Gasdynamics: Fundamentals and Applications
Prof. Srisha RaoM V
Aerospace Engineering
Indian Institute of Science - Bangalore

Lecture 49
Small Perturbation Theory - I
So, until now for quite a long duration of this course we have been discussing about 1D flows
quasi 1D flows where we make the assumption that the flow variables remain uniform across
a certain cross section. We do not actually solve for entire flow field and the dominant
approach used is control volume methods where we looked at what is happening across

interfaces. And do not go into details of what is happening within the flow field.

But now in real problems in actual applications we may need to know these flow field details
and. So, the approach has to change and. So, we look into the cases of solving the entire flow
field. A particular approach of course the complete set of Navier stokes equation for
compressible flows have to be solved numerically. There is no analytical method to do it. But

there are many approximate methods which will give us useful results.

One among them is if the flow if changes in the flow produced by say very slender bodies or
airfoils, thin airfoils they are all small with respect to the free stream flow. So, they introduce
small changes to the flow. So, that kind of an approach is known as small perturbations to the
main flow. So, a small perturbation theory but before we go into small perturbations. We
really have to look at the flow equations themselves at looking at the entire flow field.
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Outline

+ We now move from discussions using integral formulations of the control volume to differential
formulation.

+ Differential formulations allow the flow field to be solved completely not just at the interfaces
(which is what is done in integral formulation).

* We will discuss the inviscid irrotational framework in some detail. In general, descriptions of fluid
flows will usually involve decompasition of the flow field into regions where the inviscid,
irrotational flow can be applied and regions near the boundary where viscous boundary layer
becomes important.

* Important outcomes are

+ the understanding of Crocco’s theorem that relates vorticity to entropy gradients.

+ The mathematical behaviour of the flow equations changes from elliptic to parabolic to hyperbolic as
Mach number changes from subsonic to sonic to supersonic conditions

+ Prandtl-Glauret’s rule that allows the extension of incompressible aerodynamic relations to
compressible subsonic flow

+ Understanding that pressure distribution in supersonic flows is linked to surface inclination.

* Reference Chapters 8 and 9 in Modern Compressible Flow by J D Anderson
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And therefore we have to get ourselves away from control volume approach, integral
formulations to differential equations and look at details. Here we will be particularly looking
into some details of inviscid irrotational flows and some good solutions, some important
insights like Crocco’s theorem and how do the flow equations behave as the flow changes

from subsonic to supersonic.

Some important results like the Prandtl-Glauret’s rule which allows extension of
incompressible aerodynamic relations to compressible subsonic flows. And some idea of say
pressure distributions over bodies in when they are very slender or the perturbation is very
small. And in supersonic flows they can be linked only to the surface inclination. And largely
this outline follows modern compressible flow by Anderson.
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Differential Equations of Fluid Motion

Differential equations for a rigid non-
accelerating control volume

Steady state, inviscid, adiabatic flow, with
negligible body forces and external work
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So, we will start looking at the differential equations of fluid motion and we are looking at
inviscid flows. Therefore the shear forces are not there or they are absent . So, continuity
equation here density is a variable.

2 17.(p V)=0

For a steady flow, .(p Vv ) =0
Momentum equation we hav,
rho DV by Dt, material derivative of velocity, is the change in flux momentum flux change.

PLL TP - pF - dF ey =0

shear
Rate of change of momentum is equal to all the forces that appear on the on the fluid which is
due to pressure, it can be due to body forces ,it can be due to shear forces. In this particular
case we consider only pressure forces and the others are negligible. Therefore we come to the
Euler’s equation which is,

p2L +7P =0

for steady flow,

p(V.V)V +7P=0

Then you consider the energy equation where we are considering work done, heat added and

change in total enthalpy changes in total enthalpy this is the differential equation where 'z%

corresponds to a material derivative. If we consider adiabatic flow, no work done, no external
work then the corresponding and steady flow then essentially the total enthalpy should

remain a constant.

p(V.V) (h+ £)=0

So, you have continuity, momentum gives you Euler’s equation in the differential form and
the condition of adiabatic flow with other effects being neglected no work done gives you
that the total enthalpy remains constant. So, now we look at how these equations can be

manipulated.
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Vorticity, Irrotational Flow

