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Lecture 50
Small Perturbation Theory -11
So, now we are looking at solving the entire flow field in that context we are looking at
inviscid irrotational flows and we are look specifically isentropic flows. So, then in the
previous class we had looked at when we consider irrotational flows we know that the
velocity can be expressed as the gradient of a scalar potential because it is irrotational
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+ Small Perturbation Theory - Subsonic Flow

So, V can be expressed as gradient of a potential. And we have looked at the velocity
potential equation in its full form in three dimensions. It is a nonlinear equation. But when

specifically taken in along 2 dimensions then we looked at it was it specifically,

(1- L), + (1_ aLi)chy- e, =0

a

Of courseu = %f ,and v= %3 . And we looked at the behaviour of this equations we found

that the determinant is D = B> - 4 AC was turned out to be M? — 1.

Therefore when you consider subsonic flows determinant is less than 0. So, when M is less
than 1 therefore it behaves in an elliptic manner and determinant is greater than 0 when M is
greater than 1 for supersonic flows it behaves in hyperbolic manner. So, this distinction
should be really appreciated when you look at solving subsonic flow problems and solving

has supersonic flow problems and we will come to it again and again.



But now our question is, is there any approach by which see this in its full form it is a non
linear equation and it has to be solved numerically but can we get some solutions for certain
specific cases a normal approach.
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SMALL PERTURBATION THEORY

+ Letuniform flow with upstream velocity is V., and is oriented in the x direction. In the perturbed flow, the
local velocity is V, where V = ui+ v j + w K. Letu’, ', and w' denote perturbations from the uniform flow.
u=W+u'; v=v; w=w
* In terms of the velocity potential
Vo=V=(+u)i+vj+wk

+ Let us now define perturbation velocity potential, [
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+ Then, Uniform flow Perturbed flow

O(x,y,2) = Vox + §(x,y,2)

* where,
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In such cases of looking at non linear equations is to see if it can be linearized and this
particularly useful in cases where you have thin bodies in a mean flow for example an airfoil
in a mean flow in a uniform flow . So, this is a very important problem for aerodynamics and
it can be an airfoil which is placed in a uniform flow. Now this airfoil actually changes the
flow around it by small values which is u,v ,w.

So, they are called as perturbations to the uniform flow V... So, this V.. is along x direction
which is along u. So,u= V. + u ,while v=1v and w=w". So, now we look at, can we

take this approach and get some useful results for the case of subsonic flows and then how is

the velocity potential written. So, we define a perturbation velocity potential such that

u = %fg ,v= @ ) = %‘;’ . Where ¢ is perturbation velocity potential
Then the velocity potential in the x direction actually becomes,

o=V, x+t®

So, you can see that,

u=V, +tu=2=y, +a
Ox
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So, you can just differentiate it and it will be you can easily see that because



So, now you can define,

_ 2o . _ 2o _ o
Pu = %2 5 Py = 52 5 Pz = 52
So, now we are considering small perturbations.
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SMALL PERTURBATION THEORY

+ Consider the velocity potential equation. Multiplying this equation by a? and substituting ® =Y +¢ we|
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« This equation is called the perturbation-velocity potential equation. To obtain better physical insight, we r

terms of velocities:
i L. 0v' ow' ou' ou'
[a? = (Vo + )] ==+ [a? = v'}]— + [@® = W] — = 2(Vpp + U )V — = 2(Vsp + U)W — = 20"
ox ay 0z ay 0z

* Since the total enthalpy is constant throughout the flow,
4 14 Vo, + )2 + 0% + w'
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So, let us go back to the velocity potential equation itself and then substitute these

perturbation potentials into the velocity potential equation. So, then if you substitute them

you have,

(o) (@))F @)

20\ 06 P o’ o’
2(V°°+£)5$%_2(V°°+ )5;‘20)“32 5;/‘25?6)/62_0

So, now this entire equation is the perturbation velocity potential equation ,you can write it in
terms of velocities , u', v/, w',to get better insight. Now we also get ¢® square here we
have to relate a® square. So, for that we use the approach that total enthalpy is constant.

