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Normal Shock - II b 

  

So we are discussing the analysis of normal shocks and going through the details of how to 

gather all information about flow variables downstream of the normal shock. And the last class 

we had discussed about getting to the Prandtl's relation for normal shocks that is using the 

conservation equations.  

(Refer Slide Time: 00:50) 

 

This is something that was done the previous class. So, I will quickly go through this and the 

conservation equation of mass, momentum, energy for one dimension is used to analyse the 

normal shock. It is an adiabatic process without any work done. So, you can apply these 

equations along with the equation of state and relation for the enthalpy. 

(Refer Slide Time: 01:20)  



 

So, by using all three equations together, we come to a relation 𝑀1
⋆𝑀2

⋆ = 1. This is called the 

Prandtl's relation and using this we can convert the equations. 

(Refer Slide Time: 01:42) 

 

So that we can exclusively get the equation for downstream Mach number 𝑀2
2 in terms of 𝑀1

2 

and γ. Similarly using the continuity, once we had done this, we can get the equation for the 

density ratio 
𝝆𝟐

𝝆𝟏
 in terms of only Mach number and γ. So, this is something that will come up 

again and again  
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So now we are left with the pressure ratios, temperature ratios. Let us see how to get to them. 

So here we take the momentum equation again equation 𝑃1 + ρ1𝑢1
2 = 𝑃2 + ρ2𝑢2

2 and do the 

subtraction the sort of moving the variables from here to the side is ρ1𝑢1
2. Now once we have 

the Prandtl's relation that is relating 𝑢1𝑢2  =   𝑎⋆2 for conditions across the normal shock. 

 

Our intention in further analysis would be to try to use this form formulation Prandtl’s relation 

in order to get to the other flow variables. So here you get 
𝑢2

𝑢1
so this quantity is there now you 

can divide this by P1 which is done over here and you can 
𝑃2−𝑃1

𝑃1
=

ρ1𝑢1
2

𝑃1
(1 −

𝑢2

𝑢1
). Now 

immediately some things that again come again and again in gas dynamics is the combination 

𝑃

𝜌
 . If you come across this combination 

𝑃

𝜌
 and it can be converted to the speed of sound for a 

perfect gas by multiplying and dividing by  γ. 

 

So, if you do that then you get this term which is a group of terms which is γ
𝑃

ρ
. So, this term 

comes out to 
γ𝑢1

2

𝑎1
2 (1 −

𝑢2

𝑢1
). Now we will go ahead and see this is 𝑀1

2 .So this isγ𝑀1
2 (1 −

𝑢2

𝑢1
). 

Now 
𝑢2

𝑢1
 from the previous analysis, we found what is 

𝝆𝟐

𝝆𝟏
. That is 

𝑢2

𝑢1
. So 

𝑢2

𝑢1
is nothing but 

𝝆𝟏

 𝝆𝟐
 

which is 
𝟐+(𝜸−𝟏)𝑴𝟏

𝟐

(𝜸+𝟏)𝑴𝟏
𝟐 

 . 

So, we just have to import that into this formulation and what we get here then is 
𝑃2−𝑃1

𝑃1
=

γ𝑀1
2 (1 −

2+(γ−1)𝑀1
2

(γ+1)𝑀1
2 ) . So that is what you get over here. So, this can be simplified here so you 



get  
𝑃2−𝑃1

𝑃1
= γ𝑀1

2  ( 
(γ+1)𝑀1

2 − 2−(γ−1)𝑀1
2 

(γ+1)𝑀1
2 ). And if you do the algebraic manipulations on this 

you get     
𝑷𝟐

 𝑷𝟏
= 𝟏 +

𝟐𝜸

𝜸+𝟏
(𝑴𝟏

𝟐 − 𝟏) 

So this is now straight forward here. So, this is the equation to relate 
𝑷𝟐

 𝑷𝟏
.  So, we have used the 

momentum equation as well as the conditions that we just derived here that is 
𝝆𝟐

