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Lecture   23   

Waves   of   Finite   Amplitude     
  

So  we  are  looking  at  the  shock  tube  problem  and  we  are  looking  at  solving  the  left  hand  side                     

of  the  shock  tube  problem  which  initially  you  start  off  with  a  large  pressure  difference                 

between  the  driver  side  and  the  driven  side.  On  the  right  hand  side  into  the  driven  side  you                    

have  a  shock  wave,  a  moving  shock  wave  and  behind  it  there  is  a  motion  of  gas.  On  the  left                      

hand  side  you  have  expansion  waves  these  are  waves,  isentropic  waves  are  they  move  with                 

without   any   change   in   entropy.   

  

And  we  are  trying  to  address  the  left  hand  side  of  the  shock  tube  problem  and  they  are  waves.                     

So  we  began  with  waves  of  very  small  changes  or  infinitesimal  changes.  Now  we  move  on  to                   

waves  of  finite  amplitude  or  when  the  amplitudes  of  these  waves  are  quite  significant  what                 

happens.   

  

So,  let  us  move  ahead  with  the  problem.  so  let  us  directly  go  to  the  equations  of  motion  this                     

for   fluid   flow.     
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So  we  go  to  fluid  flow  equations  and  also  is  compressible  in  nature  so  density  is  a  variable.                    

So  take  the  continuity  equation,  you  start  with  the  continuity  equation  .  This  material             Dt
Dρ    



derivative.  0.  So  we  start  with  this  equation  and  we  know  that  it  is  a  nice   ρ∇.V  Dt
Dρ +  

→
=                

isentropic   flow.   So   density   is   a   variable   here   and   it   can   be   function   of   pressure   and   entropy.   

  

For  an  isentropic  flow  change  in  density  is  0.  I  mean  change  in  entropy  is  0,  so  this  is  0  and                       

you  get  the  term   .  All  of  course  you  should  know  .  So  one  can  relate   to      ∂ρ
∂P         a  ( ∂ρ

∂P )  
s

=  2      Dt
Dρ   

 that  is  changing  pressure.  So  they  can  be  related  to  each  other  by  using  the  acoustic   Dt
DP                  

equation   i.e.     .    Dt
Dρ =  1

a2 Dt
DP  

  

So,  in  the  continuity  equation  the  change  in  density  is  or  the  material  derivative  density  is                  

replaced  by  the  material  derivative  of  pressure  and  why  did  this  will  soon  become  evident.  So                  

for  a  one  dimensional  flow  ,  the  material  derivative  is   . where  u  is  the  velocity       D
Dt        ∂

∂t + u ∂
∂x       

in  x  direction.  So  you  can  write  the  material  derivative  of  pressure  as  and                 Dt
DP =  ∂t

∂P + u ∂x
∂P  

  ρ  1
a2  ( ∂t

∂P + u ∂x
∂P ) +  ∂x

∂u = 0  

  

So  this  form  of  the  continuity  equation  where  we  have  used  definition  of  speed  of  sound  and                   

brought  in  the  pressure  variable  and  then  it  has  been  put  here  and  this  is  the  converted                   

continuity   equation.     
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Now  we  move  to  the  momentum  equation  without  any,  body  forces  or  any  viscous  forces  it  is                   

a  inviscid  flow.  So  again  material  derivative  of  velocity  and  we  are  considering  only  one                 

dimension   so   this   becomes,   



  

 u ρ ∂t
∂u + ρ ∂x

∂u + ∂x
∂P = 0  

   in   one   dimension.     

  

Now   you   have   the   two   equations   the   first   equation   was   from   the   continuity   equation   ,   

  

.    ρ  1
a2  ( ∂t

∂P + u ∂x
∂P ) +  ∂x

∂u = 0   

  

And   the   momentum   equation   is    

 u ρ ∂t
∂u + ρ ∂x

∂u + ∂x
∂P = 0  

  or   it   can   be   divided   by   also.   ρ   

  

So   we   can   do   that,  

  ∂t
∂u + u ∂x

∂u + ρ
1

∂x
∂P = 0  

 Now  we  do  this  operation  we  multiply  the  continuity  equation  by    that  is  the  speed  of              ρ
a       

sound   divide   by   density   and   add   the   momentum   equation   to   it.   