p 2 ) (Vw+ul)2+v’2+w'2
hot = =h+ &5 = h+ —F—

This is the way it is approached.
They can be written in terms of acoustic speeds. This is something we did early on in gas

dynamics in the early chapters. So, it is written in terms of that,

2 7 2

2 2 2 Votu ) +vatw

[ A R ;
v-1 2 v-1 2

So, this equation for «”is substituted in the main equation which is the full perturbation

velocity potential equation.
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SMALL PERTURBATION THEORY

+ Substituting the value of a? in perturbation-velocity potential equation, and algebraically rearranging
e
u' +1u?\ fy-1v?% +w?\] o

= Mgo y+1)—+ Y V2 L 2 e
Vi 2 VD% 2 Vs 0x

. o (y+ 1 [y - 1w? +u\] oy’
+1E |- D+ S (5 |5
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W, V., By x/ V, V,)\dz = ox V2 \dy oz

+ This equation is still an exact equation for irrotational, isentropic flow. It is simply an expanded form of the
perturbation-velocity potential equation

« Also recall that we have not said anything about the size of the perturbation velocities u’, ', and w'. The
could be large or small.

So if you do that and collect various terms and rearrange them and collect various terms then

you get this particular form which is

(1- M )8u+6v+6w :sz[(ijl);_;Jr(%l 52) (y_ m)]%
ife-n e (5 95) (8 9 1% +

+ M,z :(y—l) Lt (%1 _%) (%1 iy )]

Ll L) (L 4w w W) (& 4+ Y ) (w4 2w
tM. _Vx(1+Vw)(6y+6x + Vx(1+Vm)(6z+6x)+ sz(l—i_Vm)(ay—}_az ]

Now this is a full equation, full exact equation for irrotational isentropic flow in terms of
perturbation velocity potential. But Now what we have to do is simplify this equation by

considering an analysis where we see how which of them are really important because you

’ 7

have u , v , w.

(Refer Slide Time: 08:37)



SMALL PERTURBATION THEORY

= We now specialize to the case of small perturbations, i.e., we assume the u’, v', and w' are small
compared to V,,, therefore,

"2 2 n2
Z) (=) and (o) «1
R A o

* For0 < M, <0.8and for M, > 1.2, the magnitude of

' au! e
M2 [(y +1) :: + o ] % is small in comparison to (1 — M&)% so the former term is neglected

* For My, <5 (approximately),

e o e e
Mé, [(y 1) = + 2 small in comparison to %

And what we say is they are small perturbations that mean they are small if you consider

’ ’ ’ 2 2 2
squares or multiples of -, 7—, 77 ,#,;—z, %

So, all these parameters are even

smaller. So, if you consider such order of magnitude analysis for subsonic flow and
supersonic flow not in between not in the range of transonic flows then you find that the
various terms that are there on the right hand side are very small in comparison to the

corresponding terms on the left hand side.

7 ’

So, the left hand side becomes important. So, you have these various terms, %‘; , % , %“ZL )

So, these terms if you take a look at them the order of these are small in comparison to the

left hand side which is %‘f , % , %‘ZLI because they are getting multiplied by various small

quantities.
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SMALL PERTURBATION THEORY

/ i '
MZ [(Y - 1):: + ]adl/ is small in comparison to d%, and
e |2 (145) (24 22) 4 0
v\ T \Nay T ax h

+ With these order-of-magnitude comparisons, perturbation-velocity potential equation reduces to
i Mi)du +dv’+wa’_
*ox dy 0z

* or, in terms of the perturbation velocity potenzua\, ) .
] [ ]
6! —Mi)—d:+—tf+—? =0
dx?  dy* oz
+ This equation is called the linearized perturbation-velocity potential equation.
* Limitation of this equation are:
* The perturbations must be small.
+ From assumption | in the list above, we see that transonic flow (0.8 < M, < 1.2) is excluded.

* From assumption 2 in that same list we see that hypersonic flow (M,, > 5) is excluded.

So, if you consider such an approach then we find that this perturbation velocity potential
reduces down to,

which is much, much simpler and not only is it simpler it is also linear in terms of if you now
put back the velocity potential, M., is a constant for a given problem. So, now this is a linear
equation. So, this is a linearized perturbation velocity potential equation.

