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Welcome to MOOC course on Introduction to Proteogenomics.  Analysis of large data

set is tedious and time consuming process. Data can be stored in large spaces available

on the internet called Cloud Storage rather than using the local computers or clusters.

Data can be analyzed  using cloud computing.  In  today’s  lecture  Dr.  D.R.  Mani  will

introduce you to the basic idea of cloud computing. This lecture will also provide you an

idea of the workflows involved in automating data analysis and the processing steps. So,

let us welcome Dr. Mani for today’s session.

So, if you take a standard computer let us say a laptop or a desktop that you have and

you connect hundreds or thousands of them together and you have an operating system

that can use all of them efficiently and you have a network that is so fast that you can

move data from one laptop to another without having to get a coffee break in the middle,

then you basically have a supercomputer. 

So, there were several types of supercomputers that were built in the last like several

decades but of late they are all converging towards basically what you can call a rack of

computers. So, you take a lot of computers basically motherboards, the boards that go

into your computer, you stick them into a big rack connect them with a very fast network

and then you have an operating system that can take jobs or tasks that are assigned by

that or being issued by users and then efficiently spread them across all the computers. 

So, that is basically a current day equivalent of a supercomputer. It is a lot cheaper than

building a custom one, but it is still expensive because the networks and disks have to be

really fast to keep up with a lot of the computing.

So,  a  lot  of  the  major  institutions  and  research  centers  started  having  their  own

computers.  Many  times  they  are  called  grid  computing  environments  because  you

connect the computers in a big grid and then you have a job scheduler or an operating



system that can dispatch jobs to the grid and you would be able to have a lot of users run

many programs. 

So, let us say you have Protigy that you saw the other day and you want like 50 people

using it at once; obviously if you run it on one server, it is not going to work and, so you

set it up on a computer. You give it like maybe 50 processors, so that every time a user

submits a job it goes to a different processor. So, that is automatically taken care of by

the user.

So, people started building systems like that. So, they are called local clusters or local

grid computers. So, the broad had one with about 3000 nodes in them. So, it had 3000

processors  and  you  could  submit  your  genome  alignment  job  and  if  it  needed  5

processors, it will get 5 processors and it would run it on those but as people started

doing this, it became more and more expensive to maintain them.

There are a lot of computing nodes you have, there is lot of hard disk and the other stuff

you need to track and keep operational and you need to constantly keep upgrading as

computers  become  faster  and  disk  drives  become  faster  and  so,  it  is  an  expensive

operation for each research institution to kind of maintain and have these are available.

So,  the  latest  trend  was  there  are  some  companies  in  the  world  that  has so much

computing that they can basically rent computing to anybody who wants to do any kind

of computation. So, Google is one of them.

So, Google has an extensive infrastructure for parallel computing with a lot of storage

because they crawl the entire internet and index everything that there is on it and so that

requires a lot of computing and a lot of space and they built a very large computing

system to deal with it but then they are not using it  100 percent of the time. So, they

figured we have this idle now and then why do not we start kind of renting it to other

people so they can use it.

So, Amazon did the same thing. Amazon has an extensive computing infrastructure that

they have for their business. It started off as a computing environment for their business,

but slowly as other people started using it and found it to be very useful and actually

significantly cheaper  than your  own  IT department  maintaining your  cluster  or grid



computer people started using those systems more and more and now they have their

own infrastructure for just providing computing to people who want to use it.

So, these kind of systems where you have a lot of computing and disk space, lot of

computing power and disk space available that you access through the internet is called a

Cloud computer. So, it is the cloud because the internet is usually represented as a cloud.

When you are drawing a network diagram of computers, you always draw the internet as

a cloud because it there is no specific connections that you can.

So, if you connect your laptop to your neighbour’s laptop, then you can say computer 1,

computer 2 and draw a line between them, but the internet is a set of connections that

basically  are  generated  on demand and you  do not  know what  goes where.  So,  you

generally draw it as a cloud and so computing systems that you access using the internet

are called cloud computing systems.

There are two or three very big ones.  One is  Amazon obviously;  Amazon system is

called  AWS,  Google has one which is called the Google  Cloud  Computing platform  I

think, Microsoft has one called Azure  I think but Google and  Microsoft are the sorry

Google and Amazon are the really big ones that pretty much everybody uses.

So,  the  concept  there  is  they  have  a  large  parallel  computing  system that  they  that

Google  maintains  and  when  you  want  to  do  some  computation, you  basically  rent

whatever you want.

So, you say  I  want  10 computing nodes to run my job for  5 hours. You get that, you

finish your job, you pay whatever it costs like a few dollars and then you are done. You

do not need to pay them anything else. So, you do not need to maintain it,  you do not

need to upgrade it, if things go wrong you do not need to fix it. 

