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So, the fundamental principle of a liquid jet breakup is given by essentially what as you

have  seen  that  Plateau  initially  discovered  this  and  Rayleigh  analyze  it  using  the

hydrodynamic stability theory. So, we will take that up here and do the analysis. So, it is

also the mechanism by which as I said that it is a very fundamental mechanism and you

can watch it in your kitchen sink that if you open the tap like this and then you will see a

liquid jet coming up. And then it will develop some perturbations like this, and then these

perturbations will go. And then and at some point of time, it will essentially pinch off and

create a droplets like this.

So, this is  what you can essentially  see in your own kitchen sink and, but why that

happens that will be analyzed through this thing. Once again as you see that as you have

as I have impressed upon you that the actually the atomization of this actual liquid jet

process inside a combustor is quite involved. It is involved different kinds of shapes and

sizes, but once again the whole as you have seen the whole philosophy of this course is

that we deal with a very complex phenomena, but then we try to look into what is the



basic fundamental process inside. Because without that you cannot be event you have

absolutely no clue how to or you have absolutely no way by which you can understand

the more complex phenomena in a more complicated environment. So, this is the thing

we will approach we are going to take.

So, as you see there are this is how the droplet break except, but the equilibrium state if

there was no instability, the equilibrium state of a segment of this if I just take up would

have been and I assume it here would have been something like this. It is a cylinder right

I mean cylinder. And I define the surface tension of this liquid cylinder by sigma density

by rho and the intense pressure inside, which is uniform throughout my P 0 and this is

the surface normal, which is pointing outside. And it has a radius which is given by R 0.

This is the equilibrium state or the steady state.

But then as you have seen here that this does not remain steady like. This is a base state it

actually  in  reality  what  happens  is  that  when  this  liquid  jet  comes  out.  They  are

infinitesimally small disturbance everywhere present from numerous sources noises from

numerous sources that act on this jet. And this noise essentially gets amplified in certain

wavelengths certain particular wavelengths and those creates a disturbance those gets

amplified to for create certain perturbations on this nice cylindrical state.

So, then we will consider perturbed state of this jet or a smaller perturbation problem.

And this is of course, this is the cylinder and this perturbed state is R 0 plus epsilon, this

is  R 0  the  best  state  in  this  perturbed state  radius  at  this  sinusoidal  oscillations  the

maximum perturbed not the power maximum,  but the at  a certain point of time this

perturbation is given by R 0 plus epsilon. Once again the properties remains same sigma,

rho, p 0 plus p tilde. Sigma and rho remains same, but now because this has developed

some perturbations and these perturbations has led to essentially change in the curvature.

So, as a result of that the pressure inside changes and this perturbed pressure is given by

P 0 plus P tilde.

Now here at the initial state. So, talking about curvature, let us find out how we can

relate the pressure to the curvature and that can be related by young Laplace’s equation

which is given by P 0. In the steady state, P 0 is equal to sigma times divergence of

normal which is nothing but the curvature. And this implies P 0 is equal to sigma by R 0

ok. So, here the radial  in this cylinder in this  steady state this radius is R 0 and the



pressure is p zero. So, p zero and we can neglect essential outside pressure you can even

consider the vacuum by the way the assumptions here in this it is at this point it is time to

state the assumptions before we go into this then there is number one no surrounding air,

number two - no gravity. So, this number three is that liquid is in viscid.

So, there is no surrounding air, then there is no gravity and then the liquid is in viscid.

And in that set a state essentially you can we can write that because of pressure P 0

pressure is P outside is 0, we can write that P 0 is equal to sigma times n is equal to

sigma times n and as a result the P 0 is equal to sigma by R 0. This is the young Laplace

equation  where do we essentially  relate  the pressure inside the liquid cylinder  to  its

surface tension force. Essentially to balance up just like a pressure vessel to balance the

pressure you must generate like a hoop stress and the surface tension essentially acts like

that.

So, whereas, in this perturbed state, now we can if you consider the small perturbation,

so as you see that we have written it as a R 0 plus epsilon where epsilon is a very small

quantity. So, which means that in our perturbations are basically infinitesimal that is a

infinitesimally  small,  perturbations  are  infinitesimally  small.  And these  perturbations

essentially happen in the z-direction whereas, this is R, and this is z, and this is z. So, we

can say that now the now our perturbations are essentially R 0 plus epsilon. And we can

essentially  write  it  like  that  that  R tilde,  we will  we  will  consider  the  evolution  of

infinitesimal perturbations on the interface. And the reason is that this will because if the

perturbations to be small, we will be able to linearize our equations if the perturbations

become large and the equations will be non-linear and we cannot do the analysis.

So,  to  make  the  system  amenable  for  analysis  mathematical  analysis  will  keep  the

infinitesimals, we will keep the perturbation to be small and with that we will be able to

do the linearized hydrodynamic instability analysis. So, we write that R tilde that is this

now the perturbed column the surface takes the form R tilde is equal to R 0 plus epsilon

times e to the power of omega t plus i k z. So, of course, we see that we have assumed

perturbed state. So, this is essentially sorry this we will write this is a different notation

actually, this is this to a different notation.

