
Gasdynamics: Fundamentals and Applications 

Prof. Srisha Rao M V 
Aerospace Engineering 

Indian Institute of Science - Bangalore 

 

Lecture 18 
Normal Shock - III  

  

So, until now we have been looking at the details of normal shocks. So, we have looked at how 

to analyse them and get relationship between all the flow parameters in terms of only the 

upstream Mach number and γ. Now let us continue with those discussions and see some more 

facts about these normal shocks. 
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So just to give a quick recap, so the important relationship that we get is that of the Prandtl's 

relation for normal shocks which is 𝑀1
⋆𝑀2

⋆ = 1  and from this the main principle used here is 

that it is an adiabatic flow. And in adiabatic flow the star conditions remain constant, and you 

apply that condition along with the conservation equations and you get relationships for density 

ratio across the shock, temperature ratio, pressure ratio and entropy ratio as well as stagnation 

pressure ratio. Since shock waves generate entropy, the stagnation pressure decreases across 

the shock.  
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So, now with this information let us move ahead and look at what are the limiting conditions 

for the shock wave. So, one thing is clear that the characteristics of the shock depend only on 

the upstream condition that is Mach number and γ. So if Mach number, upstream Mach number 

is increased continuously so the strength of the shock depends on Mach number and it is 

generally referred to as the pressure ratio. 

 

So as Mach number increases pressure ratio increases significantly. So now let us see what 

happens if Mach number tends to infinity. So it is the limit known as the strong shock limit 

because here the pressure ratio can become really high. So first let us look at the Mach number 

downstream of the shock. So the expression is over here, for Mach number downstream of the 

shock and Mach number tends to goes towards infinity. 

 

So, you can use the appropriate limit that 𝑀1
2 tends to infinity. So you can sort of take out M1 

from both of them and here you will get 
1

𝑀1
2. So as 𝑀1

2goes to infinity 
1

𝑀1
2 goes to 0 and if you 

apply that particular limit you see that 𝑀2
2 tends to a finite value which is 

γ−1

2γ
for a perfect gas. 

Of course, it is for a calorically perfect gas. 

So M2 reaches finite values as a Mach number tends to infinity, we had an indication of this 

when we were looking at the graphs of the variables as Mach number (upstream Mach number) 

is increased in the previous class. So, we saw that the downstream Mach number saturates, and 

the reason is that as it tends Mach number tends to infinity M2 reaches finite values and for air 

it is 0.377. 

 



Similarly, if you look at the density ratio across the shock 
ρ2

ρ1
, again this is the expression for 

ρ2

ρ1
 

follow the similar procedure that 𝑀1
2 tends to infinity. And here also you observe that the 

density ratio across the shock reaches finite values. This is 
γ+1

γ−1
 and for air where γ is 1.4, this 

is equal to 6. But for all other parameters like the pressure ratio 
𝑃2

𝑃1
 ,this as M1 increases,  𝑀1

2 

goes to higher and higher values. Of course, 1 becomes very small compared to that. Similarly 

this also is very small. 

 

So, it approximates to 
2γ𝑀1

2

γ+1
 which tends to infinity. So, pressure ratio goes to infinity and 

temperature ratio is nothing but multiplications of pressure ratio and density ratio. So, since 

pressure ratio increases to infinity even temperature ratio increases to infinity. So, this limit 

that shock waves are becoming very strong as Mach number increases is known as the strong 

shock limit. 

 

And in strong short limit Mach number downstream of the shock and density ratio reach finite 

values but pressure ratio and temperature ratio can increase to infinite values. 
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So, what about entropy? Entropy increases to infinity as a consequence the stagnation pressure 

ratio which is 
𝑃02

𝑃01 
 is nothing but 𝐞𝐱𝐩 (−

𝚫𝒔

𝑹
). So as 𝚫𝐒 increases to infinity 

𝑃02

𝑃01 
tends to 0. So 

stagnation pressure decreases to 0. 
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So again, let us review the graphs that we had plotted earlier and discussed it. So as for our 

discussions are strong shock limit you can see that density quickly saturates here and the value 

should be 6 and the Mach number (downstream Mach number) saturates to 0.377. While the 

pressure ratio and temperature ratio keep increasing and the stagnation pressure ratio continues 

to decrease and can decrease to 0. 

