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Lecture 42
1D Flow with Friction - Fanno Flow- 1T
So, we are looking at friction flow compressible flow with friction it is also known as the
Fanno flow. And in the previous class we looked at the thermodynamics of this flow with the
help of Tminuss diagrams. And it is very useful to look at it because it tells you the entire

story. In this flow, it is an adiabatic flow therefore T, =constant. And you have a curve

which is of this particular shape qualitatively where you have 2 branches.

And the upper branch is the flow where Mach number is less than 1 it is a subsonic flow.
While the lower branch the Mach number is greater than 1 or is a supersonic flow. And the
critical point at which entropy is maximum, s is maximum is the point where Mach number
equal to 1. So, the flow proceeds in the duct if you start from a particular point here one then

the flow proceeds along the Fanno curve.

And the flow can happen. So, essentially you are varying the length of the duct. So, you can
have different points on this flow at the exit of the duct. So, this is say point 2. So, in a
subsonic flow velocity increases, Mach number increases, pressure, temperature decrease,
entropy increases correspondingly stagnation pressure decreases. But in a supersonic flow the
Mach number decrease, velocity decreases, pressure, temperature will increase. And

stagnation pressure of course will decrease because even here the entropy increases.

And since it is an adiabatic flow and entropy cannot decrease there is only one direction in
which this flow can occur you can only start from an initial subsonic flow continues to be
subsonic at the maximum it can reach Mach number equal to 1. Similarly if you start with the
supersonic flow then Mach number decreases, the Fanno curve or Fanno flow drives it
towards Mach number 1 and maximum it can achieve is Mach number = 1. So, we have

understood this qualitative picture and how variables are interrelated.
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Equations for Fanno flow

* From the momentum equation, we have

pV2 4fdx
—dP - = pyav
2 D0 F

+ Divide this equation by P and using the relation for perfect gas, a* =
YRTand M ==
dp +yM2 4fdx dv

M= =
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+ Using the equation of state P = yR T and continuity equation pV’ = constant

P '4 Y PM)
V= —=YRT—== |=| —| = constant
=Ry [YRT R(\/T

+ Taking the logarithm of this expression and then on differentiation
dP  dM 1dT

Now let us get a little bit more quantitative and get to the flow equations. Towards the end of

the lecture we had come to this particular expression,

2 !
dp tpV dVv +p—2V %dx =0

This is the differential equation for a small volume dx in the long pipe, for this small volume.

Now what we can do over here is now we want to express everything in terms of Mach

number.

So, we will try to do that. And for this what we do is divide the entire equation by P. So, it is
divided by P. And we can use the fact that a? = % . So, we can use that fact. So, here if at

2
this point you multiply and divide by V, %d V= yM? d;/K .
So yM* 4.
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Now we use the fact that pV = constant . And V can be expressed in terms of Mach number.

So, p M a = constant. While p = R% ,a= \/yRT , 1% M \/yRT = constant
So, ,\/ % (T/_AF{) = constant, this constant from here using a logarithmic differentiation that is

you take a logarithm.

And differentiate you can get,



dP _ 1dT _ dM
P 2 T M

So, which is the expression given here and now there is an expression for dP-B in terms of

d;fdu . And also ¢TZ occurs here.
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Equations for Fanno flow

+ Using the definition of Mach number V = Ma = M,/yRT

dv dM 1dT
VomTaT
+ Substituting these expressions into momentum equation
M 2T 2 D 2T

4f'dx 2 dM 1dT dM 1dT

T=_W( W T) (M 2 T)
dM _2MdM _dM?
MMM

4fdx 2dM dM? dT 1 dT
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And we can we express dTZ in terms of % only this can be done because we have the

definition of Mach number also that is because there is a term ‘iVK here. So, i,g can also be

expressed in terms of d7T because V =Ma, a = \/yRT . So, we get,

 — dM y 1dI
14 M 2 T

Substituting these quantities and taking the dTZ term common.

So, that is considered taken common. And on the left hand side we take only the term

corresponding to friction 4Bfa’x . And we express all the others now come in terms of Mach
number. Here you have ‘%%2 . So, we express the friction term in the left hand side terms

relate to Mach number on the right side. And you have a term d-TZ over here.

b s (e ) -
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Equations for Fanno flow

+ But, for this adiabatic flow, T, = constant, so

-1
T(l + YTMZ) = constant

* Taking the logarithm of this expression and then on differentiation

y-1
dT d(1+TM2)_0
Tl

+ Substituting and rearranging yields

y=1
4fdx_2dM dMl+d(1+TM2)+ 1 d(“
D yM M HYT—le M2

Now d-TZ can be expressed in terms of Mach number only because in this flow T, is constant,

T,=T(1+ 5 M?)

This is a constant. Now d-TZ again you can take a logarithmic differentiation dTZ can be

expressed in terms,

pa d(1+ =k A% —0
T +xl M

So, there wherever dTZ was there in the previous expression over here and at this particular

point we can substitute this term.