𝝆𝟏
 is 

𝑢1

𝑢2
 from the 

mass conservation. All of them are always they will have their roots towards the Prandtl's 

relation 𝑢1𝑢2 =  𝑎⋆2 

.  
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Now once you get the pressure ratio then getting temperature ratio is nothing but using the 

ideal gas equation of state. So 𝑃 = 𝜌𝑅 𝑇.  
𝑇2

𝑇1
=

𝑃2

𝑃1

ρ1

ρ2
. Now 

𝑃2

𝑃1
, we have the expression for this, 

ρ1

ρ2 
 we have the expression and so we can multiply the 2 expressions, 

𝑻𝟐

𝑻𝟏
= [𝟏 +

𝟐𝜸

𝜸 + 𝟏
(𝑴𝟏

𝟐 − 𝟏)] [
𝟐 + (𝜸 − 𝟏)𝑴𝟏

𝟐

(𝜸 + 𝟏)𝑴𝟏
𝟐

] 

 

So this is the final expression for 
𝑻𝟐

𝑻𝟏
. Now if you observe you again observe this f2 is only 

function of 𝜸 and Mach number that is Mach number then you got 
𝝆𝟐

𝝆𝟏
  density ratio is function 

of only 𝜸 and Mach number and pressure ratio is function of only 𝜸 and Mach number. So this 

sort of emphasizes that for a normal shock if you know the upstream conditions then you can 

completely determine the downstream conditions. 



 

So, from here these relate the static quantities across the normal shock. How can stagnation 

quantities be related across the normal shock?  

(Refer Slide Time: 08:55) 

 

So if we look at the normal shock it is an adiabatic process, so there is no heat transfer or work 

done that means across the normal shock the total enthalpy ℎ1 +
𝑢1

2

2
= ℎ2 +

𝑢2
2

2
 ,total enthalpy 

h0 remains a constant. So that means T0 for a calorically perfect gas, T0 does not change, T0 is 

a constant. This is a very important idea that T0 remains constant across normal shock. This is 

for a standing normal shock. Stationary normal shock in a supersonic flow this is what we are 

analysing. 

 

Now let us go and look at is there any entropy change across the normal shock. So, we began 

our analysis by saying that it is an adiabatic process but never said that it is a reversible 

adiabatic process. And reasons are that shock waves generate entropy just because within the 

shock wave. Within that small very infinitesimal thickness of shock wave the transport process 

becomes very, very important. 

 

And they give rise to entropy and the high gradients across the shock give rise to the entropy 

and so entropy change across the shock is you use the relation.  

Now, you know 𝑠2 − 𝑠1 = 𝑐𝑝ln
𝑇2

𝑇1
− 𝑅ln

𝑃2

𝑃1
 .  



For 
𝑇2

𝑇1
 and 

𝑃2

𝑃1
 are determined in the previous analysis. So, we substitute for them in terms of 

𝑇2

𝑇1
 

and 
𝑃2

𝑃1
. And so, this expression once you know these values you can directly determine the 

entropy change across the shock wave. 

 

Now, one should notice that the conservation equations if you take a ρ1𝑢1 = ρ2𝑢2, 𝑃1 +

ρ1𝑢1
2 = 𝑃2 + ρ2𝑢2

2  and ℎ1 +
𝑢1

2

2
= ℎ2 +

𝑢2
2

2
  just relate the balance of mass, momentum and 

energy across a discontinuity. And we are doing control volume analysis for the states before 

the shock and after the shock. So this is the shock but by this just by these three equations one 

cannot determine what should be the conditions across the shock. Can there be conditions that 

velocity suddenly increases across the shock. 

That kind of a shock can be called as an expansion shock because the normal shock whatever 

we are discussing is a compression shock. It compresses the gas increases the pressure and 

density. Now we can ask the question that is it possible that there is a shock which will suddenly 

increase the velocity, reduces pressure and density and temperature can there be such a 

solution? And if you look at the at only the conservation laws, they do not tell you what the 

conditions are whether such solutions can exist or they cannot exist. 

