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Varying Area Duct Flows- II  

  

So we are looking at varying area duct flows in the context of Quasi-1D assumption and flow 

is inviscid and has no other effects only area is changing. As a consequence, the flow within 

varying area ducts is taken as an isentropic flow is a very good approximation to understand 

flows through nozzles diffusers and so on. And in the previous class we looked at how the 

definition whether a particular duct is a nozzle or a diffuser changes as you move from different 

flow regimes from subsonic to supersonic flow.  

 

In a subsonic flow a duct which decreases area that is a convergent duct is a nozzle it accelerates 

the flow. While a duct which increases area that is a divergent duct it decreases velocity when 

the incoming velocity is subsonic it behaves like a diffuser. But the moment you go to a 

supersonic flow that is the incoming flow is supersonic then a convergent duct that is a duct 

which decreases area with an incoming supersonic flow the velocity actually decreases. 

 

So, a converged duct behaves like a diffuser. So, a supersonic diffuser implies a convergent 

duct. Similarly, if you go and increase area with an incoming supersonic flow then you find 

that velocity increases or it behaves like a nozzle. So, a divergent duct is a supersonic nozzle. 

So, this is the behaviour one has to always understand and keep in mind when we discuss 

varying area ducts. 

 

So now if you want to move from subsonic flow to supersonic flow or supersonic flow to 

subsonic flow you need to combine the ducts in a certain way. And the way it is combined is 

always a minimum area is produced and at the minimum area the Mach number is 1. So, these 

kinds of ducts which combine the two principles are convergent divergent ducts. So, you have 

various kinds of varying area ducts and they behave differently in different flow regimes. 
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And we were now we had begun looking at quantitative aspects of this understanding and the 

previous class we had looked at the area ratio relation 
𝐴

𝐴∗ we had looked at that relation and that 

was done from continuity equations we had derived it. Now we also look at how we can write 

the mass flow rate through a duct. What is mass flow rate from ṁ  =  𝜌𝐴 𝑉. Now depending 

on various applications, you may need to find the mass flow rate.  

 

Because for example propulsion-based applications thrust produced is dependent on ṁ𝑉𝑒 that 

is mass flow rate multiplied by the exhaust velocity. So mass flow rate is an important term 

there. Similarly, in applications like wind tunnels you need to know what is the mass flow rate 

happening to the entire system. So mass the calculation of mass flow rate is quite routine in 

engineering devices and many different conditions may be known to you. So how do we 

calculate m dot in different conditions? 

 

So first is of course ṁ  =  𝜌𝐴 𝑉 but generally density is not known a priori it is usually a 

calculated variable something that is generally measured is pressures and temperatures, static 

pressure, static temperature. So, can we express this in terms of static pressure and temperature 

and it can be done because 𝜌 =
𝑃

𝑅𝑇
 . ṁ =

𝑃

𝑅𝑇
𝐴𝑉. 

 

It is also useful to express velocity in terms of Mach number, 
𝑃

𝑅𝑇
 A multiplied by Mach number 

multiplied by acoustic speed a. So you get 𝑚̇ =
𝑃

𝑅𝑇
𝐴𝑀𝑎. And a is √𝛾𝑅𝑇, so𝑚̇ =

𝑃

√𝑅𝑇
𝐴𝑀. So 



this is the equation if you know what is the static pressure, temperature and Mach number at a 

particular location in any duct, We can find the mass flow rate. 

 

But generally static pressure temperature may not be known; something that is known is the 

reservoir conditions which is pressure & temperature measured in a condition where the 

velocities are very small, velocities are approaching 0. The velocities may be a few meters per 

second, but they may not be very high, and flow need not be compressible in this region. That 

kind of a system is the reservoir you can look at various such applications where you can have 

a huge tank. 

 

And then the flow is taking place from the tank and then goes to a set of pipes and some varying 

area ducts. Then the velocity in the huge tank will generally be very small. Then if pressure of 

tank and temperature of tank is known then the pressure and temperature at such low speeds 

will approximate will be almost equal to the stagnation quantities 𝑃0 and 𝑇0. So because of this 

expressing mass flow rate in terms of 𝑃0 and 𝑇0is also very useful and so you can convert this. 