2y _ oy drEMhy o dar 2

& g =
D v M M? 1+ 51 02 M 1M

And we will be getting these values and here what we need to do is now, this can this is
expressed entirely in terms of Mach number. Of course in this particular formulation the
calorically perfect gas assumption is taken. So, we are saying that h = C, T where Cp is
constant. So, that is why we are able to do all these calculation or all these changes and we
can get a closed form solution.
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Equations for Fanno flow

+ Dealing with the coefficient of the last term and making use partial fraction
1 1 G (%
2 = M2 =
Ll 1+%M2 Liud 1+V—21M2

* Expanding the right-hand side and comparing the numerator of both sides
reveals that €, = 1and C, = _Vz_'vl

] da+ =)

terms in
2 — 2
M1 E M

And to get the close form solution we have to express this term

terms of partial fractions. And you can do that do the partial fraction expansion of this

particular these particular terms plug them in the main equation.
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Equations for Fanno flow

*  Finally the momentum equation becomes,

Yistlhreo
Afdx_2aM v+ 1dM? y+1d(1+TM)

= +
3 2 =
DoyMP oy My 1+Y2_1Mz

+ Since f varies slowly, we assume that f' = f' average value of f along length L and write:

a4f o Af (7 4fL
J‘ Fdx~3fx dx = D

X1 1

* Ifthis approximation is valid, we can write the momentum equation as:

2 =

1,7t M1(1+—M2]
e | e e
(VAT M§(1+y21Mf)
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And if you do that you get the final momentum equation becomes,

! —u 2
Y= 24 _xddf  yl X5 M)
D v M y Mm? y  +sia?



So, you have three terms, they can be completely integrated as you go from. So, you have a

duct going from length 1 to 2 having a length L. So, they have to be integrated now from 1 to
2.

So, of course f is a variable here friction factor or friction coefficient. So, for this is friction
coefficient for f' here. f’ varies very slowly. So, we can take that the average value of f’ or
friction factor any of them both are constant along the length. But we have to take the average
value. So, that can be clubbed together. So, that is given the term f So, 4f bar by D this term

is actually a constant.

X ’ - X 7
lz‘ldx: 4_f§2dx:_4fL
L D D D

X1 X1

/ 2 =Ll 2
L g [h- k] | S
Y LMy M, Y M3 (1+ %+ M7)

So, you get this closed form solution that expresses change in Mach number as you move
from an initial entry condition with Mach number M,, it passes through a duct having a
certain coefficient of friction ]7’ of length L and at the end it gets Mach number, it is Mach

number becomes M, pressures, temperatures everything undergoes a change.

So, this is the final expression in a closed form solution. So, of course; if you look at this
expression while you can actually solve if you are given M, then you can solve and L. You
can solve for M, in principle . But it is not an easy equation to solve. So, iterative tools may
be needed. But a different approach is used when actually solving these problems which we
will discuss in a moment before we go there.
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Equations for Fanno flow

T " : P,

* First, looking for expression c)fT—z * Now, looking for expression of P_i
bi

+ since the flow is adiabatic (g = 0), and we can * Continuity equation = pyu; = p,li,

write: To, = Toq

Using the fact that, a® = y% >p= r

2
idbeys ¢
T _Tu/Ty (l +TM1) > Uk
= e Yy YPu,
Ty To/T, (1 +YTIM22) Pty = = and pyu, = =L
T, 2+(G-DM * Thatis,
Ty 2+ (y—1)M? YP1U1:YP2U2#&_EG_%_M1‘12
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Let us look at the variables of the flow we are looking for what happens to temperatures
% , ﬁ—z . So we look at ;—2 first. Now because flow is adiabatic T, is equal to T, therefore
1 1 1

T, . T T .
you can express = interms of Z2.So, +* can be written as,
1 01 1
T -
T, _ 7 _ (1 ko) _ (e y=1) M})
T, = 2 2
T, - (1+ % M3) (2+(y-1) M3)

P : : S : :
What about * ? Here we cannot use isentropic relations it is not an isentropic flow. But we
1

know that pu = constant. And you can express u =M a. And a can be expressed as a® = WPE

And also you can use the equation of state P = p RT.

So, if you use all of them together you get that you get to the fact that,
By o Mgy

P, M, a,

o _ [T
Now, & = /7

=lF
[

L
M, [ 24 'y—l)le ]2
My L 2+(y-1) M2
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Fanno Equations

+ But,a’ = +/YRT, the above equation become
P My [T My [2+ (- DM
P My [Ty M2+ (y-1M?

; : . P, T
+ The expression for% is now easy to find because % E P—ET—‘
1 1 1

o _M[2+ (- DM
b M2+ (- DM

And you get I}Z—T and g—? is now just use the ideal gas equation of state, P = pRT. So, or p is.