Vorticity

Euler Equation
(v-uyv+ i o Using the identity
p

V2 VP
V= |+—=VxVxV
2 p

vy v, _
V(7 -dr+?-dr=(VxV><V)-dr

¢=VxV Irrotational flow when, vorticity = 0

VA
V‘V(V)=V(7)—VXVXV

fd(V;>+f%P:j(VxVxV)‘dF

VZ
—+ f— = constant
2

along a streamline

For rotational flows VXV #0but(V x VxV).df = 0 alongastreamline

& J dP
—+ | — = constant
2 P

Everywhere in irrotational flow

To look at that we said we are looking at inviscid a rotational framework what do you mean
by irrotational framework? We are looking at vorticity which corresponds to rotation in the
fluid element. When there is no rotation then we say that the flow is irrotational or vorticity is

0. Vorticity is related to the velocity field by curl. So, this is the relation for vorticity.

C=VxV

Essentially for irrotational flows curl is 0 ,curl of velocity is 0, ¥ x V =0 where velocity is a
vector. And if we consider a three dimensional field itis ¥ =ui+v j + wk. So, this is the

general form. Now let us take a look at the inviscid flow which is represented by the Euler

equation , ( I7.V) vV o+ YPB =0
Now (VV) ¥ this term can be represented as,

V)V =V(&5)-VxVxV

So, curl is over here this is an identity, it is a vector identity and V x V x Vv

So, we can substitute this into Euler equation and we get here,

V) + & =VxTx ¥

V(%z) dr+ ZPB.d_;”:(VXVX V). dr

Now if you try to integrate it along a certain path dr if you try to integrate this particular

equation along a certain path and then this will become a total derivative,

v(l’;). dr+ L. dr =(VxVx V). dr

jd(%z)d}Jr jdf.d? =[{(V xVx 17)671”




It is a directional derivative now and this integral for the component (V' x V x 17) in the
direction dr. So, if we consider an irrotational flow then dVx ¥ = 0 everywhere then this

term the right hand term completely drops out therefore we get,
jd(%z).d%r [ L.dr =0

If you consider the case of an incompressible fluid this must be quite familiar to all of you it
is nothing but,
> y2 | PP

S A &
2 2 p

Or

2
% + % = constant

which is nothing but the Bernoulli’s equation, that is for a incompressible constant density

flow.

So, this is it turns out to be the Bernoulli’s equation. But here is general Euler equation we

.. . I 2 .
cannot do this integration f %P.dr . So, VT can be integrated. So,
2 —
VT +[ L dr = constant
p

In an irrotational flow it is constant everywhere but if there is rotational if it is rotational and
vorticity exists then it is constant along directions where (V xVx 17) .dr = 0 which is true

for a stream line.

So, it is for rotational flows, this parameter or this particular combination is constant along a
stream line. So, that distinction must have been familiar to you in the context of Bernoulli’s
equation but it is true in the case of Euler’s equation only thing now it is a compressible flow,
density is a variable. So, it cannot be you cannot easily integrate this as you did for the

Bernoulli’s equation.

So, the consequence of having vorticity and irrotational flow should be understood in this

context.
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Crocco’s Theorom

Consider the Euler equation And the Gibbs equation from thermodynamics written
T in gradient form P
V(7)+—=VXVXV TS =Vh-—
p P
v VXVxV = Th, - TVS
vwxv:wiw(?)ﬂvs AL

Vorticity in the flow can be created either due to stagnation
enthalpy gradients or entropy gradients. In the absence of both
no vorticity is generated in the flow

Different streamlines subjected to
different strength of shock, hence
have different entropy
= Entropy gradients

= Flow is rotational

All streamlines subjected to same
strength of shock - na entropy
gradient - flow is irrotational

So, another important sort of theorem which comes about from this inviscid considerations
and what we had discussed previously, the Euler’s equation written in terms of vorticity. Here

we have the term zf

Now we consider the equation for enthalpy the Gibbs equation,

TVS = Vh- I

So, this ZPB can be written in terms of TVS , VA that entropy gradient and gradient of

enthalpy.

So, if you replace that. So, then you can get a relation between vorticity, enthalpy and entropy

gradients along with of course kinetic energy gradient.

V(5)+Vh-TVS =(VxVx V)

But these two together taken, (4 + -%2) = h,.
So, it you get.
(VxVx V) =Vhy-TVS
If you had considered an adiabatic flow which is what we have been considering here
hy = constant.
So, gradient of A, is not there, Vi, =0.
So, therefore we get the information that if there are any gradients of entropy, if it is an
isentropic flow and entropy is constant everywhere then the consequence is that there is no

vorticity. So, if you consider that is, adiabatic, isentropic flows. So, isentropic flows



essentially are irrotational flows. But if you consider there are there is rotational effects in the
flow or rotationality is there in the flow.