Google will do everything for you and they will maintain a large enough set of nodes

that you can basically get very large computers on demand and. So, when these things

started  becoming  available  a  lot  of  kind  of  genomic, proteomic  and  proteogenomic

computing started to move over to the cloud. 

So, there is a big difference in kind of how you think about analysis now. So, previously

you  had  all  your  data  on  your  laptop.  People  you  wrote  algorithms,  you  got  the



algorithms to your computer. So, your data was fixed, you brought your algorithms to

wherever the data was and you ran them. Now the algorithms are in the cloud. So, you

have to take your data to the cloud. So, it is kind of a paradigm shift in the sense that you

now kind of move your data to the cloud and then do the analysis there.

So, there is costs for storing data. There is cost for getting data out. The most expensive

part of cloud computing is if you want to get data out of the cloud because they want it to

be  there,  so  you  can  they  can  charge  you  for  storage  and they  can  charge  you  for

computing, but if you take it out then there is the cost of taking it out as many times

more than actually doing the computation.

But that that is how they have set up the infrastructure but the bottom line is you can now

have algorithms that are deployed on the cloud. It could be what you have developed

many times. Other people make their algorithms available, you take your data, you put it

there and then you analyze it and you get results, you download the results and then you

can  look  at  them.  So,  that is  kind  of  the  basic  5 minute  overview  of  what  cloud

computing is and how you use it.

So, some of the advantages here other than the maintenance and cost I mentioned is that

a lot of these are set up to provide a lot of parallelism. So, if you want like a machine

learning algorithm that is very compute intensive, then you can recruit  100 or 200 or a

1000 nodes, do your; runs very fast or however long it takes and then release the nodes.

So, it is on demand, it is very flexible and it provides a lot of kind of flexibility in terms

of how you use computing and what algorithms you use.

So, what I am going to go through here is at the broad we have this platform called Fire

Cloud. I will go through what FireCloud is and how it is deployed on the Google cloud.

So,  the  cloud  computing  platform that  FireCloud  is  written  on  is  the  Google  cloud

computing platform. 

So,  I will  kind of  go through how it is  done and how you  can create  pipelines  for

analyzing all kinds of data using FireCloud and so,  when you use FireCloud , you are

essentially using the Google cloud computing platform and I will just at the end of it, I

will spend a few minutes to show kind of a hand demo where we have put a lot of the

proteogenomics tools on FireCloud the I called it a demo or not a hands on because as of

now the workspaces and algorithms are not accessible to everyone. 



They will be soon, but right now they are kind of private because we are still developing

and the broad wants to ah make sure we know what kind of license we are going to use

and things like that before we make it public but it should be available to the public very

soon and I will just give you a demo and it is kind of a teaser for what you can do in the

near future.

(Refer Slide Time: 11:03)

I want to kind of acknowledge that the set of slides you see was created by people in

Gaddy Getz’s  Group at the  Broad Institute. So, he does a lot of genomic data analysis

and FireCloud the  primary  use  for  FireCloud  when it  started  was  for  genomic  data

analysis. So, they created these slides and I am just modifying or adapting them for this

presentation. So, I want to kind of acknowledge that these are their slides.

So, first of all when you are doing a lot of analysis, so you are going to write a paper that

does  a  lot  of  proteogenomic  analysis.  For  example,  that  uses  proteomics, phospho,

proteomics, whole genome, whole-exome, RNA-Seq you are combining all the data, you

are doing a lot of analysis, you can try to do it in excel but at the end of it you will be so

confused on what  you  did  that  you  cannot write  the  method  section  and if  you  did

nobody can replicate it.

So, usually when you do large scale big projects like that which involve a lot of analysis

with many different pieces, you generally write code. So, you write a script that says this



is my initial data set. I did this filtering and then I did this imputation and then I did this

test and then I visualized it with the heat map or something like that. 

So, there are many different like paths analysis, paths for different types of data. There is

a lot of analysis you do and one easy way to kind of document all of that is to write code.

When you write code, what the algorithms are doing and what data processing you are

doing is extremely clear.

(Refer Slide Time: 12:43)

So, you generally write code and the so here script basically means is code. In in many

different languages when you have code that is interpreted and you write line by line. It

is  called a script ah. If you write a big chunk of code and then run it in a compiled

language like  Java or  C, then it is called code but if you write  R you would call an  R

program a script. So, when I say script I mean like a program.

So, the advantage of writing something like that is that in the in the breast cancer project

for example, what happened was we did some set of analysis. People looked at all the

results and said; oh, this data has to be pre-processed in a different way; what we did

now is it is not quite right and so, you go and make a change. Now you have to re-run

and all the analysis you did because the basic data changed. 