  

So   if   you   do   that   you   get,   

  

  1
ρa  [ ∂t

∂P + u ∂x
∂P ] + a ∂x

∂u +  [ ∂t
∂u + a ∂x

∂u +  ρ
1

∂x
∂P ] = 0  

 So  now  if  you  collect  terms  or  containing  pressure  and  velocity  separately  you  get,  So  it  will                    

be,   

  u )[ ∂t
∂u + ( + a ∂x

∂u] +  1
ρa u )  [ ∂t

∂P + ( + a ∂x
∂P ] = 0  

  

  

So  this  is  what  we  get  same  operation  but  now  what  you  do  is   multiplied  to  continuity                ρ
a     

equation  and  subtract  the  momentum  equation  and  you  can  carry  on  the  same  steps  now  what                  

has   been   described   over   here.   And   you   can   see   that   you   end   up   with,   

 u )[ ∂t
∂u + ( − a ∂x

∂u] −  1
ρa u )  [ ∂t

∂P + ( − a ∂x
∂P ] = 0  

  



Now  what  is  the  significance  you  can  see  that  there  are  two  terms .  They              nd (u )  (u )+ a a − a   

are  quite  significant  and  this  is  where  the  application  of  method  of  characteristics  comes  into                 

picture.  So  what  we  are  looking  for  is  some  transformation.  So  these  are  partial  differential                 

equations.  So  is  there  some  transformation  that  we  can  apply.  So  as  to  convert  them  to  more                   

easily  solvable  differential  equations,  ordinary  differential  equations.  And  for  hyperbolic            

equations  these  are  hyperbolic  equations  then  there  is  a  method  to  do  it  and  that  is  the  method                    

of  characteristics.  And  to  understand  this  you  can  go  back  to  our  previous  classes  when  we                  

were  looking  at  a  general  variable  and  looking  at,   where  c  is  a  constant  of           ∂t
∂u + c ∂x

∂u = 0        

propagation.  And  we  were  looking  how  can  we  convert  this  to  a  ordinary  differential                

equation  and  u  being  a  function  of  x  and  t,  u  =u  (x,t)  and  it  can  be  written  du  can  be  written                        

as    u dt dxd =  ∂t
∂u + ∂x

∂u  

And   comparing   these   two   we   sort   of   arrived   at   if   we   consider     

 then  we  can  write  this  as  du  or  an  ordinary  differential  equation  ,it  can  be  taken  to  be  dt
dx = c                    

du.  So  along  lines  .  So  along  these  lines  which  gives  out  the  lines  as  (x-ct)  =  k,  some      dt
dx = c                

constant  some  constant,  (x-ct)  =  k  .  So  along  these  lines  you  can  convert  the  partial  first                   

order   partial   differential   equation   into   an   ordinary   differential   equation.   

  

So  this  is  the  basic  principle  of  method  of  characteristics  and  you  can  always  come  back  to                   

the  simple  equation  in  order  to  understand  what  we  are  doing.  So  you  can  take  the  same                  

principles  here  and  come  back  to  this  problem  that  we  have  which  is  more  involved.  You                  

have  both  u  and  P,  both  are  functions  of  space  and  time,  x  and  t,  and  P  is  also  a  function  of  x                         

and   t.   But   you   look   at   these   equations   you   have   similar   form   you   have   (u   +   a)   here.   

  

So  along  the  lines  .  So  along  these  lines  this  particular  form  gets  converted  into  dP      dt
dx = u + a             

while  this  will  convert  to  du  which  is  change  in  velocity.  So  now  du  is  here  d  represents  total                     

derivative.  So  here  again  there  are  another  set  of  characteristics  for  this  problem  which  is  (                

.).   So   there   are   two   sets   one   is,   ( .).   the   other   one   is   ( .).   so.    u − a u + a  u − a   

  dt
dx = u − a  

  

So  this  set  of  characteristics  is  known  as  is  generally  called   and  this  set  is  called  ,  that             C+       C−   

is  the  way  it  is  represented.  So  if  you  do  make  those  changes  then  you  get  two  equations                    

these   equations   are   called   as   the   compatibility   equations,   so   they   convert.   
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So  now  by  going  along  certain  lines  or  certain  curves  in  space  which  are  related  by                  

 this  belongs  to  one  set  of  characteristics  which  we  call  as  |  and  the  other  one  dt
dx = u + a             C+      

is   another  set  of  characteristics  which  we  called  as  .  If  you  take  separately  in    dt
dx = u − a          C−       

these   two   characteristics   and   go   back   and   look   at   the   equations   they   transform   into   ODE’s   ,   

 and  .  These  are  ordinary  differential  equations  they  can  be  ud + ρa
dP = 0   u  d − ρa

dP = 0          

integrated.     