Then directly from this equation it is seen that there should be entropy gradients. Where is
this sort of applied ? If you consider any generic, say, body in a supersonic flow. So, this is a
certain body placed in supersonic flow then we know there should be a shock and if the body
is blunt you will have a bow kind of a shock where the shock has a curvature. So, you see
that the shock has curvature along this direction. That means at every point along the shock

the shock strength varies.

So, now we know that across a shock there is an entropy jump. So, there is an entropy jump.
So, if you take any particular stream line as it goes across the shock ,there is an entropy jump
it has different entropy. If you take different stream lines they have different entropies. So,
downstream of the shock in this region which is marked by the brown circle in front of this
bow kind of in front of this blunt kind of a shape having a bow shock you have entropy

gradients that means the flow is no longer irrotational it has rotational, it is rotational.

So, flow is rotational there are entropy gradients in this kind of a case. But if you consider a
case like a planar shock that is suppose you consider a wedge kind of a shock then here you
see that you have an oblique shock and oblique shock turns all the stream lines by the same
angle. So, lines were parallel earlier they are parallel after the shock they have just been
deflected by a certain angle there is a entropy jump across the shock but after the shock there

is no entropy gradient.

So, before the shock there it is a constant entropy, after the shock it is another constant
entropy. Only that entropy is changing. That means these are cases where flow is irrotational.
So, this is very important as to how we can apply different approaches in solving such flow
field problems and Croco’s theorem connects vorticity with entropy gradients.
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IRROTATIONAL FLOW

* Consider flow through a duct connection two reservoirs as shown
below.

* Aflowwhere Vx V' =0 throughout is called an irrotational flow

Two-dimensional or

* In Cartesian coordinates, the mathematical statement of irrotational TxV=0

flow is axisymmetric flow
i j k
axi=(d 2 2
dx dy 0z
u v oz

0w dv\  fdw du oyt du v
= dy oz ! dx 0z ax  dx
* For this equality to hold at every point in the flow,

dw_dv dw _odu du_dv
dy " dz' dx  dz' dy dx

Flowfield behind the
shock ware on a seode,
harp-nosed body s

almost irrotational.

* These equations are called the irrotationality conditions.

So, generally the condition of irrotationality, irotational flow is that V x vV =0. So, you get
relationships between the different components of the velocity that is,

%}’f , %}“C etc. which might be familiar for a 2 dimensional flow. We always have this

particular form %’; = % . But in a general three dimensional flow it can be evaluated for all

other components also. So, we are looking at irrotational flows.
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VELOCITY POTENTIAL EQUATION

+ Consider a vector 4. IF7 x 4= 0 everywhere, then Acan always be expressed as {, where {isa
scalar function. This stems directly from the vector identity, curl(grad) = 0. Hence,

VxV(=0
+ For irrotational flow, V x V=0 Hence, we can define a scalar function, & = ®(x,y, ), such that
V=70
+ where @ is called the velacity potential. In Cartesian coordinates, since V=u+ vj + wk, and

o o 0d 0P
=—it+—j+—
x i 0}1” 0z
+ then, by comparison,
L I

u= FrL v= diy A= i

+ Hence, if the velocity potential is known, the velocity can be obtained directly from these
equations.
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So, if you consider irrotational flows, then a vector, if you have a vector and it is solenoidal
or does not have a curl then that particular vector a can be represented as the gradient of a
scalar. So, this is also an identity. This is a vector identity. Curl of gradient is equal to 0

means there you can always define a scalar function or scalar potential. So, if you consider



rotational flows then we can define a velocity potential @ such that velocity is a gradient of

So,u = @ = %‘yﬁ , W= %‘ZD . You would have become familiar with this kind of

approach in your fluid mechanics classes on potential flow theory and so on. This is the same
approach.
(Refer Slide Time: 17:07)

VELOCITY POTENTIAL EQUATION

+ The velocity potential can be obtained from a single partial differential equation which physically
describes an irrotational flow. In addition. We will assume steady, isentropic flow.