 

And for this you need to bring in the second law of thermodynamics and the entropy 

considerations. And now we have the relations for entropy and now that we know this is an 

adiabatic process then clearly the change in entropy should always be positive. There are 

irreversibilities in the system. That means change in entropy will be greater than 0. If you apply 

this condition to this expression and try to find out what is the condition? 

 

Since now this expression is only function of γ and Mach number. So that is upstream Mach 

number you will get that M1 has to be greater than 1. So even from entropy considerations you 

will find that always shocks exist in supersonic flows and second thing is that the expansion 

shock is not permitted because it reduces entropy it is not possible that you can have a sudden 

increase in Mach number. 

 

So you cannot increase Mach number by a discontinuous jump so because of these conditions 

these entropy considerations. So expansion shock is not possible only compression shock is 

possible and normal shock is a compression shock.  
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Now we know that stagnation temperature across the shock is constant by the virtue of the 

process being adiabatic but what about stagnation pressure? So stagnation pressure across the 

shock how can we relate this? For this again we go to the entropy relations. So the entropy 

relations for across the shock we just discussed this𝑠2 − 𝑠1 = 𝑐𝑝ln
𝑇2

𝑇1
− 𝑅ln

𝑃2

𝑃1
. Now we come 

to a specific application of the stagnation conditions. 

 

Now we know that every point in the flow. So if I take this is normal shock there is a point 

before and after the normal shock and P1 ,T1 represent the static quantities and P2 ,T2 represents 

static quantities downstream of the shock. Then there is an equivalent point where the entropy 

remains through an isentropic process. You can take this to P0 and T0.  These are equivalent 

conditions P0 and T0. So, their entropy at P1, T1 and P0 ,T0 are the same. 

 

Similarly, entropy at P2 ,T2 and P0 ,T0 are the same P01 and T01. So the same equation that is so 

change in entropy can be written in terms of changes to the stagnation quantities. And we know 

that across the shock wave this stagnation temperature does not change stagnation enthalpy is 

constant. So 
𝑇02

𝑇01
 is 1. So this term,  ln (

𝑇02

𝑇01
) , goes to 0. So you can get the relation telling the 

change of stagnation pressure. 

 

So stagnation pressure ratio 
𝑃02

𝑃01
 is directly given by this is ΔS. Now ΔS at the stagnation 

conditions is the same as ΔS at static conditions because they are related by an isentropic, each 



state is related by an isentropic process. So what we find here is that 
𝑃02

𝑃01
  you can take the 

inverse logarithm of this process 
𝑷𝟎𝟐

𝑷𝟎𝟏
= 𝐞𝐱𝐩 (−

𝚫𝒔

𝑹
). Now just now we had discussed that the 

entropy always increases across the normal shock. 

 

So ΔS is always greater than 0 that means this term is greater than 0.That means that this term 

will be less than 1. So
𝑷𝟎𝟐

𝑷𝟎𝟏
 is less than 1. That means stagnation pressure decreases across the 

shock. So this is a important sort of expression that stagnation pressure decreases across shock. 

So if you now you have determined for both the static and the stagnation conditions across the 

shock. 

And you know the relationships between all of them that is the back number M2 decreases 

across the shock, pressure increases across the shock, density increases across the shock, 

temperature increases across the shock. But T02 that is total temperature remains the same, P02 

decreases downstream of the shock. So this gives us all the relations. So now let us put them 

in. We know how these expressions are and let us plot them and see how they vary over Mach 

number. 
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You can see that they vary quite rapidly and because they vary so rapidly, we cannot plot them 

on a linear scale. And increase in pressure due to increase of shock as the shock Mach number 

increases is enormous there is a significant increase in pressure. And this increase in pressure 

is accompanied by an increase in temperature also. So as Mach number changes both pressure 

and temperature increase significantly. 