  

So  now  you  see  in  this  discussion  on  finite  amplitude  waves,  what  we  see  here  is  that  your                    

speed  of  propagation  of  the  waves  is  not  a  infinity  anymore.  It  is   and  .  These  are              u + a    u − a    

the  speeds  with  which  the  waves  propagate  and  a  is  not  a  constant  speed  with  which  it                   

propagates  in  space  and  time  can  vary.  So  that  is  the  important  difference  between                

infinitesimal  waves  where  you  saw  that  the  speed  of  propagation  is  the  speed  of  sound  which                  

is   .  a∞  

  

But  here  that  is  not  so.  So  now  how  would  we  proceed  ?  We  have  to  evaluate  these  integrals.                     

So  this  is  for   characteristic  the  integral  is   these  are  called  Riemann  invariance     C+      J+       

because  this  has  to  be  a  constant  if  you  integrate  it   so,  along  a                constantJ+ = u + ∫
 

 
ρa
dP =      

characteristic.  Secondly  if  you  integrate  the  second  equation  that  is  this  one  and  then  you  C+                

get     is   constant   along     characteristic.      constantJ− = u − ∫
 

 
ρa
dP =  C−   



So  this  is  along   and  this  is  along   .This  has  to  be  borne  in  mind.  It  cannot  be       u − a      u + a            

randomly  done.  So   corresponds  to   ,   corresponds  to   .  Now  this  is  quite     J+    C+   J−    C−       

general.   This   is       it   is   general.   ρa
dP   
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Now  let  us  go  into  the  specific  case  that  we  are  discussing  that  is  to  a  calorically  perfect  gas.                     

So  if  you  take  a  calorically  perfect  gas  so  you  know  a  square  i s  ,T his  is  known.                 a2 = ρ
γ P      

And  these  processes  that  we  are  discussing  here  is  isentropic,  we  are  looking  at  the  expansion                  

waves  the  travel.  So  they  are  isentropic  waves  so  you  know  that  isentropic  waves  or  the                  

isentropic   process   is   related   by,   .  α TP
γ

γ 1−  

  

So  an  arbitrary  constant  k 1  is  introduced.   and  of  course  T  is  actually  .  So         k  TP =  1
γ

γ 1−         a2   

.  So  you  can  use  this  fact  here.  so  T  can  be  replaced  by   with  of  course  other  γRT a2 =                 a2      

additional   constants   getting   multiplied   so   you   get .  P k  a =  2
2γ

γ 1−  

  

This  is  how  we  get  this.  Then  once  we  have  an  expression  for  P,  we  can  write  dp  and                     

.  So  you  can  do  this,   and  we  have  to  do  integral  P k ( ) a dad =  2
2γ

γ 1−
12γ

γ 1− −       P k ( ) a dad =  2
2γ

γ 1−
γ 1−
γ+1        

.   Now   we   have   expressed   P   in   terms   of   a.  ∫
 

 
ρa
dP  

  

Now  can  we  express  ρ  in  terms  of  a.  We  can  use  this  equation, or  you  can  use                  a2 = ρ
γ P     

.  So  you  can  use  that  equation  and  you  have  the  term  .  So   is  a  term  that  needs  ρ =
 a2
γ P             aρ   aρ       



to  be  evaluated.  This  is  nothing  but   ,  And  ..  So   also  turns         a  a  ρ =   a2
γ P = a

γ P    k  aP =  2
2γ

γ 1−   aρ    

out   to   be,     .  a k γ aρ =  2 γ 1−
γ+1

 

  

Now  ,  now  this  term  will  now  turn  out  to  be  if  you  put  things  together,  ρa
dP     ρa

dP           

  So   what   you   get   is   integral   .   a ∫
 

 
ρa
dP =  2

γ 1− ∫
 

 
d a∫

 

 
d = a   

So,        constantJ+ = u + 2a
γ 1− =   

so  the  Riemann  invariant  can  be  solved  analytically.  You  can  get  close  form  solution,                

  along   a      characteristic.     constantu + 2a
γ 1− =  C+  

  

