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Shock Boundary Layer Interaction- I  

  

So, we are looking at some interesting flow features in high Mach number flows some 

discussions were had on hypersonic flows which are at very high Mach numbers where some 

special physical features become important. We also had a discussion on interactions of oblique 

shocks of different kinds they also lead to interesting flow features and there are some 

important design considerations also that figure when you consider shock-shock interactions. 

 

Now we will see what happens when shocks come close to the body and they interact with the 

layer where viscous these are the effect of viscosity is really important which is the boundary 

layer. So, we look at shock boundary layer interactions. In majority of the discussions, we had 

in this course we had not touched upon viscous flows we were largely inviscid. 
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That is how generally the flow fields over bodies are described because in general the viscous 

forces are relatively small in comparison to inertial forces which is typical for any high 

Reynolds number flow. Therefore, in majority of the flow it we can consider that the flow is 

inviscid. But this consideration becomes a problem because always there is a drag associated 

with any, body in flow. But if you do not consider viscosity at all then if you consider a flat 

plate, it should not have any drag at all.  



 

But that is not the case you always have drag this was the famous DL Birds paradox this was 

a consequence of neglecting viscous forces. It was Prandtl who provided a method to overcome 

this situation by introducing the concept of a boundary layer. A layer which is close to the wall 

where viscous forces are important viscosity plays a dominant role. Then from that point 

onwards all analysis of fluid flows has typically taken place by considering 2 regions. 

 

Outer inviscid flow that is over here high Reynolds number flow outer flow we can essentially 

consider to be inviscid, and we have all the inviscid methods to be applied over here. While at 

the wall very close to the wall what is shown here is like a zoomed inversion near the wall there 

is a boundary layer that develops where viscous forces are important. At the wall it is a no slip 

condition that is velocity is 0 at the wall relative to the wall.  

 

So, V = 0 at wall, and slowly the velocity increases gradually and then finally reaches the 

inviscid velocity at the outer edge of the boundary layer. If you consider just a flat plate and a 

uniform flow occurring over it then this velocity goes all the way from 0 to the uniform inviscid 

velocity u infinity which is very close to the edge of the boundary layer. So, you consider such 

bifurcation such 2 regions outer invisible flow inner viscous flow the boundary layer is where 

we consider viscous flow.  
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So, what is the advantage of this kind of an approximation it allows us to simplify the Navier-

Stokes’s equations great deal. If you consider we are considering in order to understand what 



a boundary layer has let us just consider the incompressible flow and 2D Navier-Stokes’s 

equation for an example this is the continuity equation, 
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 and these 2 are the u momentum and v momentum, or x momentum and y momentum 
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Now here if we had considered that there was no viscosity at all then all these terms would just 

go away, and we would be just left with the inviscid part. But that would not give us any drag 

at all therefore we have to consider viscosity. But what is it that is important this is what we 

would like to know when we consider a boundary layer kind of approach? To do this we will 

just do an order of magnitude analysis to know what terms in this. 

 

These terms are just the convective acceleration terms this is the pressure term this is due to 

viscous forces. Now we should know which of these terms are important to understand this we 

say that the velocity ‘u’ goes scales or goes according to 𝑈∞, u ~ 𝑈∞, that is the outer stream u 

~ 𝑈∞. While we now say that there is a very thin layer which is just above the surface of the 

plate a thin layer develops which is the boundary layer.  

 

So, we consider that in the y direction the important length scale is the boundary layer thickness 

delta while along x direction the length scale is just L. Now if you consider the continuity 

equation then here if you do the order of magnitude analysis you find that u goes as U infinity 

while x ~ L. Well, if you consider, v, let us say there is a proper scale for v which we can say 

is some v star by delta because y goes as delta.  

 

So, from the continuity equation we find that we should have a scale that there is a v velocity 

in the boundary layer which has a scale which has a scale 𝑣 ~ 𝑈∞ 
𝛿

𝐿
 and ′𝛿′ that is the boundary 

layer thickness is small compared to L. So, there is a very small v velocity outside here. In the 

free stream it was just a uniform flow parallel to the wall and now once the boundary layer 



forms, we find that there is a v velocity that is produced therefore the streamlines will shift 

away from the wall and this boundary layer thickness grows. 

