course, average over a few nearest  neighbors in this case two

nearest neighbors. Now, it is gets a little bit more plausible, but this for example, there is still

an island here of in the middle of the blue. So, then and it gets as we go through more and

more nearest neighbors the decision surface becomes more plausible. But, again with nearest

neighbors the problem is often that is we have many when we are many dimensions it is just

there is nothing that is really near to anything else ok.



(Refer Slide Time: 26:35)

So, now a method that is often we can start with to just evaluate this logistic regression. As

you if you remember it looks very similar to linear regression that is we have the input or

different protein measurements we have our parameters, the weights for which the multiplier

each value of it the it is weight, add them up and add the constant, but now that is so far that

is  linear  regression.  But,  now  in  logistic  regression  that  is  becomes  the  parameter  of  a

function of the logistic function and which we call sigma and it looks like this.

So,  we  introduce  a  non-linearity  and  the  as  we  see  here.  So,  these  are  four  different

parameters of we can we gets this transition from 0 to 1 that is depending on the parameters

we have different  sharpness  so,  but  what  we again.  So,  now, we have we want to  have

classification. So, we have two cases. So, in the extremes here at low values we have that is

doubt with is 0 and at high it is 1 and then we have this transition region.

So, that is why we can use the logistic function for classification.



(Refer Slide Time: 28:09)

And, this now is just comparing them. So, linear regression this is in with one x value. So, we

have the slope and intercept that is linear regression and then logistic regression we just have

the same expression, but we have a non-linearity.

(Refer Slide Time: 28:29)

And, so, the other thing that is we looked at the shape of this function going from 0 to 1 and

since we are going to do a gradient descent we need to look at it is derivative and it is there is

actually a very simple expression for it is derivative and it looks like this. 



So, again it is very flat out here when we follow by from the transition and the derivative is 0

and if you remember for gradient descent that is not very good because we get if the gradient

close to 0 we get stuck there. And, so, we want to make sure that we are not too far away

when we start otherwise we would not find it.

(Refer Slide Time: 29:19)

So, this is just an example a very bound logistic regression and if you remember from the

nearest neighbor is the same dataset we got pretty close to a straight line that also and that is

what we get in this logistic regression.

(Refer Slide Time: 29:41)



So, now if we look at the energy surface of this; so, remember that for linear regression when

we use the sum of square errors it is behave the really nicely,  but here we see something

completely different. It is really not does not behave well when you use the sum of squares

and it is probably easier to look at it here. So, this is our minimum in there. So, we have a

huge mountain behind it, very steep gradients and very shallow gradients. So, we have to

somebody find their way in here through very shallow gradients.

So, so, what this means this is a bad choice of a loss function and this is just some other ways

to look at it we can have that if we approach from here to the minimum it is very shallow, but

then it is sharp and then here we have looking at the other way we have this plateau about

where we can also get stuck.

(Refer Slide Time: 30:39)

And, now this is you know me to remember this better is an appropriate loss function for

logistic regression and that is this one, but I am not going to go into details.



(Refer Slide Time: 30:51)

So,  then  when  we  applied  that  loss  function  the  it  is  the  self  has  become  much  more

manageable and we can do gradient. We still have that it is in one direction it is more shallow

and sharp in that direction. So, it is not as nice of a surface as for linear regression, but it is

still reasonably good and also the other thing that for this for logistic regression we do not

have an analytical solution. So, here we have to do gradient descent.

(Refer Slide Time: 31:37)



So, then if you have the same number of points and distribution so, this is one class up here at

1 and then the other class at 0 we see that the surface varies a little bit if we have in the if you

have fewer points we get quite a much larger variations in this case. 

(Refer Slide Time: 32:03)

And, when we can also do gradient descent through this; so, we start out here then we walk

down, but again we have to be careful that we do not take too large steps when we come

close to this very short steep here because then we end up being thrown over far away from

the minimum.

So, again so, both for both logistic and linear regression we have these hyperparameter we

have to decide on the learning rate, how we scheduled the learning rate usually the how we

decrease it and if we want to remember some of the momentum and have some friction built

in.



(Refer Slide Time: 32:53)

So, if you look at regularization here again we are on a guard against overfitting, but. So, here

in this case So, the same as for linear regression we do not we can also add in polynomial

terms. We can do the same thing I mean so, the expression was the same. So, for logistic

regression you can do exactly the same thing.

And, so, here we have there is no linear surface that can separate is the yellow and the black

here  if  we  have.  So,  if  we  add  in  higher  degrees  of  polynomials  they  can  do  a  better

separation,  but  again  in  this  case  our  surface  is  little  bit  too  jagged  and  it  is  probably

overfitting, but then we can fix that by doing the same type of regularization either less or

ridge regression.