Defme——‘bxw—‘b *ED etc.
+ Thus, the continuity equation for steady flow becomes
o 0(pu) a(pv) dlpw) _
v (pV)—O=>7+W+ =
J d d dp dp dp
P +0yp¢' 5" =02 p(byy + 0y +¢Zz)+¢,0 q:ya—y 0,5 =0

+ Eliminate p from this equation by using Euler's equation,

dp= ——d(V) —gd[u Fo2ewd)

)
(),
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+ From the speed of sound,

“‘Iwz

But now it is being applied to a compressible flow and in a compressible flow density is

changing. So, if you look at the continuity equation which is essentially,

V(pV)=0— U + & 4 Zu =

And consider the velocity potential @ and u is then u = %‘f . we can substitute those terms

here in the equation and we get

0p®, Op®y 0p<1> _ op Jp op _
=t 5 T 70 o p(Pu + Dy + Do)+ Dy + Dy D F =0

Now we can use the Euler’s equation to try and remove p from this particular expression .

— 2y 2
dP=2d(V?)= 2d(u2+ v} + w?)

And that can be written in terms of the derivatives of potential u = %;2 ,v= 2 w=12



And we use the definition of speed of sound because it is an isentropic flow, steady isentropic

flow. So, you can use,

2: a_P
op
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a )s at constant entropy.

VELOCITY POTENTIAL EQUATION
do= _%d(tbgmjmg)

* Considering changes in the x direction

p_ pd (¢§+¢§+¢§)

dx~ atix 2
a p
* Similarly,
dp p
> =- a—z(‘b,q’xy +bybyy + 0,0)
dp p
a = *E (¢x¢x: + ¢'y¢yy + ¢”¢M)

5 (I L
Substituting ﬂx'z]yaml % in continuity equation,

o AN 2,0, 20,0, 20,0,
(1—{1—2)@,#(1—F Oyt (1= |0 =200y - — 0 =220y, =0

= This equation is called the velocity potential equation

Combine them together and we get,

0,2 + O, 2+D,>

dp=2d(———)

So, now considering changes in every direction which is x direction ,y direction, z direction
separately ,we have to differentiate this separately and put them into the continuity equation
and arrive at the final equation for the velocity potential in case of compressible flows.

D>+ D, 2+,

® - p2 (OO
ox azax( 2 )

Here you can see this is the final equation which is,

a

o’ o, @2 20,0, 20,0, 20,0
(1_ _éfz')(I)xx + (1_ 7)®yy +(1_ Z)q)ZZ_ azr(I)xy_ 22 D, - ) (Dyz =0

So, now this equation written only in terms of the velocity potential, is the velocity potential
equation is a general equation. Of course it has the term a?. We have to look at a way to

calculate a?.

But otherwise it is only in terms of the velocity potential. So, now how to get @* into this?
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VELOCITY POTENTIAL EQUATION

+ The velocity potential equation is not strictly in terms of & only; the variable speed of sound a still appears.
We need to express a in terms of &, As we know,

hy = constant
+ Hence, for a calorically perfect gas, this equation can be expressed as
v? RT V% YR, ¢ V2 oa
cpT+7=cpTg=>—Y +—=—y Sy — b=

-1 -1
a? =a§fy—l/2 =a§fyT(uz+vz+W2)

y-1 . .

-l

a= aD—T(d)erde,erJf)

+ Since ag is a known constant of the flow this equation gives the speed of sound, a as function of ®.

+ Note that these two equations are a nonlinear partial differential equation. It applies to any irrotational,
isentropic flow: subsonic, transonic. supersonic. or hypersonic. It also applies to incompressible flow where
a = o, hence yielding the familiar Laplace's equation,

Gy + Dy + D5, =0
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We can use the fact that it is an adiabatic flow h, = constant. So, if you take a calorically
perfect gas then you can express the equation,

2
CpT+ L& =CpT,

So, this can be expressed in terms of a, and this we had done very early in the class ,

a_z +L2 :ii
v-1 2 v-1
wherenow V2= w2+ v+ w? =@ + (Dyz-l-(DZz.

So, since you can know a,, it is a constant within the flow. So, now you have an equation to

relate ¢ with a(z) . So, one should notice that this equation now is a non linear equation and it

1s general equation. It applies to any rotational isentropic flow. It can be subsonic transonic
supersonic or hypersonic and if you consider that a goes to infinity. So, if you consider that

which is corresponding to an incompressible flow.

The speed of sound goes to infinity in an incompressible flow then all these terms drop off
slowly these the different terms which contain ;% drop off and then you get only

Dy + Dy, +D..=0

which is the familiar Laplace equation, potential flow equation for a irrotational flow, so,
incompressible flow. So, it is a general equation and it contains the incompressible part also.