 

Now if you consider the x momentum equation then you similar scaling you can do and you 

find that the first term goes as 
𝑈∞

2

𝐿
,  second term goes as 

𝑈∞
2

𝐿
,  there is the 

𝜕𝑝
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 term you have 

another term 
𝑈∞

𝐿2  here another term 
𝑈∞

δ2  in the y direction which corresponds to 
𝜕2𝑢

𝜕𝑦2 and they are 

multiplied by nu which is the kinematic viscosity. 
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Now 𝜐 is very small. So, if we consider this multiplication b if you multiply such a small 

number with 
𝑈∞

𝐿2
 this becomes a very small number. So, this can be neglected in relation to other 

terms. But if you consider new multiplying by 
𝑈∞

δ2 , here δ is also small so you find that this term 

u nu u infinity by delta square is significant and it will be of the same order as 
𝑈∞

2

𝐿
. 

 

Therefore, you can get the relation that 
𝛿

𝐿
  ~   

1

√𝑅𝑒
. So, when you go to high Reynolds number 

delta by L is very small or you have small boundary layer thickness. 
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Now if you consider the y momentum equations then what you find from such an order of 

magnitude analysis is all velocity related terms are very small, they have delta being multiplied 



everywhere. Therefore, these terms are very small therefore we get that 
𝜕𝑝

𝜕𝑦
 that is pressure 

variation across the boundary layer in y direction pressure is constant. Therefore, this leads to 

the set of boundary layer equation which are much simpler compared to the full Navier stokes 

equation which is continuity equation x momentum equation.  
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In x momentum equation the shear stress term can consist of only variation of u in y. So, 𝜏𝑤𝑎𝑙𝑙 

is 𝜈 (
𝜕2𝑢

𝜕𝑥2
+  

𝜕2𝑢

𝜕𝑦2
) at the wall. So, the shear stress, the important term is 

𝜕2𝑢

𝜕𝑦2
and across the 

particular across the y direction pressure is constant that is the third equation therefore the 

pressure gradient 
𝜕𝑝

𝜕𝑥
. Now p is then a function of x only, it is not function of y. 

 

Therefore, 
𝜕𝑝

𝜕𝑥
 can be written as dp by dx which is imposed from the outer inviscid flow where 

you can evaluate it using Euler’s equation or any inviscid formulation you can get this pressure 

variation.  So, this is the boundary layer equations. So, and they are much simplified compared 

to Navier stokes equation and this is what is normally used you consider an outer inviscid flow 

from which pressure applied on the boundary layer and hence the body can be calculated.  

 

While the viscous forces that appear on the body can be calculated by using the boundary layer 

equations.  
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So, here is the picture of the boundary layer visualized on a flat plate this is taken from album 

of fluid motion and you can see a nice development of the boundary layer over here which is 

of this kind. The same kind of profile can be obtained by solving the boundary layer equations 

for a flat plate. This represents the solution for a flat plate this is u/U in non-dimensional terms 

the y coordinate written in non-dimensional terms.  

 

So, for a laminar flow one can evaluate what is the coefficient of friction it becomes a function 

only of Reynolds number along x direction. 

𝐶𝑓    =  
0.664

√𝑅𝑒𝑥
 

 The boundary layer thickness it goes as 

δ    =  
4.4

√𝑅𝑒𝑥
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Why did we have all these discussions because an important phenomenon occurs around bodies 

when there is pressure gradient in case of a flat plate there is no pressure gradient it is just a 

flat plate. But other bodies for example airfoils or spheres cylinders here initially the flow 

accelerates for a flow which is coming in this direction. Initially flow accelerates and thereafter 

in the rearward portion the flow decelerates. 

 

Then the boundary layer is affected due to these changes in velocities the change in velocity 

produces changes in pressure when flow accelerates pressure decreases. So, you have a 
𝑑𝑝

𝑑𝑥
< 0   

and when flow decelerates pressure increases  
𝑑𝑝

𝑑𝑥
> 0.  

 

So, this term is 0. So, basically it is a balance between pressure forces and the shear forces the 

viscous forces at the wall. If you look at it if there is an accelerating flow that is called as a 

Favourable pressure gradient 
𝑑𝑝

𝑑𝑥
< 0 you find that 

𝜕2𝑢

𝜕𝑦2
< 0. But as if 

𝑑𝑝

𝑑𝑥
> 0 then 

𝜕2𝑢

𝜕𝑦2
> 0.  

 

Now 
𝜕2𝑢

𝜕𝑦2
 is a derivative of 

𝜕𝑢

𝜕𝑦
, which is shear stress is proportional to 

𝜕𝑢

𝜕𝑦
. If 

𝜕2𝑢

𝜕𝑦2
 is increasing, 

then the slope at the wall should keep increasing it should keep increasing. So, in accelerating 

flow the boundary layer thickness reduces. You can also see it because of what happens to v 

velocity.  