So, this is applicable for very small perturbations. So, perturbations are small that
corresponds to that airfoils are thin and similar such arguments and it is for subsonic and
supersonic flows that is transonic flow is excluded. In one of the conditions you also say that

for mach numbers which are less than 5 which is that is it is in supersonic flow but not so,

high speed that you can consider it as hypersonic flow then changes in V is also small.

So, that means hypersonic flow is also excluded. So, if you consider only subsonic flow and
supersonic flow then the linearized velocity potential equation must hold good. So, it should
hold good.
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THE PRESSURE COEFFICIENT

* The pressure coefficient Cj, is defined as i
C ey G

2=

ipmvog

where P is the local pressure, and P, p,, and V,, are the pressure, density, and velocity, respectively, in
the uniform free stream.

* An alternate form of the pressure coefficient can be obtained

1 1yP, Yy, %
spali=cT2p 2t p
7 1RlES RS

* The pressure coefficient C;, becomes

P

L Phs _PM(E‘I)_ 2 (P 1)

PTT L, Ypyz yME\R,
loguz Yoz VMG

* An approximate expression for Cfor linearized theory can be obtained as follow. Since, the total enthalpy

is constant,
V2 V2
ht—=he +—
2 2

So, now we can see how this can be analyzed for subsonic flow. Before going there what we
really are interested if you consider an airfoil is how does pressure change over the airfoil.
So, that from such an information we will be able to gather information on the lift or
aerodynamic coefficients. So, we really need to know what is the coefficient of pressure ?

p-P
c, = L=Ls
P dpr.

Now if you take P.. out of this it will become ,

_ Pz

C
P %pg,sz

Use the fact if you multiply and divide by y then you have,

Now can we express P-% in terms of the velocity potentials or perturbation velocity potential

then we will get Cp in terms of the linearized theory.
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THE PRESSURE COEFFICIENT
* Since, (;—;)2, (%)2, and (%)2 &« 1

2u'

= T

* This equation gives the linearized pressure coefficient, valid for small perturbation

So, for this we can use again the total enthalpy is constant,

v, _ i
he+ = =h+ 5

2 2
L = s _ =

L=yl LoV oy V2
T. 2RI, 2 al

)2
Vi= (V,+ u) + v?+w?

So, if you substitute that and you look at,

’ 2 2
L=yl LZoVP o opml 2uVonevi i
T. 2 yRT. 2 .2

So, now we know that it is a isentropic flow

L — (L)'
P. T.
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THE PRESSURE COEFFICIENT

" 0 - W2 rp2 w2
Forsma\lperturbat\ons,a, E' and = «1; (E) n (U_w) , and (E) «1
P ¥
E = (1 —_E)Y'l
+ where €is small. Hence, from the binomial expansion, neglecting higher-order terms
Y

e P
P Tyt

* Therefore, the expression for Pl, becomes
w
P Y, , (20 u?+v?+w?
—=1-cM [—+————
2 2 Voo Vs
* Hence, the expression for pressure coefficient becomes
2 Y ' u?4v?4w?
C=—Z[1--M3 | —+———|+-1
=1 (0 '
o
P Vs

So, now this entire term the complete term can be written as an epsilon.
4 7 12 I
c = % sz [IZ/LL + u2_+%+w_2 ]
© Ao
Now what we are saying is that this is small perturbation. So, 7— , 7~ all of them are very

small similarly their squares are also very small. Therefore,

L —(1- "

So, this can be expanded and we are considering € square and higher terms they are very

small they are negligible. You can neglect those terms and you can get it only in terms of €.

Po—1. L
7. 1 e
Now we know PL in terms of the perturbation potentials perturbation velocities and M.,>.

Now this can be substituted in Cp ,

So, for a linearized coefficient of pressure can be just expressed in terms of the velocity
perturbation potential. So, this is an important result that comes out of this analysis this
enables a certain way to solve the equations.
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THE PRESSURE COEFFICIENT

2 2

+since, (1) (2) ) and (2) «ct

« This equation gives the linearized pressure coefficient, valid for small perturbation

So, this is valid for small perturbations any small perturbations and it is valid both for

supersonic and subsonic flow.
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THE SUBSONIC FLOW

« Consider the compressible subsonic flow over a thin airfoil at small angle of attack (hence small
perturbations)

* The usual inviscid flow boundary condition must hold at the surface, i.e., the flow velocity must
be tangent to the surface.