 

So you can use the relations 
𝑃0

𝑃
= (1 +

𝛾−1

2
𝑀2)

−
𝛾

𝛾−1
 is  and 

𝑇0

𝑇
= 1 +

𝛾−1

2
𝑀2. So while we are 

actually looking at √
𝑇

𝑇0
. So this has a 

1

2
 attached to it. So, using this if you convert this particular 

equation in terms of 𝑃0 and 𝑇0 then the equation 

𝑚̇ = 𝐴√
𝛾

𝑅

𝑃0

√𝑇0
𝑀 (1 +

𝛾−1

2
𝑀2)

−
𝛾+1

2(𝛾−1)
 . 

 

So here we have expressed 𝑚̇ as a function of 𝛾, 𝑃0, 𝑇0, area and Mach number. So there is 

another form in which you can write the mass flow rate starting from 𝜌𝐴 𝑉, you can always go 

back to 𝜌𝐴 𝑉. But these are various forms in this in which the mass flow rate can be written. 
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𝐴1

𝐴∗
=

1

𝑀
[

2

𝛾 + 1
(1 +

𝛾 − 1

2
𝑀2)]

(𝛾+1)
2𝛾−1

 

And we will see there are other forms also. Since mass flow rate is constant 𝑚̇ = 𝑐𝑜𝑛𝑠𝑡𝑎𝑛𝑡. 

Now we can relate. So the two areas so we get 

 𝐴1√
𝛾

𝑅

𝑃0

√𝑇0
𝑀1 (1 +

𝛾−1

2
𝑀1

2)
−

𝛾+1

2(𝛾−1)
= 𝐴2√

𝛾

𝑅

𝑃0

√𝑇0
𝑀2 (1 +

𝛾−1

2
𝑀2

2)
−

𝛾+1

2(𝛾−1)
. 

 

So in varying area duct its isentropic𝑃0 and 𝑇0 are constant so they just cancel off on both the 

sides you can get a the expression is over here  

𝐴1

𝐴2
=

𝑀2

𝑀1
[

1+
𝛾−1

2
𝑀1

2

1+
𝛾−1

2
𝑀2

2
]

(𝛾+1)

2𝛾−1

. And a particular reference area that we discussed even last time is when 

Mach number goes to 1. So 𝑀2 =  1. So that particular area ratio is 
𝐴

𝐴∗
 and  

𝐴1

𝐴∗ =
1

𝑀
[

2

𝛾+1
(1 +

𝛾−1

2
𝑀2)]

(𝛾+1)

2𝛾−1
 this was derived, same principles expressed in different ways. 

 

This is something that you have to understand depending on the variables that you know in a 

particular problem. The same quantity can be expressed in different ways you know static 

pressure, temperature and Mach number then you can calculate mass flow rate using a certain 

relation. If you know the stagnation pressure and temperature or what are known as reservoir 

conditions, then you can use another expression. 

 



Or you can always go back calculate the basic variables 𝜌𝐴 𝑉 and mass flow rate can be 

calculated ṁ  =  𝜌𝐴 𝑉. So now how does 
𝐴

𝐴∗ behave? So for this we plot 
𝐴

𝐴∗ but immediately we 

can do a differentiation also and understand. What we are looking is how does, Mach number 

change as area changes 
𝑑𝑀

𝐴
. So 

𝑑𝑀

𝐴
  <  0 for subsonic flows Mach number < 1. 

 

And 
𝑑𝑀

𝐴
  >  0 for Mach numbers > 1. So, this is what is known if you can differentiate.  
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But easier way is let us just plotting it. So if you plot 
𝐴

𝐴∗  , so 
𝐴

𝐴∗  is here versus Mach number. 

So here it is plotted M versus 
𝐴

𝐴∗  then you will find that as Mach number increases from 

subsonic flow. So this is 0 this is from very low Mach numbers it is going up to Mach 1 area 

ratio that is 
𝐴

𝐴∗  that is often refers to as star area ratio or the area ratio sometimes used just like 

area ratio. So, area ratio decreases. 

 

 

After Mach 1 if you further increase Mach number then area ratio increases. So, the area ratio 

has a minimum point at Mach number equal to 1. So, if you consider a varying area duct in 

general then the minimum point where the area reaches a minimum point that is where you 

expect Mach number to be equal to 1. Expectation is that Mach number reaches one at the 

minimum area point. Now this figure also gives us an idea on how to understand the behaviour 

of flows. 

