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Hello and welcome to today’s lecture. In the last two classes we had discussed about the 

central limit theorem. So, it is one of the most important theorems which establish a link 

between the theory of probability and statistical interference. So, essentially in central 

limit theorem you are the most powerful statement is even for non normal population’s 

the statistics from sampling distributions of essential statistics like mean or sum of 

random variables are normal or follow normal distribution if the sampling sizes is large. 
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So, two things we had in the last class we had discussed that if I define x as summation 

of x i. Then an each of x i has mean mu and variance sigma square then summation of x 

x equal to summation of x i will follow. So, x will follow normal distribution with mean 

n times mu. So, for summation x i for n random variables; n mu, and variance n sigma 

square. 

So, we can also convert this normal variable to; we can define this variable Z as x minus 

n mu by sigma root n. So, Z gives us a standard normal variable. So, Z gives us a 

standard normal variable which means its mean is 0. So, mean of Z is 0 and its variance 



is 1. Similarly, if I define x bar as the mean simple arithmetic mean is summation x i by 

n then we have found that Z is equal to defined by x bar minus mu by sigma by root n is 

a standard normal variable. 

Now, what can we say about the sample variance; what can we say about the sample 

variance as another metric. So, how do we define the sample variance? So, the sample 

variance s square, so if you have x 1, x 2 comma x n as a random sample from a 

distribution with mean mu and variance sigma square. So, I will define my sample 

variance as s square (Refer Time: 03:39) s square is equal to summation of x i minus x 

bar whole square by n minus 1. So, this is the sample variance. 

So, can I say anything about the link between the sample variance and the population 

level variance? 
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So, essentially the question is how is s square (Refer Time: 04:17), how is s square and 

sigma square which is the population variance related? Since, s square is defined as 

summation of x i minus x bar whole square by n minus 1, so I can write n minus 1 times 

s square is equal to summation of x i minus x bar whole square. Now this I can expand 

and as we have done before it can be shown that this will come out to be summation x i 

square minus n x bar square. So, I can take the expectation on both sides of this equation. 

So, I can write n minus 1 expectation of s square is expectation of summation x i square 

minus expectation of x bar square. 



Now, we know that variance of x is defined as expectation of x square minus expectation 

of x whole square. So, from this equation I can write expectation of x square is equal to 

variance of x plus E of x whole square. From this equation I can then simplify; now 

because each of these excise are independent I can write this equation as summation E of 

x i square minus n times E of x bar square. So, summation E of x i square can be written 

as; so I can write n minus 1 times expectation of s square is equal to. So, since each of 

these E x i is mean n, so I can simplify it as n expectation of x 1 square let us say minus 

n expectation of x bar square. 

So, this becomes n times variance of x 1 plus n times expectation of x 1 whole square. 

And this part minus n is variance of x bar and plus E of x bar whole square. 
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So, I can then again simplify this equation to write n minus i E of s square it is shown as; 

so n times variance of x 1. Let me write you have n times variance of x 1 plus n times E 

of x 1 square minus n times variance of x bar minus n times E of x bar whole square. So, 

this I can simplify as n variance of x 1 is sigma square n times E of x 1 is mu so you have 

n mu square. Variance of x bar is, so x bar has variance of sigma square by n which we 

derived. And n a E of x bar is simply equal to mu, so minus n of mu square. 

So, this gives us equal to n sigma square; so this has this term cancel each other right out. 

So, we have n sigma square minus sigma square equal to n minus 1 into sigma square. 



Implying expectation of s square is simply equal to sigma square. Thus, the sample 

variance is equal to population variance. This is another important equation. 
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So, coming back to the central limit theorem, where can we make use of central limit 

theorem. So, we come for the idea of inferential statistics. Why is inferential statistics 

important? Some examples let us say, government often predicts the short term or long 

term growth rate right or growth forecast of the country. So, this might be let us say- at 

the country the GDP will grow at 5 percent at 7 percent so on and so forth. So, here you 

have what is called a point estimate; that means we are predicting or the statistics is used 

to predict a single value. Versus, let us say you can estimate. So, you have a house you 

want to sell it, you want to estimate the sale price of the house. So, this can be arranged. 

What is the minimum you can expect to get, what is the maximum you can expect to get? 

So, in this case what you come up with is something called interval estimate. Now 

consider the point distribute; let us take out the first example which is a point estimate. 

Like imagine you have a dart porter, and this is the true value of what you want. So, you 

want to hit the bullseye or the center point. But when you get the sample the data or you 

hit it in the board many times let us say you are repeatedly throwing it and this is how 

you are getting your points. So, these are estimates of what you want of the bullseye. 

So, this is one example. So, where you see that these values are mostly below this axis. 

Or you can have a situation where you have points which are all over the place. So, the 



difference between this equation here or this equation here; or let us take another case the 

points are here. So, what is, how do we discriminate between these three cases? So, what 

is chosen when you want to come up with a point estimate, what should be your 

yardsticks? 

So, number 1: if this is your true value of a parameter that you are trying to estimate. 

You want, so let us say this is a true value, so this is some axis. This is a true value of the 

parameter you want to estimate. You want an estimator which is unbiased. In other 

words it has equal chance of predicting slightly higher or slightly lower values. So, this 

would be closer to this one and this kind of an estimator is an unbiased estimator; you 

have an unbiased estimator. Versus, in this case let us say the example we have drawn 

here its mostly for example you can draw it us like this. 