.
Ol

dx ~ Vetu' = tanf Shape of airfoil, ¥ = f(x)
. d v’ Vot
+ For small perturbations, " & V,,,and tan 8 =; hence, é Siess 8| %, w
w0
3 ad
. S\ncer}':% - N
¢ df
=, —
dy dx
*  This equation represents the appropriate boundary condition at the surface for linearized theory. Shape of airfoil, n = £
+  The two-dimensional linearized perturbation-velocity potential equation can be written as y
Fur + 03y =0 AN

where, f = /1 — M2, This equation can be transformed to a

*  Laplace equation form by considering a transformed coordinate system (& 1), such that

§E=x;  n=Py

Now let us look at subsonic flow in particular or a thin airfoil at small angle of attack. So,
then your velocity potentials or are small perturbations are small. It is an inviscid flow. So,
the appropriate boundary condition is that the flow is tangential to the shape. So, if you know
the shape of the airfoil y = f( x) then the tangent is %: and the flow at the surface should be

. df
tangent to it 1.e. d{c =5 o7 =tan®

So, now it is very, very small.



So, we say tan 0 is approximately equal to 6 which is equal to % . Also, we also use the fact

that %" is much smaller than ., therefore you can express %C = 7— and v = 23;

@y &
oy V‘”dx

So, this is an appropriate boundary condition to be put along the walls for the linearized

theory.

Now if you take the equation in 2 dimensions,

2 —
B @+ @, =0
B= \/1-Mm2

So, the idea is can we transform this equation to something that we already know ,we know
solutions already exist. So, in the transformed coordinates, so, this is you are applying a
transformation to

§=x;n=py

So, now what we have to do we have to convert this equation by doing differentiation along
those.
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THE SUBSONIC FLOW
+ The transformed perturbation velocity potential ¢ is defined such that ¢(§1) = B (x,y)
a9 af _dn_ A

;2 =0 oM
dx dy " ox 'dyiﬁ

* and B
_ 0 _1ap 1

“Tox Box f

dpa; apan] 109 &g

watord] BR B

_%
¢XX7 B

_0 _106_1 @§+@@]_E‘E’

Y9y Bay Blagdy andy| Ban
Byy = b

* Substituting the derivative of ¢in linearized perturbation-velocity potential equation

-

=== P

Bz (E q’i{) 3 B‘f’vm = ¢EE i ¢‘\m =0

+ This equation is Laplace's equation, which governs incompressible flow. Hence,$ represents an incompref
flow in (£, 1) space, which is related to a compressible flow ¢ in (x, y) space.

So, now @ is expressed in (&, ) coordinates. So, the same equation gets converted into (&,
n) coordinates. So, when you do the conversions do the differentiation and do the various
conversions which is sort of listed over here and the final expression that you get is,

$§é + ann = (0 which is a Laplace equation. So, this equation is a potential equation its

Laplace equation.



And it is valid or it governs the incompressible flow which is something we already know
about and we know many solutions of these incompressible flows, Laplace equations we have
done that for airfoil sources things and so on. So, now can we then utilize the results that we
already have in incompressible flow for that we should know that what happens to the shape

of the airfoil in the transformed coordinates.

(Refer Slide Time: 20:35)

THE SUBSONIC FLOW

* Let the shape of the airfoil is given by y = + This equation is an important result; it
f(x)andn = q(§) demonstrates that the shape of the airfoil
4 ab in (x, y) and (§ 1) space is the same. The
* We havein (x,y) space, V.n‘[a =% pressure coefficient is
wﬂ:@:@ ' 2 9¢ 213
dx dy dn fp=——=-F—=—mc-—0

Ve  Vedx  V,Bak
* Similarly, in (1) space,

da_%
“ &

.o
* Denoting, &t = a0
= 3%

C ——

1( 211) oo
=- = =
PR\ W) T 1-mE

* Comparing these two equations, we get

df dq + where C;, = — s the incompressible
Voo

dx df pressure coefficient.