 

So, this is a strong shock limit. Now the other side of the spectrum is when the Mach number 

is very very close to 1. So, you know that shock waves can be presented only in supersonic 

flows and that is condition is Mach number should be greater than 1. And the strength of the 

shock depends on the Mach number. So, the weakest possible shock is at Mach equal to one.  
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So, in the neighbourhood of Mach number equal to 1 we get the limit of very weak shocks. So, 

let us look at the limit of very weak shocks. So, to look at this limit, let us see what the entropy 

is change across the shock at very weak conditions. So, this is the same expression for entropy 

written in terms of pressure ratio and density ratios and pressure ratio and density ratio 

expressions for the normal shock is known so we substitute that in this expression over here 

and density ratio is substituted here. 

Now this is in terms of parameter M2−1 or 𝑀1
2 − 1. This parameter is written as a coordinate 

or sort of variable transformation is done where 𝑚 ≡ 𝑀1
2 − 1 or 𝑀1

2 = 𝑚 + 1 . 

 So, this is to make the analysis feasible. Now we are looking at the limit that M1 tends to one. 

This is the weak shock limit so if M1 →1, m →0. So, m tends to very small values. 

So, if you now express the equations in terms of m as it is done over here then you find that 

these terms 1 +
2γ𝑚

γ+1
 or 1+ 

(𝛾−1)𝑚

𝛾+1
 these terms are of the (1 + 𝑥)n where x is small now here. 

So, this can be expanded using the series that is this is in terms of log.  So, you can use the 

power series to expand this ln (1 + 𝑥). The expansion is given over here. 
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And you expand all the terms three terms and collect the terms together there will be some 

algebraic manipulations and cancellations and ultimately you end up with the term 

 
𝑠2−𝑠1

𝑅
=

2𝛾𝑚3

3 (𝛾+1)2 + higher order terms in m. 

The higher order terms are neglected. Even the first order term if you look at it is having a term 

𝑚3 that means it varies with the cube of m. Now m is already a small number because  (𝑀2 −

1) and M1 is going towards one.  

 

So, you see that as 𝑀 → 1 , M1 tends to one very quickly, rapidly Δ𝑠 → 0 that is entropy change 

goes to 0. That means in the weak shock limit essentially you are reaching isentropic 

conditions. So, the weak shock limit is almost like that of an acoustic wave or isentropic 

conditions.  
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Having discussed the strong shock and weak shock limits, let us now look at another fact of 

these normal shocks that is the Hugoniot equation. The Hugoniot equation expresses the 

properties across the normal shock only in terms of thermodynamic variables and the velocity 

does not figure in the expression. So, one can look at all possible shock states and we will see 

how to do that. 

Until now all the expressions for normal shocks had the upstream Mach number in place. So 

here we will look at how to write the equations for thermodynamic variables across the shock. 

So we have to appropriately combine the three equations and we begin from the continuity 

equation 𝑢1 ρ1  =  𝑢2ρ2 and here directly you will get 𝑢2 = 𝑢1 (
ρ1

ρ2
). 

 

Now we take the momentum equation 𝑃1 + ρ1𝑢1
2 = 𝑃2 + ρ2𝑢2

2  so we have this equation. Now 

here we substitute for u2 so  𝑃1 + ρ1𝑢1
2 = 𝑃2 + ρ2 (

ρ1

ρ2
𝑢1)

2

. Now 𝑃2 − 𝑃1 is, you can take this 

common, ρ1𝑢1
2 and you will get 𝑃2 − 𝑃1 = ρ1𝑢1

2(1 −
𝜌1

𝜌2
) and this can be written as  

𝑃2 − 𝑃1 = ρ1𝑢1
2(

ρ2 − ρ1 

ρ2
) .  

So 𝑢1
2 =

𝑃2−𝑃1

ρ2−ρ1
(

ρ2

ρ1
).  I think that is the expression that we get over here. So, the same analysis 

can be carried out by expressing u2, u1 in terms of u2 and then getting the equation for u2 if you 

proceed along the same directions you get 𝑢2
2 =

𝑃2−𝑃1

ρ2−ρ1
(

ρ1

ρ2
). So, you get these two terms and 

now we have used the mass and momentum conservation. 
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Now we move to energy conservation which is ℎ1 +
𝑢1

2

2
= ℎ2 +

𝑢2
2

2
 

 And here now h is nothing but ℎ = 𝑒 +
𝑃 

ρ
 and if you substitute that you get 

 𝑒1 +
𝑃1

ρ1
+

𝑢1
2

2
= 𝑒1 +

𝑃2

ρ2
+

𝑢2
2 

2
 . Now we have the expressions for  𝑢1

2 and 𝑢2
2. Just from the 

previous slide we substitute that here in these terms and we get [
𝑃2−𝑃1

ρ2−ρ1
(

ρ2

ρ1
)]. 