 



Because v, velocity is negative du by dx dy is just from the continuity equation. So, if 
𝜕𝑢

𝜕𝑥
 

increases that is an accelerating flow v decreases but if 
𝜕𝑢

𝜕𝑥
 decreases which is a decelerating 

flow v increase. Increase in v means increase in boundary layer thickness now we find that if 

pressure gradient is increasing or its adverse pressure gradient. 
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Then 
𝑑𝑢

𝑑𝑦
 is increasing. So, this slope keeps increasing and it can at the max reach a limit where 

𝑑𝑢

𝑑𝑦
= 0 and further if there is an increase in pressure the flow cannot maintain the tangency 

condition and it just separates from the wall. The flow separates from the wall and there is a 

reverse flow that occurs. This kind of flow phenomena is known as Flow separation. 

 

This is very important in fluid dynamics because it gives rise to large pressure due to pressure 

drag due to separation. 
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There are several instances all these again from album of fluid motion. For example, here you 

have an Airfoil in uniform flow and the streamlines are made visible using a certain dice. Here 

you find that the flow separates at this point. It is no longer as uniform as its over here and here 

the flow separates. Here there is a wall this is a wall which has a certain contour, and the flow 

separates from this point. 

 

There is a region where there are lot of re-circulating vertices. Similarly, a cylindrical flow this 

is very familiar many of you should have come across this and here flow separates and there is 

large region of recirculation. And the separation leads to large increase in drag. Similarly, you 

find on a flat plate.  
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Why we did all this discussion is because this phenomenon is important in the context of 

compressible boundary layers and shocks and how they interact with boundary layers when we 

come to compressible boundary layers. So, here density is not a constant otherwise the essential 

concept is all the same it is remaining the same. But density is a variable also we must consider 

the energy equation.  

 

So, if you consider the energy equation which is over here another term which becomes 

important is the viscous dissipation that is conversion of kinetic energy into heat energy or 

internal energy due to viscous effects due to dissipation. So, this term becomes important 

consequently temperature increase in the boundary layer inside a compressible boundary layer 

therefore the wall heat transfer that is  𝑘
𝜕𝑇

𝜕𝑦
.  

 

So, an appropriate wall heat transfer becomes important. So, when you consider a compressible 

boundary layer is not only the momentum equation you have to consider the energy equation 

and variation of density. Also, the transport coefficients which is viscosity and thermal 

conductivity they become strong functions of temperature. So, all these additional features 

must be considered. 
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Now if you these are calculations of the boundary layer in a compressible domain and if you 

see these calculations. Here we must use an appropriate boundary condition for temperature at 

the wall or heat transfer at the wall this is for an adiabatic wall. Then you see that as Mach 



numbers increases the boundary layer thickness is increasing significantly. So, this is Mach 

number 0 this is the thickness for M ach number 0 delta 0 while this is Mach number 20. 

 

So, you can see that Mach number 20 is so much larger than Mach number for 0 and you need 

to consider an appropriate boundary condition. So, thermal boundary layers are also important, 

and they also increase with increase in Mach number. So, boundary layer thickness increases 

significantly with Mach number. 
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Now if you consider an adiabatic wall a cooled wall that is a heat transfer is a ring where 

temperature heat is being removed. Then what happens is there is viscous dissipation that is 

happening in the boundary layer. So, temperature increases in the boundary layer. But at the 

same time heat is being removed at the wall. So, a maximum temperature occur somewhere in 

between within the thickness of the boundary layer.  

 

But the essential fact that boundary layer thickness increases with Mach number remains the 

same. But now you see that the Mach number thickness the boundary layer thickness is lower 

in comparison to adiabatic wall.  
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So, the physical insights that we gain from these discussions is in the context of compressible 

boundary layers. The boundary layer thickness increases rapidly with Mach number 

temperature increases in the boundary layer due to viscous dissipation. Then if you cool the 

wall boundary layer thickness reduces the same kind of effects happen to both the skin friction 

coefficient as well as the heat transfer which you see here corresponds to Stanton number.  

 

So, in general the kind of increase that is found is boundary layer thickness goes as Mach 

number square by square root of Reynolds number. Now in the next class having understood a 

little bit about boundary layers, which is a total topic. Let us see what happens when a shock 

comes and interacts with the boundary layer in high Mach number flows in the next class, thank 

you. 

 

 

 