So, this is the true value, so most of the times your values are either underneath. So, this 

is an example of a biased estimator. Also to compare between this and this, for both of 

them whatever is the true value is this, one has this as the representation and the other 

one has this as the representation. So, you can clearly see that in this case it is better 

because here the estimate, thus variance of this estimate is lesser. 
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So, that brings us to the idea that for point estimate; write it down, when we want to 

come up with a point estimate there are two rules: you want an unbiased estimator and 

second the variance should be low. 



So, clearly in our case what we found was the mean the best or one of the best estimator 

of true value of a true value of a parameter. Why, because we showed that the sampling 

mean follows a normal distribution and then depending if your sample size is larger, then 

your variance can also come down. Because the variance for sample mean is sigma 

square by n. But in the general case as opposed to predicting a small value it is better to 

come up with a range, it come up with a range. Or, and this kind of a range is called an 

interval estimate. For a normal distribution we know, so I can write; so we know that 

between 2 standard deviations 95 percent of the data is there. So, roughly 95 percent of 

data or is that is estimate is there between 2 standard deviations; so instead of 2 it s 

actually roughly 1.96 in to be exact. 

So, if I were to draw this, this is your distribution that you obtain. Let us say this is your 

sample mean, this is 1.96 times s E both this and this is 1.96 times s E. And this total 

area this covers 95 percent of the data, which means that the probability that any estimate 

falls within this range is 95 percent. 

(Refer Slide Time: 16:36) 

 

So, I can write down this statement that the probability, so if you are doing with a sample 

mean we can write down the probability that between minus 1.96 and 1.96. So, the 

probability that your standard normal variable lies between minus 1.96 and 1.96 is 0.95. 

So, this is what it means for 95 percent chance that your value estimate is going to be 



within 2 standard deviations. So, I can rewrite this equation. I can multiply by sigma by 

root n, I can write x bar minus mu plus n 1.96 sigma by root n; and this is 0.95. 

So, I can again simplify it I can multiply by a negative sign. So, I can write minus 1.96 

sigma by root n less than mu minus x bar less than 1.96 sigma by root n. So, this can be 

simplified further implying, if I add x bar to both of them x bar minus 1.96 sigma by root 

n less than mu less than x bar plus 1.96 sigma by root n 0.95. 

In other words, the difference between estimator, your domain the 95 percent confidence 

interval is the range given by x bar minus 1.96 sigma by root n to x bar plus 1.96 sigma 

by root n. This is called the 95 percent confidence interval. 
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So, let us take up an example; let us do an example. Imagine a scientist is studying the 

effect of global warming on wildlife in the Arctic. So, as part of this the samples the 

average weight of polar bears. And what he founds from a random sample of 50 polar 

bears. So, he comes up with the average weight of 1000 Pounds, and a standard deviation 

of 100 Pounds. So, the question is based on this can we estimate; what is the average 

weight of all the polar bears. So, all the polar bears mean that you want to estimate mu 

which is a population mean. And what you have been given is a sample mean x bar 

which is equal to 1000 Pounds and the sample variance sigma is equal to 100. 



So, for 95 percent; for creating the 95 percent confidence interval I want x bar plus 

minus 1.96 times sigma by root n. So, this would mean between, so this term will come 

out to be 1.96 into 100 by root of 50, this is if you calculate they will come to roughly 

around 30 Pounds 

So, what you can say with certainty that the sample estimate of 1000 Pounds lies within 

plus minus 30 Pounds of the population mean. So, implying the population mean must 

lie between 970 and 1030 Pounds. So, with 95 percent confidence you can say that the 

mean is going to be lying between this and this. 
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So, what does exactly there is this 95 percent confidence interval mean? (Refer Time: 

22:39). What do we mean by saying that 95 percent confidence? What it means? What it 

means is imagine this is your true mean; this is your true population mean. Let us say 

you sample it once and you found the sample range interval to be between this and this. 

Similarly, another time you did it and you found a range which is somewhat like this, 

you get valleys between these two and so on and so forth. Only 95 percent means, only 

once out of 20 times. You will probably get an interval which is like this, where which 

does not contain the population mean. So, in all of these three cases the range contains 

the population mean, but this is an example where this range does not contain the 

population mean. 



So, when we say 95 percent confidence interval this means that only in 1 out of 20 times 

you will have a scenario where the population mean does not lie in that interval. Let us 

take another example: this is considering about opinion polls. In opinion polls: so let us 

say you have taken a random sample of 100 adults and this is an opinion poll about 

global warming. So, an opinion poll and of 100 adults 70 percent believe in global 

warming; 70 percent believe in global warming. 

So, we want to estimate the true population who believe in it and we want to find the 

margin, the margin of error. So, here we are talking about the proportion. Now for 

proportion this follows normal distribution. So, proportion is probably x the number of 

people out of a population who believe in it. So, p the proportion follows normal 

distribution with mean p which is given in our case to be equal to 70 percent and 

standard deviation root of pq by n, where n is your sample size. 

So in our case, in this case the margin of error becomes 1.96 into root of pq by n. So, if 

you plug in the values they should be come out to be 0.09 implying the true population 

would lie between 0.6 to 0.79; roughly 0.61 to 0.79. 

With that i would like to conclude our class for today. So, we saw how you can make use 

of the central limit theorem as a link between probability and statistical interference. And 

we make use of the idea of confidence intervals to gain a range within which the 

population mean should lie. 

Thank you for your attention, I look forward to next discuss. 