 



So, if you are in the subsonic domain and the area ratio decreases. So, area ratio decreases and 

Mach number increases. So, you can understand from this graph easily that and in supersonic 

flow the Mach number will increase when you increase area ratio. So, area ratio increases 

supersonic flow Mach number increases. So, these are the important points and a convergent 

divergent duct. So, where there is a convergent and divergence included then there what can 

happen is you can have the flow going all the way from subsonic to supersonic passing through 

Mach number 1 at minimum area. 

 

So this part is important. The same thing will occur if you go from supersonic to subsonic all 

the way. Then another important point that you should observe in this graph is that if you take 

any area ratio in particular. So, let me draw a curve here. So, if I know 
𝐴

𝐴∗
. So 

𝐴

𝐴∗
  is known is 

known then there are two solutions to Mach number. So you have a subsonic solution and a 

supersonic solution. 

 

So, what do you observe whether you observe subsonic flow or a supersonic flow at a particular 

area has to depend on other factors these are pressures and pressure ratios. So, we will come to 

it soon. But this has to be understood for a given Mach number you can always find an area 

ratio. So, given a Mach number you will get an area ratio that is given here. But for a given 

area ratio you can you always get two solutions one can have one can be subsonic the other can 

be supersonic. 

 

So this has to be clearly understood and when you solve problems you should always look for 

whether the solution is meaningful in the context of the problem which one should be used. 

Whether it should be subsonic or it should be supersonic we will soon come to these fine details.  
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So it is not always necessary that at the minimum area Mach number should go to 1. If you are 

moving from a if during the motion through the convergent divergent varying area duct the 

flow passes from a subsonic region to a supersonic region then it has to go through a Mach 

number equal to 1 at minimum area. This is for a completely shock free flow when shocks are 

present things change a little bit. 

 

We will come to that also soon. But you could if the pressure ratios across the duct do not 

support such a flow behaviour then you can always have changes like first there is you started 

off with the subsonic flow point one. There was a convergence, so the flow accelerated 

increased its Mach number. But then the pressure ratios across the duct did not support its 

further acceleration. 

 

So it reached a certain increased Mach number at this point. So M, I will call it as the Mthroat 

usually this small area is called as a throat and Mthroat. Mthroat is greater than M1 but it is less 

than one. So, in that case if now if further area is increased then the flow will not go supersonic 

because it is still subsonic at the minimum area. So, it will decrease its velocity. So, it will 

become subsonic again. 

 

So, you see that various combinations can happen. Similarly, in supersonic flows in this case 

for example you started with the same duct you start with the supersonic flow convergent duct 

Mach number decreases but it does not decrease all the way to 1. And then further the area is 

increased then you see it again increases the Mach number. So, looking at varying area ducts 

you have to be careful and understand these concepts very carefully. 
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Now let us look at the sum total of all the things in a varying area duct. There is changes in 

velocity there is change in pressure temperature density. So, we can look at all the equations 

together and with 
𝑑𝐴

𝐴
 basically the area change as a forcing function it is like a forcing. You are 

changing area and you want to know what happens to all these quantities. Pressure, 

temperature, velocity, Mach number and another parameter is the impulse equation. 

 

Impulse equation F is 𝑃𝐴(1 + 𝛾𝑀2) this comes from 𝑃𝐴 + 𝜌𝑉2𝐴 which is nothing but and it 

at the particular section quasi 1D flow you integrate the momentum equation. Then at any 

particular section you can define this quantity 𝑃𝐴 + 𝜌𝑉2𝐴 it comes from the momentum 

equation. And this is nothing but the impulse that is imparted there.  

 

It is often used in discussions of propulsion systems. So 𝑃𝐴 is you can take out 𝑃𝐴 this becomes 

𝑃𝐴 (1 +
𝜌𝑉2

𝑃
) and 

𝛾𝑃

𝜌
= 𝑎2. So this is 𝑃𝐴(1 + 𝛾𝑀2). So that is the impulse function this is also 

a parameter. So, this way what if we look at all these changes together. So, speed of sound 

Mach number we write these equations in terms of 
𝑑𝐴

𝐴
 as a variable as a change. 
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And collect all the equations together and write it in a matrix form with 
𝑑𝐴

𝐴
 as a forcing function. 