Now this can be simplified because you have all the terms related to pressure and density over 

here and you have energy terms over here. So, now if you express this( e2 - e1). So, you get this 

term over there.  𝑒2  −  𝑒1 =
𝑃1

ρ1
+

1

2
[

𝑃2−𝑃1

ρ2−ρ1
(

ρ2

ρ1
)]  −  

𝑃2

ρ2
+

1

2
[

𝑃2−𝑃1

ρ2−ρ1
(

ρ1

ρ2
)]   .  

Now from here all we have to do is simplify the right-hand side of this equation and there you 

can observe that there is the group of terms like this , 

𝑒2  −  𝑒1 =
𝑃1

ρ1
 −  

𝑃2

ρ2
 +

1

2
[
𝑃2 − 𝑃1

ρ2 − ρ1
(

ρ2

ρ1
−  

ρ1

ρ2
)]     

                                         

this is what you get. 

                                      

So to do this term is nothing but 𝑒2  −  𝑒1 =
𝑃1

ρ1
 −  

𝑃2

ρ2
 +

1

2
[

𝑃2−𝑃1

ρ2−ρ1
(

𝜌2 − 
2 𝜌1 

2

ρ1 ρ2
)]. So this term will 

come out to be 𝑒2  −  𝑒1 =
𝑃1

ρ1
 − 

𝑃2

ρ2
 +

1

2
[

𝑃2−𝑃1

1
(

ρ2  + ρ1 

ρ1 ρ2
)] . So now this can be algebrically 

simplified. 
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And after simplification this is the expression we get, 𝑒2 − 𝑒1 =
𝑃1+𝑃2

2
(

1

ρ1
−

1

ρ2
). So 𝑒2 − 𝑒1 is 

the energy difference, internal energy difference, across the shock wave while 
𝑃1+𝑃2

2
is an 

average pressure written here and (
1

ρ1
−

1

ρ2
) written if expressed in terms of specific volume is 

(𝑣1 − 𝑣2) as change in specific volume. So, change in internal energy is equal to average 

pressure multiplied by change in specific volume,  𝑒2 − 𝑒1 =
𝑃1+𝑃2

2
(𝑣1 − 𝑣2).  

So, this equation is known as the Hugoniot equation and one can readily see that there is no 

velocity terms over here. It purely expresses only in terms of thermodynamic variables. And 

also, here when getting to this equation we have never stated any assumptions of perfect gas, 

so this is valid for a general case. So Hugoniot equation is a general equation. It is valid for 

shocks in all kind of gas dynamic conditions. 
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So, let us look at the plot. So, this is a Hugoniot curve. It plots all possible shock states starting 

from 1 where 1 represents the upstream conditions. So upstream once you know the upstream 

pressure and temperature consequently the specific volume. This point can be located and the 

Hugoniot curve can be drawn. And now how do we get to a particular shock if you know a 

particular velocity or you know the particular Mach number. 

 

For that we draw what is known as the Rayleigh line. This is the Rayleigh line. Rayleigh line 

just comes about from the momentum equation, p+ρu2 =  𝑐𝑜𝑛𝑠𝑡𝑎𝑛𝑡. We can use the energy 

equation to use to combine with this because ρu is constant across the shock. So if we can 

express u in terms of so this is ρu  =G is another constant. So this becomes p+
𝐺2

ρ
 =  𝑐𝑜𝑛𝑠𝑡𝑎𝑛𝑡 

or  p  + 𝐺2 𝑣  = constant.  P =  −𝐺2 𝑣  + C. 

 

So this is the equation of a straight line so Rayleigh lines are straight lines in the PV diagram 

and you should also notice that it has a negative slope, G2 is positive. So, it has its always 

having a negative slope. So now this Hugoniot equation as we all already know it just uses the 

conservation equations and the conservation equations do not specifically say whether a certain 

thermodynamic state is possible or not that comes from entropy conditions. 

So, from 1 we can draw Rayleigh lines going either way with a decrease in pressure and 

increase in specific volume or an increase in pressure and decrease in specific volume and this 

is the case of an expansion shock. It is unphysical. So this is not possible while only the shock 

wave which is a compression shock is possible. So with the help of Rayleigh line which has 

the information of velocity which will figure in the term G2.  One can locate a particular shock. 