So, this is the velocity potential equation.
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VELOCITY POTENTIAL EQUATION

+ The velocity potential equation is not strictly in terms of & only; the variable speed of sound a still appears.
We need to express a in terms of &, As we know,

hy = constant
+ Hence, for a calorically perfect gas, this equation can be expressed as
v? RT V% YR, ¢ V2 oa
cpT+7=cpTg=>—Y +—=—y Sy — b=

-1 -1
a? =a§fy—l/2 =a§fyT(uz+vz+W2)

y-1 . .

-l

a= aD—T(d)erde,erJf)

+ Since ag is a known constant of the flow this equation gives the speed of sound, a as function of ®.

+ Note that these two equations are a nonlinear partial differential equation. It applies to any irrotational,
isentropic flow: subsonic, transonic. supersonic. or hypersonic. It also applies to incompressible flow where
a = o, hence yielding the familiar Laplace's equation,

Gy + Dy + D5, =0
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And if we; consider just the 2D velocity potential equation. Let us try to see how this velocity
potential equation behaves . So, and look at how the partial differential equation is seen. So,
writing,

w=02 V= (l)y2, w2 =% and ® @, =uv. So, you get,

(1- )0, + (1_ aé)cbyy- @, =0

To understand the behaviour of these equations second order partial differential equation we
look at the determinant which is D = B? - 4 AC and you can express this and it comes out as
M?*-1. Now we know that if the determinant is negative then the partial differential
equation behaves in an elliptic manner. So, elliptic example of ellictic partial differential
equation is the Laplace equation and a canonical form which you would have come across in

your studies is the Laplace equation.

And characteristic of such kind of equations is that any change in any part will influence the
entire domain that we are considering which is true when we consider steady subsonic flows.
Information sort of propagates everywhere in subsonic flows. Changes in pressure can be felt,
the effects of that can be felt everywhere. While if we take M = 1 then it is exactly 0 it
behaves in a parabolic manner which is similar to the heat equation which you would have

come across in your studies.



While if D is, if you take M > 0, M greater than 1 then determinant is greater than O or there
are real roots to this determinant. So, that means this behaves more like it is a hyperbolic
behaviour. So, supersonic flows steady supersonic flows behave in hyperbolic manner which
is very important and a very well known equation which behaves similarly is the wave

equation.

So, we find that in supersonic flows the behaviour is very much like that of a wave equation
in that sense information propagation in supersonic flows happen only along specific
direction is like a wave propagating. So, all regions of the supersonic flow are not affected by
small changes happening or changes in pressure happening at particular points. Only when
the wave or say a mach line passes along a particular point they connect the 2 points then

they affect those points.

So, there is directionality in supersonic flows we will see this again and again in subsequent
classes. Somewhat mixed behaviour is seen in transonic flows where both subsonic and
supersonic parts can be present. But essentially what you have to understand is that the
velocity potential equation in its full form which is what is given over here is a nonlinear

equation.
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VELOCITY POTENTIAL EQUATION

* Combining previous two equations,
%+ 0L + b2
e (#)
-~ 2
* Considering changes in the x direction
p_pd (¢i+¢§+¢§)

o adx 2

dp p
P = _F(d]xnbn + &by, + ¢';1¢?r)
* Similarly,

dap p

7 = _P(m‘% +bydy, +0,0,,)

dp p
e (0yby, + 0y Dy, + 0,0,,)

+ substituting 2. 2 and ® in continuity equats
Substituting W'y and pr in continuity equation,

v
2 LA o2 20,0, 20,0 zlaydaz
(1——1)'!3,14—(1—?)¢J,y+(1——z)¢n— by -, - by, =0

a? a* a? a? a*
-

* This equation is called the velocity potential equation

It has to be there is no analytical approaches to solve it and you can only do it in a numerical
manner. So, an approach that is taken when we can consider that the flow that we are trying

or we are interested to solve introduces only small changes to a mean flow can be taken and



that approach is known as the small perturbation theory. And we will look at how these

equations change if we consider such a small perturbation.

And then first we look at subsonic flows, subsequently after that we look at how things
happen in supersonic flows. This is a very important information that subsonic flows behave
in an elliptic manner similar to Laplace equation and supersonic flows behave in a hyperbolic
manner similar to wave equation. That you have to really understand. And it has

consequences in how these equations are solved.

So, next class we will move towards application of small perturbation theory in subsonic

flows. So, thank you.