So, you have to repeatedly run your analysis many times and also if you make it general

enough, you can run it on other types of cancers too. Whatever analysis we did for the



breast cancer,  you could have done it for the other cancers also. So, that is kind of the

concept behind writing a script, so that you can automate your processing.

So, if you have a script all you need or you need to specify what your inputs are and then

the whole thing will run and all the analysis will get done. So, it helps you automate

repetitive tasks. So, you do not need to keep doing it and if people do repetitive things,

they generally tend to make mistakes because that the brain is not tuned to repeating the

same thing over and over again.

You can increase reproducibility and someone else can see what you did without having

to kind of bug you and you trying to remember what was done and so you can reduce

human  error  and  you  can  re-implement.  Sorry,  you  can  reduce  time  spent  on  re-

implementing. 

So, suppose you have an analysis method that you have in a big pipeline, you can give it

to someone else and the  ovarian  cancer group can use your pipeline and do the same

analysis on their data without having to rewrite everything again. So, that is kind of the

advantages of using automated scripts for a data analysis.

(Refer Slide Time: 14:53)

So, there are a lot of ways to take a script and make it into a pipeline, so that this is like a

humorous thing where the situation is that there are  14 competing standards. So, there

are let us say 14 competing pipelines and then they discuss they say you have 14. That is



ridiculous. We need one that kind of combines the features from all of them and so now

we have 15 competing standards. 

So, there are already many tools for writing pipelines and kind of using them but I guess

the point I am trying to make is that we have one more and we think ours is better like

everybody else.

(Refer Slide Time: 15:39)

So, the way scripts are written in this FireCloud environment is basically in a human

readable form. So, many times you there are environments where you can graphically

write a script. So, there will be a box for doing a data filtering,  there will be a box for

doing data normalization.  So, you layout  all these boxes and then connect them with

arrows and that is your pipeline. 

So, there are tools that do that ah, but the problem with those is if you want to rerun them

with a different data set for example, or you want to change your threshold from 5 to 3

like you did in your R program yesterday, you have to open the thing, you have to click

it, you have to go to the right box and make the change. So, it is not prone to higher

levels of automation.Suppose you wanted to loop through 5 different thresholds like we

did yesterday, then you would have to go to the user interface, make the changes 5 times

and then rerun it. Would not it be nice if you could just do that in yet another program

that actually calls your pipeline? 



So, in order to go automate things like that you want your pipeline to be defined in a way

that is also automatable and so, here what we do is we use a language called WDL. It is

pronounced widdle and it stands for Workflow Description Language. What that does is

there is a definition of a workflow. 

So, there are some input variables that you can give when you call the workflow and then

there  are  several  tasks  that  the  workflow executes.  So,  it  starts  with  tasks  A, does

whatever is needed for task A and then goes on to task B.

The nice thing about this is the output of task A can now become inputs for task B. So,

that is how you chain your things together. If you had  a task  C, the output of task  A

could go to task  C and skip task  B. In that case you know the task  A and  B can be

executed in parallel because they do not have any dependencies.

So,  what  the  language  does  is  it  says  let  me  draw out  my  graph.  If  things  are  not

dependent on the previous thing being run, I  can run them in parallel. So, if you have

task A, B and C and C requires input which is the output of task A, then it is going to run

A and B in parallel and as soon as A is done, it will start C. It won't wait for B to stop.

So, it provides some kind of inherent parallelism to run things which are not dependent

on each other separately and so, it speeds up your pipeline execution too.

So, once you have defined your workflow you have to define what your tasks are and so,

here is  an  example  of  how a task  would look.  So,  task again  has  inputs,  there is  a

command. So, remember a lot of these things are based on tools that were written for the

command line and in order to put it into ah into WDL and use it in FireCloud, you have

to be able to run your algorithm or task or method using command line invocation.

So, you say what command you need to use in order to run task A. The other thing here

which says where do  I  run this task is the cool is another kind of recent technological

concept that that is now permeating how people write software. How many of you have

heard of Dockers? Couple of them, ok.

So,  I  will  I  think  there  are  more  slides  that  kind of  go into  that  in  more  detail  but

basically where the thing is run is in a Docker and then it creates some output. So, once

the output is there, other tasks that are run afterwards can use that output. So, that is kind

of the overall concept of how a workflow is written in FireCloud. 



(Refer Slide Time: 19:23)

.

So, this is the thing about Dockers.

So, Dockers are basically conceptually containers. So, what you do is there is this kind of

environment called Docker. So, you have to download the software environment, install

it on your computer and then the concept is that suppose so all of you saw how much we

struggled with getting the versions and stop write for the protigy hands on because we

started with 3.5. We did not work. We went back to 3.4 and then to 3.5 and every time

we made a change you had to go and make the change in your computer and pretty soon

it got annoying that you had to reinstall  so many times.