So,p = £ .
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Fanno Equations

) ) Py Pu/P:P
+ Next we find the ratio of total pressures, using Pﬂ = P‘"—ﬁP’P—Z
01 01/f1 11

e
P[]Z _ [2 + (Y— l)MlZ y-1 M1 e (y_ 1)M12]1’IZ
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Gasdynamics:1D Flow with Fricti

Now what about total pressures, change in total pressure or ratio of total pressures 1% ? That
01

can be expressed,

1=

>
:UEU| wbv



Locally at that particular point, the definition of stagnation conditions is always through an

. . P . . . . P . . . .
isentropic process. So, % 1is an isentropic process that is. And 2" is again an isentropic
2 1

. . . P
process. So, those can be expressed in terms of isentropic processes. But * comes from
1

Fanno flow equations.
P .
So, 2 canbe expressed in terms of M and M,
01

. . . P, T, P .
So, now so in these equations we have expressed every variable say +*, 7 , 5> all in terms
1 1 01

of the Mach numbers across the Fanno flow through a duct of length L.
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Limiting point — Sonic Point
letP, =P,T, =T,etc;P, = P, T, =T" etc.and M; = M* =1

T y+1 Po1f y+1 \
M

Tt G-DME P M\Z+(y-1

p 1(24(-DM\"
P M y+1
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P 1 ¥+l 20-1
Py T MA\2+(y - 1)M2

If we define x = L" as the position where M = 1, then the momentum e

4 1-M y+1 [ (1M

D~ yM? 2y n[2+(y—1)M

So, but what you would realize from all these is even if you know say M, and you want to
find M2 then dealing with these equations is not a straight forward and closed form sort of
getting solutions from them is difficult. So, what is done is a simplifying procedure is done
that is makes use of the fact that if you consider a Fanno flow then there is a critical point

which is this particular point star point for the fan of flow.

So, this star point the Fanno flow that is a flow through the duct drives whether it is in
subsonic flow or supersonic flow it always drives towards this particular point where Mach
number equal to 1. So, that can be taken as the reference point for a given Fanno curve there
will be one particular one unique reference point which is the star. So, for that what we do in
this is take that reference point as M,, M, is equal to M * = 1. And the other point can be the

any other point on this Fanno curve.



. . P
So when you express that it becomes Tl . So, any expression say 17? ,

P2

o if you take the
1

reference point as the star point which for a Fanno curve there is that unique particular point

where Mach number will be equal to 1. Then you can express all the parameters in terms of

. . . ) . . P
this particular point that is the sonic point here. So, Tl , % , p—p* e P*Oo

Now these are functions only of y and M. similarly if you look at the term ﬁ% if you take
this L such that if you begin from a point it always goes if you take a certain length of duct
such that at the end of the duct you get Mach number equal to 1 then this particular length of
duct is known as the star length ,L* So, this given here L*. x is equal to L*. Then in the

momentum equation what you get as %: that is what we had derived earlier can be written

in terms of y ,L and M.

Now these are functions of M only. And they are tabulated behind textbooks or there are
calculators online which can give you values of these star quantities these star quantities
when you give an input of Mach number. So, now they become charts or tables which we can

refer to.
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Problem Solving Procedure

For a friction ceefficient f and a length L and My, Py, Ty, p, solve for downstream properties as
follows

* Find % corresponding to the M;

T PP )
+ Determine =, =, =2 corresponding to M;
TP B

« Find 2 using L = 1; - 13

* Once % is known, find the corresponding value of M,

T PP

* Once M, is known, determine —,—=,—
™' Py

* Find the P,, T,, Py; as the * quantities are same.

So, how will we solve equations or solve problems when we are doing them actually. When
we solve them that is usually what would be given is friction coefficient will be known say

length of the duct is known. And the initial conditions are given at the start of the duct which



is the duct is of length L then point 1 and 2 what we know is M |, P |, T ,. So, we will know

p, and L is given.

So, the way to go about solving this problem is if you view this in a Ts diagram it will be very
useful. So, it will of this kind. So this is the maximum entropy point. You start with the point
1. Now this is a unique reference point. So, this reference point L* is unique. So, if I take for
point 1 this is L1 * and as it flows through a duct of length L it reaches point 2. For point 2,
the L* is over here this is L, L2 *.

S
D

So, what is L? So, L is actually because we are taking f' that is f’ or f " that is a constant it is

the average friction .
&L _ a4
So, D D ~ D

So, with this equation basically, so, L is equal to L1 * - L2 *. So with this particular

equation you can connect to the two L* or the 4,—%* this particular expression.
And this will be tabulated and from there we can extract. So, if you know this particular value

which is known because M1 is known since L is known this value is known therefore you can

find out é%* for the point 2. once you know that you can back calculate or you look at the

charts and get what is M,? Once M, and M, are known then it is easy to find all the remaining

quantities.

So, that is how the problems are solved. And we look at problem solution very soon. Before
we look at that in the next class we look at an important concept which is known as choking
due to friction. So, we had seen choking, mass flow choking due to changes in area varying
area. Now here if you look at frictional flows also there is a choking involved and we will

look at that in the next class.