Then we will know how each quantity is getting affected by 
𝑑𝐴

𝐴
. So this is nothing but you are 

expressing all the equations that have written over here for various quantities in terms of a 

matrix. And then this can be solved this matrix can be solved you can express 
𝑑𝑃

𝑃
 solely as a 

function of Mach number, gamma and 
𝑑𝐴

𝐴
. 

 

So, this can be expressed. So, you get an expression for this can be done by means of by 

applying Cramer's rule. You can use nowadays you have Mathematica and Maple kind of 

symbolic mathematical operators to do these operations and you can get this quite readily 

easily. 
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So you can do this use Cramer's rule solve the equations and you can get 
𝑑𝑀

𝑀
 as a function of 

only Mach number. So as a function of only 
𝑑𝐴

𝐴
, 

𝑑𝐴

𝐴
 is the forcing gamma and Mach number. So 

like this we can write for all the parameters 
𝑑𝑀

𝑀
 , 

𝑑𝑃

𝑃
, 

𝑑𝜌

𝜌
, 

𝑑𝑇

𝑇
 change in velocity, change in speed 

of sound, change in impulse function. 
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So how are they affected by area change? So, if you look at that this is for a perfect gas 

calorically perfect gas 𝑑𝐴 < 0 that means convergent duct. But then the flow behaviour 

changes between subsonic and supersonic flows. So, if the flow is subsonic then Mach number 

increases, pressure decreases, density decreases, temperature decreases, velocity increases the 

impulse function decreases there is no change in entropy. 

 



Entropy is constant. Similarly if you go and look at convergent ducts and supersonic flow then 

you know that Mach number decreases, pressure increases, density increases temperature 

increases, velocity decreases, impulse function decreases. So in one short you can get how all 

these variables change this kind of representation is called and where these coefficients are 

called as influence coefficients. 

 

So 
𝑑𝑀

𝑀
 is influenced by 

𝑑𝐴

𝐴
 by a coefficient which is 

1+
𝛾−1

2
𝑀2

1−𝑀2
. So, these are influence coefficients 

they are very useful to look at. So similarly 
𝑑𝑃

𝑃
 this is the influence coefficient for 

𝑑𝑃

𝑃
 they are 

very useful. Now we are looking at each individual forcing function. Now we are looking only 

at area change. 

 

In later classes we may look at friction and we may look at heat addition as separate influencing 

parameters on a duct flow. But in general, these are not always separate they are in some 

combined fashion usually there will be both area change and friction or they can be both area 

change friction and heat addition occurring together. So, if you want to analyse such problems 

then the influence coefficient method is a very useful method to look at such problems. 

 

So, this idea is being introduced very early on but later we will see how they can be combined 

together in a special lecture on combined effects of these problems.  
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So in the limit as various limits go that you have very small Mach numbers, very large Mach 

numbers and at Mach number equal to 1. What happens to various quantities like 𝑀∗,
𝑇

𝑇0
,

𝑃

𝑃0
,

𝜌

𝜌0
 

a varying area ratios. So, it is an isentropic flow. So in an isentropic flow these are the 

expressions for the limiting cases. So with this now, we will look at still now what we have 

been looking at is? 

 

We have been looking at there is an area change what happens to velocity or Mach number 

when there is an area change? What and how do they behave? But will they actually behave in 

such a way you have a certain area convergent. For example, a convergent nozzle let us say. 

So you are providing a certain flow to it and you expect there should be an increase in velocity 

which should happen.  

 

But then for the flow to happen there should be some pressure that needs to be provided. So 

always there is you should not be considering these varying area ducts only in context of only 

areas and Mach numbers you should also look at pressures. What happens if we do not provide 

pressure ratios which are consistent with the Mach number that needs to be produced according 

to area ratio? 

 

So these are the kind of problems. So it is not just only area ratio and velocity here there is a 

change in pressure also. How are they mutually dependent on each other this is the focus of our 

attention in the coming classes? They will be different for nozzles and diffusers so we will treat 

them separately nozzles and diffusers. So, next class will start looking at convergent nozzles. 

 

 

 