A nicer way to do that would have been to create a Docker. So, here what we do is

conceptually we create like a container that says this container is going to contain all the

software  that  I  want  to  run  my program and  it  will  contain  everything  in  the  right

versions. So, you start a Docker and then you say I need the R version 3. You put in R

version 3.5 and then you say I need these 15 libraries. So, you put in all the 15 libraries,

you need then let us say Java to run something else and a specific version of Java you

can put in that. So, you put all those and then you create a new container.

Now, instead of asking you to download Protigy on your computer and install R and this

and that, what we are going would have done if we had a Docker is to say download the

Docker. So, just like you can put code on GitHub, you can put Docker containers that

you have created on a repository called Docker Hub. So, what we would have done in



the ideal case is create a container for Protigy, put it on Docker Hub and say everybody

in the class go to Docker Hub and download this container.

If you had done that you would not have to worry about versions. It will run on your

computer because it has been set up to run the correct way. All you needed to do was

download the Docker and give your data as input. So, that is kind of the concept here. In

in a lot of the cloud computing frameworks what people do is use Dockers to make it

platform independent. 

So, you have a Docker that runs on the Google cloud, you can take the Docker and run it

on  Amazon cloud or you can take the Docker and run it  on your  laptop.  It  will  run

anywhere ah. Docker cum containers can be executed and that is most operating systems

in computers.

So, what we are trying to show here is that there is a common operating system and on

the operating system you can create containers. So, this one is for our proteogenomic

data analysis containers, this is for GATK to do genome analysis, this is for some other

alignment and so forth.

So, you can create dockers on a common kernel and this kernel will be made available by

the by the or the company or the institution that supports the Docker platform. So, they

will make a common kernel available. You can modify the kernel by adding stuff that is

specific for your application and then you create a container and now that is your Docker

for that application.

And so in this workflow what you are doing in the runtime is you are you take the

command and you execute that command in a Docker that contains the algorithm that

you have written. So, this makes it very easy to kind of encapsulate things and if you

want to replace your algorithm with a new version, all you have to do is replace the

Docker  with a  new version  or  update  your  Docker  and then  you  will  have  the new

version in there.

Any questions so far? Ok yeah.

Student: Sir, can we go back at some point of time and add things to the same Docker or

does it freeze after we put something once?



No, the Dockers are plug. You can make changes, but the good thing is when you make a

change you create a new version and so let us say you published your paper with version

1 of this Docker, now you realize that  I can actually do this much faster by changing

some computation that I do. So, you do that and you create version 2 of your Docker.

Now, both versions can be kept around you can say I will keep my version 1 around just

in case somebody who is looking at the paper wants to run what  I  did, but  I  for most

users  I want to use my new version because it runs much faster. So, you can keep a

version of this method that uses the old Docker and create a new version that uses the

new Docker or you can say I do not care it is the same thing. It just runs faster. I am just

going to replace it, then you can replace the Docker with your new version.

So, you can do either way and Dockers are not like written in stone. You can modify

them, you can create newer versions and you can take what you have and add more

things if you want. Any other questions? Yeah.

Student: If we add the like in container if we add the one version and then second version

if we download it?

Yeah.

Student:  Are you going to give a command as to which of the two is executable?

So, when you download the Docker you have to specify what version you want. I think

the default is if you do not specify any version, you will get the latest version, but if you

want the older version you have to specify which version you want. So, just like in code,

right. So, you can have code that is version 1.

So, windows for example you have windows 10.5 or Mac OS 10.5. 

But you could have a older version which was 10.3. For some specific applications you

may want to do that for example in the lab tour yesterday we saw Peptide  Sequencing

machine that was running off a Mac that is about 20 years old. I am sure that cannot run

the new version of the operating system. So, you would need a old version. So, you

could have dependencies like that. Did that answer your question or?



Student: Generally in the new version already you have the old version if you read and

then something extra is there. So, there is no need to add.

So, in the Docker if you just want to add something extra, you can add something extra,

but it is still a new Docker because you modified the old one. So, it will be considered a

new version.

So, if you think the change was simple enough that you do not need the old version

anymore, you can throw it away and just replace it with the new version.

(Refer Slide Time: 25:57)

In today’s lecture you were introduced to the terminology used to describe automated

data  processing  work  flows, key  advantages  of  automated  data  processing  involved

reduction of error time and cost. We are also introduced to the concept of Dockers which

contain all the relevant versions of softwares and files needed for data analysis and lastly

you  learnt  about  how  the  workflow  definition  language  can  be  used  to  provide

parallelism and faster  speed in  cloud computing.  The next  lecture  we will  focus  on

FireCloud, a cloud computing platform from the Broad Institute of MIT and Harvard.

Thank you. 