This equation is called the Prandtl-Glauert rule; it is a similarity rule which relates incompressible flow
over a given two-dimensional profile to subsonic compressible flow over the same profile.

So, let us look at that. So, in xy space we know the boundary condition corresponding to that

is %f = ngﬁ = %? =. Now if you consider it in (&, ) coordinate, the shape of the airfoil is

n=q() . So, Vm%% = %?1_2 If you do the math by differentiating you will approach get this

particular solution and you compare it with the previous solution they are exactly the same.
dq

% =z or in other words what it shows is that the shape of the airfoil

Or what you get is d
does not change as you move from x y coordinate to zeta eta space. So, it remains the same.
So, whatever solutions we get in (&, n) coordinates which is for a particular shape of the
airfoil in incompressible flow that can be used as a solutions in the compressible domain but
there will be additional terms that will come and that term is due to . So, when you put the

term denoting f.

So, you get Cp = BL %;" where u is the perturbation velocity in (&, ) coordinate which is an

incompressible flow solution. And that can be represented as Cp, or Cp incompressible which



is already known. So Cp incompressible if it is known then the Cp compressible is known,

you can get it, Cp = —Seo

PO
NI

So, this result is very important very famous also and used to extend aerodynamic relations

that is known in incompressible flow to compressible flow.

This is the Prandtl-Glauert rule it is a similarity rule and extensively used to relate
incompressible flow relations to subsonic compressible flow for the same shape and used
extensively in aerodynamics. But there are obviously certain it is a linearized problem, actual
flow is not linearized. So, people have looked at other ways to overcome this also.
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SMALL PERTURBATION THEORY

* We define the lift and moment coefficients. C;, and Cy, respectively, as

M
(=

o i
7PwVesS 5 PeVeaSl

where S is a reference area (for a wing, usually the platform area of the wing). and [ is a reference length
an airfoil, usually the chord length).

The C;, and Cy, cam be written in the form
CLa CMa

L _.c
Jimmz M 1o

These equations are also called the Prandtl-Glauert rule.

C, =

= Animportant effect of compressibility on subsonic flow fields can be seen by noting that

.0 10du @

SR fom

Thus, as M, increases, the perturbation velocity u' increases
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Now if you use that is C; for a small that for a section or its for an airfoil similarly you can

look at lift and moment coefficients which are the integration of Cp. And here also since all

other parameters are constants you get you can write C, = \/C—“’z .
1-M..
Similarly C,, = e So, what you see is that in compare to the incompressible lift

\/ 1-M.2

coefficient as Mach number increases the lift coefficient also will increase because 1 - M wz

is there.

So, it will increase. So, what you also see is that the effect of compressibility is to increase
the perturbation velocity as M. increases. But this here what is happening is you are
considering M, . So, that is a free stream flow but we know that as the flow passes over an

airfoil it accelerates. So, it accelerates. So, it accelerates over the foil. So, you are expecting



that the Mach number will increase. This effect is not considered, people try to consider it
there are some improved compressibility corrections like the Laitone’s equations or

Karman-Tsien rule.

So, they are also applied and these show this graph shows a comparison of various
experiments with these different kind of rules where it is seen that Karman-Tsien rule.

rule is somewhat more it applies closely or follows closely to the experimental values while
Prandtl Glauert rule lie in the bottom part of it while Laitones lie on the upper part of it. But
they are all good approximations when you want to make some quick calculations of

aerodynamic coefficients.

Then Prandtl Glauert rule can be easily applied and it is quite useful. So, the highlight of this
small perturbation analysis that we saw is the end result resulting in Prandtl Glauert rule and
this particular approach where we see that you take small perturbations and linearize a non
linear equation and then try to get some results out of it. So this is for subsonic flow and

similarly we look at supersonic flow.

And in supersonic flow we find. Now it is going to be a hyperbolic equation we saw that
earlier. So, that it behaves more like a wave equation. So, there are consequences similar
consequences to the linearization also. And we will see what can be what is the result

expected out of it in the next class. So, thank you.