 

So Hugoniot can give you all possible shock states passing through an initial point one. So 

Hugoniot is a general equation. You can use it for any type of shocks in any gas dynamic 

medium.  
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So now we come to a particular application of the shocks. Until a few classes ago we were 

discussing the applications of isentropic equations to the problem of flow measurement and the 

Pitot. And we discussed the subsonic Pitot where in a compressible medium or in compressible 

flow one cannot use the Bernoulli’s equation but rather we have to use the condition that you 

achieve stagnation pressures within the Pitot. Pitot measures stagnation pressure. 

 

And the relationship with stagnation pressure and static pressure is given by an isentropic 

process and from this one can get the Mach number. So this is for a subsonic Pitot.  
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Now let us go to the condition that the same Pitot this device Pitot is used is to measure the 

flow speed or flow velocity what happens when we put this Pitot inside a supersonic flow. So 

it is now very clear that in supersonic flows if you place some bodies or you put some devices 

then from our earlier discussions you should understand that in order for the flow to turn over 

the body, the flow has to know that the body is present over here. 

 

In a supersonic flow this cannot be accomplished because information does not propagate in 

all directions. In order to facilitate this ultimately get a shock wave a shock wave envelops the 

body this is what is coming over here. So a shock wave envelops the Pitot. So there is a Pitot, 

there is a shock wave in front of the Pitot. And what the Pitot measures actually is stagnation 

pressure downstream of the shock. 

So if you take a look at the zoomed in picture this is the idea over here, that you have the 

stagnation stream line. It is going through right here and this is the Pitot and very close to the 

nose of the Pitot. There is a shock and this shock is normal to the free stream line at this point. 

So one can apply the normal shock conditions across the shock. And the Pitot actually measures 

the stagnation pressure downstream of the shock wave. 

 

So if you put a Pitot in a supersonic stream then it does not measure the stagnation pressure of 

the stream rather it measures the stagnation pressure downstream of the shock. And by now it 

is very clear to us that stagnation pressure decreases across the shock. So P02 is less than P01 

and it is not the same as P01. So now we have to express so just going by the similar 

measurement. 

 



So how  measurements are done usually in some experiments and practically is that usually the 

Pitot is placed inside the duct or within the free stream and P02 is measured and you need always 

one more measurement that is the static pressure you need to measure. And for that the 

measurement is usually taken on the walls of the tunnel somewhere where static pressure of 

the stream can be easily measured. 

 

So this is P1 so usually the measurement is P02 and P1. The stagnation pressure ratio is expressed 

for P02 by P2 that is for the downstream conditions of the shock and it is dependent on M2 

square. But we know that all these values P2, P02 ,M2 all of them depend only on the upstream 

Mach number. So they can be expressed as functions of only upstream Mach number. So that 

is what is done over here P02 / P1 is what we are usually measuring. 

 

And 
𝑃02

𝑃1
 is written as 

𝑃02

𝑃1
=

𝑃02

𝑃2

𝑃2   

𝑃1
 .

𝑃2

𝑃1
 can be expressed in terms of upstream Mach number. 

𝑃02

𝑃2
 

expressed in terms of 𝑀2
2 . 𝑀2

2can be written in terms of 𝑀1
2 and so we get this expression for 

𝑃02

𝑃1
  = (

(𝛾+1)2 𝑀1
2

4 𝛾𝑀1
2−2 (𝛾−1)

)

𝛾

𝛾−1
[

(1−𝛾+2 𝛾 𝑀1
2)

𝛾+1
] . 𝑇his is known as Rayleigh’s Pitot formula. And this 

formula is generally given in normal shock tables along with all other equations and the 

pressure ratios and temperature ratios.  

Because this is a very common measurement that is made and we would like to know the Mach 

number. So once you know 
𝑃02

𝑃1
  either by using the tables or by using calculators we can get 

back what is Mach number. So this is Rayleigh Pitot formula.  
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So with this we come to the end of discussions on stationary normal shocks in this particular 

discussion we used ρ1𝑢1 = ρ2𝑢2 , 𝑃1 + ρ1𝑢1
2 = 𝑃2 + ρ2𝑢2

2     and ℎ1 +
𝑢1

2

2
= ℎ2 +

𝑢2
2

2
. So in all 

these are conservation equations for a steady flow and this is what is considered is a normal 

shock is steady in a supersonic flow.  

  Now next what we would discuss is the moving shocks. The shocks can also move. Typical 

cases that you one can encounter is inside shock tubes or in cases of explosive events when 

there is a blast wave. The blast wave also moves rapidly at supersonic speeds. So we will see 

how we can analyse such shock waves in the next class. 

 

 

 