Similarly  for  a   characteristic  is  the  same  integration  but  you  have  this  negative  sign  here.     C−              

So,  .  So  if  you  take  any  so  the  way  to  solve  these  is  starting  from      constant  J− = u − 2a
γ 1− =                 

an  initial  problem  or  initial  value  you  draw  the   and   characteristics.  So  they  do  go           C+   C−       

like   this   and   you   know   the,   u   =u   (x,0)   ,,x   the   initial   solution    at   x,   0   this   is   known.     

  

So  at  intersections  of  the   and   characteristics  you  evaluate  u  and  a.  Because  along  a       C+   C−           

particular  characteristic  whether  you  take  so  if  you  take  this  is   characteristics  this  is              C−     C+  

characteristic.  So  along  the   characteristic,   is  constant.  Along   characteristic   is      C+   J−     C+   J+   

constant.   So   it   can   be   evaluated   starting   from   the   initial   value.     

  

So  this  is  initial  line  and  at  any  point  you  can  solve  them  by  just  an  algebraic  manipulation,                    

solution   of   simultaneous   equations.   

  (J J  )  a = 4
γ 1− + −  −  

and   ,So  you  have  to  look  at  so,  it  is  .  So  this  is  the  equations.  So  for    (J J  ) u = 4
1 + +  −           , JJ+  −         

solving  a  and  u  separately.  So  the  way  the  solutions  of  this  kind  are  done  is  you  have  an                    

initial   line   and   then   you   can   solve   the   field   at   any   space   and   time.   
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So  now  let  us  go  and  just  compare  whatever  we  had  done  in  the  previous  class  to  this  class.                     

Previous  class  we  had  very  small  waves  infinitesimal  waves  and  this  class  we  had  finite                 

waves.  Now  infinitesimal  waves  are  very,  very  small  and  they  propagate  at  constant  velocity                

which  is  .  So  when  they  propagate  an  initial  disturbance  propagates  with  the  same  form,  it    a∞               

does  not  change  form  because  it  is  just  propagating  all  parts  of  the  wave  are  propagating  with                   

the   same   speed   a   infinity   does   not   change   form.     

  

So,  the  shape  same  just  stays  the  same  and  the  equations  are  linear  hyperbolic  equations.                 

Typically  these  are  sound  waves  representative  of  sound  waves.  But  if  you  come  to  finite                 

disturbances  then  the  change  is  quite  significant  and  so  these  waves  they  do  not  travel  all  the                   

time  with  the  velocity  .  They  travel  with  the  propagation  speeds   or   and  it  can      a∞        u + a    u − a     

vary   from   space   and   in   space   as   well   as   at   different   times   instant   of   times.   

  

So  because  of  this  variation  the  initial  shape  of  the  wave  it  changes  with  time  so  it  gets                    

deformed.   And   these   equations   are   fully   non-linear.     
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So  how  can  we  apply  this  to  shock  waves  shock  tube  problem.  To  get  the  connection  we  need                    

to  understand  a  little  bit  about  how  these  characteristics  behave?  So,  if  you  have  a  region  of                   

uniform  flow  that  is  the  velocity,  pressure  and  temperature  do  not  depend  on  space  and  time                  

and  there  you  draw  the  characteristics   and   .  The   and   are  nothing  but        C+   C−    C+   C−      

   and   This   is     and      T his   is   .  dt
dx = u + a C+ .  dt

dx = u − a C−  

  

So  if  you  draw  them  at  all  points  u  and  a  are  the  same.  So  you  can  take  them  as  ,  .  They                      u∞  a∞   

will  same  everywhere  in  a  uniform  flow  field.  Therefore   is  the  same  along   and           dt
dx      u + a   

.  So  you  have  2  sets  of  straight  parallel  lines.  So  they  are  always  parallel  they  are   u − a                  

straight  in  a  uniform  flow.  Well  if  you  take  a  non  completely,  non  uniform  flow  that  is                   

represented   here.   