 



While if you look at what happens to density it is interesting initially it increases but once you 

reach higher, higher Mach numbers it sort of saturates. So it does not increase as much as 

temperature and pressure do. Stagnation temperature remains constant stagnation pressure on 

the other hand decreases significantly. So what are the consequences of this because there is a 

significant generation of entropy presence of shock waves in devices is leads to lot of losses. 

 

So it makes it less efficient. So if you consider process of compression you have isentropic 

compression you have shock compression. So shock compression generates entropy. So lot of 

the energy is converted to unusable heat energy. So you see that if you consider 2 states one 

achieved by an isentropic process, for the same pressure ratio another for using a shock process 

then the temperature achieved in the shock process will be much higher than the one you get 

by an isentropic process. 

 

So shock processes generate a much higher entropy. So looking at how to use these in designs 

or how to put them in devices then always we should look at trying to reduce entropy losses. 

So significant effort is put in so that the strength of these shocks can be reduced. Of course, 

when one looks at supersonic flows shocks are unavoidable if not in the design conditions but 

when the device works even slightly at an off design conditions you generate lot of shocks. 

 

So the idea is to minimize the strength of shock. Strength of shock is mainly determined as we 

know by its Mach number and sometimes it is also referred to by the pressure ratio they are 

synonymous because once you know the Mach number you have a fixed pressure ratio. And 

so strength of shock you can say is by pressure ratio or the Mach number. So as weak shock as 

possible is what we would like. 
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So another interesting thing about the downstream number of shock you see that always you 

have the Mach number downstream of the normal shock to be subsonic a normal shock exists 

only in supersonic flow. So upstream is supersonic downstream is subsonic the way M2 behaves 

is that it decreases but then similar to the way density sort of saturates by increasing to a value. 

 

The Mach number decreases to a value and saturates and sort of tends to be a constant. So these 

are how these values occur. There is another interesting thing about shock waves and a 

comparison with the isentropic compression that even those shock waves produce lot of 

entropy. In some cases in some applications particularly for aerodynamic testing when one 

looks at extremely high velocities that need to be achieved this can the stagnation pressures 

and temperatures required to achieve those high velocity conditions. 

 

Typical to re-entry or very high Mach number flow will become very large. And this is clear 

to you from the stagnation conditions that we had already discussed also in the perspective of 

shock waves. So if you look at it as shock numbers increases the pressure ratios are actually 

higher and go higher and temperature ratios also go higher. So in order to achieve such high 

pressures and temperatures it is not very easy to do it in an isentropic compression because 

isentropic compression cannot increase temperature.  

 

When temperature becomes important, enthalpy becomes important, isentropic compression 

does not give that high enthalpies. So shock compression is often used and they give rise to 

what are known as shock tube based tunnels. 

 



Shock tunnels where shock compression is used to achieve high pressure and temperature. So, 

in some cases you need the shock waves and you want to use it for specific purposes.  
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Similar to the isentropic charts normal shocks also you get charts and the way to use the charts 

and tables is the same whether you use it for isentropic relations or normal shocks. And they 

are given at the end of text books or in the appendices. So when we look at solving problems 

then we will use either these tables or you can use online calculators. So with that we come to 

a close on the analysis of getting to downstream conditions of shock given the upstream 

conditions.  

 

And we saw we are able to relate all the different flow parameters. Now in the next class what 

we would see is that we come to what are strong shocks and weak shocks are there any limiting 

conditions? We have some indications through the graphs but let us look at it. And there is 

another thermodynamic way of representing the shock known as the Hugoniot relation which 

does not actually include the information on velocity just the relation between the 2 

thermodynamic states that is useful in several cases.  

 

And further on we look at where this can be applied in supersonic flows particularly for the 

Pitot. So that would be in the next class, thank you. 

 

 

 