(Refer Slide Time: 33:55)

So,  and  how does  that  if  we look  at  the  energy surface  for  logistic  regression  with  no

regularization we had this case and when we at in regularization it actually helps us also in

the speed of learning that meaning that and you see that the gradient here is when we add in

the regularization is much higher. So, that it is more comparable to this. So, we will be able to

find the minimum faster.

(Refer Slide Time: 34:39)

So, then a few examples of yeah So, we had. So, you have probably heard about neural

networks and deep learning. So, what that is? So, each of these nodes here is a very similar



node  to  one  logistic  regression  unit.  So,  we  have  the  inputs  the  different  protein

measurements  we  have  the  weights  and  we  multiply  each  weight  with  each  protein

measurement and sum them up and then we have an offset.

And, we have some kind of non-linear function which can be a logistic function, but it can

also be other things. And, here we have we always have one input layer at least one hidden

layer and an output layer and this illustrative what it is called the fully connected network

where each node in each layer is connected to all the nodes in the next layer.

And, and now this only shows one hidden layer, but nowadays it is very popular to have

many hidden layers and that is what that is why it is called deep learning because you have

many layers. And, right now this is the most popular method that probably that people use,

but it does often require if you do not want to make it very small neural network, but at least

for  these  large  ones  that  people  do  you  need  a  lot  of  data  and  in  most  cases  for  in

proteogenomics we do not have enough data to build neural network.

So, most recommendation is even there is all this hype of deep learning , but best to not for

proteogenomics not to get into that and unless you have very good reason. And, probably 10

years ago support vector machines were what everyone did and it was a very popular I mean I

would say probably support vector machine 10 years ago was what neural networks are now.

(Refer Slide Time: 37:17)



So, there is always fashion in which methods are you, but support vector machines are very

useful and they and most of what they do is they of course, find a plane that separates the data

, but then they also find try to find the largest margin. And, the support vectors are the data

points that are on these margins. 

(Refer Slide Time: 37:47)

So, I think Mani showed this slide on tree base methods and those are also very powerful

methods  that  especially  in  this  case showing that  you can have a very highly non-linear

function that you can classify all these even though they are quite intermingled by. So, each

of the nodes in the tree is a decision whether it is some measurement is larger than some or

smaller than something, you can go in different errors.

So, I would say that right now the most success people have is with either support vector

machines over tree based methods, but actually I would recommend starting with a simple

method like logistic regression first also and include those.



(Refer Slide Time: 38:59)

And, the there is actually there is a theorem that is called a no free lunch theorem. And, this

was in the 9 days some people showed that when you start with a new project you have a new

dataset that you do not have experience with there is no way to tell which method we will

work best.

So, it is really sometimes a tree based method like random forest will work, but sometimes

logistic regression, sometimes support vector machines. So, it is really and of course, all the

methods have lots of parameters that need to be adjusted. So, what people often do is they try

all possible methods.

Now, of course, what you cannot do is to train one method on your training dataset, test it on

the test dataset, train another method or you are training to test it also and do this many times

for all the both for a different methods and for a different hyper parameters because you

should only use your test set once. So, you need to do this exploration, you need to do within

cross validation and they I think they are almost getting to cross validation I have said. 



(Refer Slide Time: 40:27)

That is we are going to get there soon, but and so, the other thing is marker selection that is

we have already mentioned earlier. So, now we do all these measurements and we you we

know that  most  of the proteins  or most  of  transcripts  are  not going to  be related  to  our

phenotype. So, we really it would be much better to just have build the model using the ones

that we know are related, but of course, we do not know which ones to start with. So, we

need to find.

So, they are if we look at mark,  so, by the way do marker selection.  So, the having few

features it is makes the model easier to interpret. So, one thing that we have talked about

building  these  predictive  models  and we  want  to  predict  something,  but  if  we  can  also

understand that is of course, a much better thing and off the many build very complex models

we do not understand and maybe would not have a chance to understand.

And, few features so, it is easier to interpret we can start thinking about biological function

and they are also less likely to over fit because fewer parameters, but usually we get a little

bit lower prediction accuracy. So, that is something to balance and that is what we use to the

then decide how many features.

So, as a person so, if there are many features it is difficult to interpret we do not know what is

going on and then of course, more likely to over fit because we have do have an enormous

amount of parameters. But, of course, as we add in more and more things we gets higher

prediction accuracy, but it is we are not sure whether that is really real.



(Refer Slide Time: 42:31)
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Dr. Fenyo provided a very good overview about how separating your dataset in different

training or test models can give a better evaluation. We also learned that when there is a

increase in the degree of polynomial the error goes down. We also learned it is better to have

large dataset as it will help in evaluation of the model better. Finally, we understood how to

minimize  the  risk  of  overfitting  of  data  with  regularization  and  why  we  should  avoid

overfitting of data. We also understood two regularization strategies which can be used like

Ridge and Lasso.



In the next lecture, Dr. Fenyo will talk about Association and Marker Selection.

Thank you.