  

Represented  here  u  and  a  are  not  constant  anywhere  so  in  general  they  are  changing                 

everywhere.  So  they  at  every  point  of  course  you  will  have   but  as  you  move  away             dt
dx = u + a       

from  the  point  you  have  another   or  .  As  a  consequence  these  are  curves.  They        u + a    u − a         

are  not  straight  lines  and  so  you  have  two  sets  of  curves.  So  this  is  completely  non  uniform                    

flow.   

  

So  an  intermediate  between  these  two  is  a  simple  non  uniform  flow.  It  occurs  when  you  have                   

a  region  of  non  uniform  flow  bounded  by  two  uniform  flows.  And  if  you  think  of  it  this  is                     

typically  in  a  in  the  expansion  side  of  the  shock  tube  where  you  have  region  4  here  and  region                     



3  here.  Region  3  is  uniform,  you  have  pressure  is  P3,  speed  is  u3.  And  region  4  is  having  no                      

velocity,   it   has   pressure   P4,   T4,   u4   is   0.     

  

And  the  expansion  waves  move  between  them.  So  you  have  a  non  uniform  flow  which  is  the                   

expansion,  motion  of  the  expansion  waves  between  two  regions  of  uniform  flow.  So  that                

follows   the   simple   non   uniform   flow   problems.   So   that   is   how   it   comes   into   picture.   
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And  what  is  important  there  is  an  understanding  that  when  you  have  such  a  flow.  So  we                   

already  talked  about  uniform  flows  here  it  is  always  straight  that  is  rather  straight  forward.                 

But  if  you  have  a  simple  wave  region  a  region  where  it  is  simple  non  uniformity  not                   

completely  non  uniforms  then  you  have  a  property  that  one  set  of  waves  either  one  set  either                   

  or     it   depends   on   the   problem.  C+ C−  

  

One  set  of  the  waves  will  be  straight  lines  the  other  one  will  be  curved  and  you  can  show  that                      

simply  by  considering  the  case  that  you  have  a  non  uniform  region  here  and  you  have  a                   

uniform  region  here.  And  this  forms  the  boundary  of  non  uniform  region  and  the  uniform                 

region.  So  consider  so  these   characteristics  here  and  and  characteristics  are  coming  in       C+      C−     

they   are   coming   in   here   from   the   non   uniform   region.   

  

So  so  you  can  consider  these  2  points  this  is  a  uniform  flow  while  PQ  lie  in  the  non  uniform                      

flow   along   the      characteristics.   C+   
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So  if  you  do  look  at  that  problem  then  what  you  can  show  is  so  along   but                  C+  dt
dx = u + a   C−

characteristics  are  the  ones  which  are  moving  from  the  uniform  region  to  the  non  uniform                 

region.  So  along  characteristics  the  that  is  Riemann  constants  or  invariant.  So  you  can     C−   J−          

write,    .  uP −  γ 1−
2 aP = uA −  γ 1−

2 aA  

  

Similarly  you  can  write  it  for  points  Q  and  P  so  these  two  equations  you  can  write.  But  since                     

it  is  coming  in  from  uniform  region  A  and  B  ,  and   they  are  the  same.  So  as  a            u A   uB         

consequence  you  can  get  that   and  .  So  along  the   characteristic       uuP  =  Q   aaP  =  Q     C+   

essentially   .  They  are  here  along  the   characteristic  in  the  non  uniform  region   uuP  =  Q        C+        

but  they  have  the  same  value.  That  means  the   characteristics  have  the  same   at  P  is           C+      dt
dx     

equal   to       at   Q   and   their   values   are   also   the   same   they   are   straight   lines.     =    dt
dx  ( dt

dx)P  ( dt
dx)Q  
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So  this  is  the  picture  that  comes  out  that  you  have  a  region  of  uniform  flow  another  region  of                     

uniform  flow  in  between  if  you  have  a  non  uniform  flow  then  one  set  of  characteristics  are                   

straight  lines  ,the  others  are  curved.  So  keep  this  idea  in  mind  as  this  is  important  when  we                    

now  look  at  the  shock  tube  in  whole  and  region  3  and  region  4  are  uniform  regions  which                    

bound.   So   this   is   region   4   which   is   region   3   and   in   between   you   have   the   expansion   waves.   

  

So  the  expansion  fan  lies  in  between  those  two  and  this  information  is  useful  when  we  look  at                    

the   solution   of   the   shock   tube   problem.   

  