So, this whole thing is essentially this e and this is our epsilon. So, this whole thing can

be consider be like this. So, then we consider that in the z directions the perturbations has



a  sinusoidal  oscillations  and  the  wavelength  of  those  or  the  wave  number  of  those

oscillations  is  given by K.  And in time  domain  we do not  know whether  it  will  be

sinusoidal  or  not,  it  can  be  exponentially  growing  if  omega  is  positive,  it  can  be  a

damping  if  omega  is  negative.  And  if  omega  is  complex  it  will  lead  to  sinusoidal

oscillations in timeouts, so which we do not know which we should come out of the

analysis.

And of course, here the constraint is that for the perturbation to be small your epsilon

should be much, much smaller than R 0. And as such essentially the omega is this is a

growth rate of the instability we can write this. And k is the wave number a special wave

number. And the wavelength for this is essentially lambda should be is equal to two pi by

k. Now, we can denote once we have these perturbations on R on the radius of course,

the velocity as you have seen that the pressure has been where the pressure there is a

pressure perturbations.

So, u r which is the velocity which is the radial component of velocity that will also have

a perturbation say of u r tilde, which is the radial component of the perturbation, and u z

is tilde is the axial component of the perturbation. And similarly, P tilde is the perturbed

pressure as you have seen here. So, u r is now essentially the radial velocity is given by u

r plus the or u r 0 plus u r tilde; u z now is given by u z 0 plus uz tilde; P is given by P 0

plus p tilde that is these are perturbations on the base state, so that is how it is. And then

we expect then if we put this things in the Navier-Stokes equation of course, you see that

there is no in this momentum we can assume the density to be constant. And if we do that

and if we neglect because this terms are essentially small. So, we can essentially neglect

the non-linear contributions from the perturbations.
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And what we do is that if we substitute u r tilde, u z tilde, p tilde or substitute the current

let us write it clearly. These are the steady state quantities and these are the perturbations

and P into Navier-Stokes equations and retain terms of the order epsilon that is this small

terms. Then we get the r-momentum equation becomes, and the z momentum equation

becomes. This is the consequence we can only write this because we have assumed the

perturbations to be small and that is why these non-linear terms like rans terms do not

come  here  that  you  must  pay  attention  too.  And  the  linearized  continuity  equation

becomes this one.

Now, we have already assumed the form of the perturbation for the radius. Now, we can

expect  you can  expect  that  the  disturbances  of  the  perturbations  in  the  velocity  and

pressure also will  have the same form of the surface disturbance.  We expect that the

perturbations in velocities and pressure will have the same form as that of the surface

perturbation which was. So, then in that case our u r tilde and u z tilde and P tilde, this

part of quantities are given by this small, this is the amplitude which is a function of R

omega t plus i k z. Similar, this form the amplitude is only a function of r and the rest is a

function of z and t. Now, if we substitute this, if we substitute these equations into that is

if  we  substitute  this  into  the  r-momentum  equation,  z-momentum  equation  and  the

linearized continuity equation, what we will get is the following.
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We will get the momentum equations will be in this form that is after we substitute this

equations, we will get the momentum equations to be this form. You should work it out

and I just showing you the final result. This is the amplitude p r because this p is only a

function of r. Because if you remember that U r is equal to R r e to the power of omega t.

If this is so then the z momentum equation becomes we get complex notations because

we have in z you have got ikz which you do not have in r.  And then the continuity

equation becomes dR dr, this R is the amplitude, where a small r is the coordinate radius

is a radial coordinate. So, if we eliminate z r and p r we get the following equation for R

r and that is given by ok.

Now, this one is your governing equation.  So, basically this equation contains comes

from the continuity equation as well  as which has been where the different terms of

pressure and the z the pressure amplitude and the z and the amplitude of u z has been

replaced by the momentum equation. So, this equation becomes essentially the Bessel

equation of order 1. And it may be written in terms of modified Bessel functions of the

first and second kind that is it can be written like as a sum of I 1 k r plus k 1 k r. But as

you know that as r tends to 0, where of course, it is the equation is to be defined your k 1

tends to infinity, so then this means C 2 is equal to 0. As a result of that r becomes is

equal to C I 1 kr once again k is the your wave number which comes in the z direction all

right.



(Refer Slide Time: 22:45)

So, now that we know that your R r is given by the Bessel functions of first kind. We can

obtain a pressure also like this. So, we have got the with this R r the amplitude of the

surface fluctuations and the amplitude of the pressure fluctuations in the radial directions

as the Bessel functions of first kind. And now what we need to know is that to but we do

not  we  have  basically  in  this  things  we  have  basically  constants  are  there.  So,  to

eliminate the constants, we need the appropriate boundary conditions.

So, what can be a boundary condition the boundary conditions can be that if you this was

the perturbed state the velocity of this surface is essentially equal to the u r velocity. So,

once again this velocity here v is equal to u r and that v is nothing but your dr r tilde dt.

So, the boundary condition is this that your dR tilde dt is equal to your ur tilde.  We

approximate it like this and then with this we can find out the constant c to be essentially

is equal to E omega times I 1 k R 0. And then if you do this the pressure balance, I will

not go into that and then we can obtain this the pressure perturbation solution explicitly

which is given by this thing epsilon sigma by R 0 square and 1 minus k square R 0

square times e to the power of omega t plus ikz. This we can do that.
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Next is the very important thing that is our entire goal of this analysis is to obtain the

dispersion relation. What is the dispersion relation? Dispersion relation is the expression

for your omega that is the growth rate. So, the growth rate is a relationship of the growth

rate omega in terms of the wave number k. So, we get the dispersion relation for omega

or growth rate in terms of k and that is given by you can solve it yourself, it is very

simple. Just algebra even though this equation might look intimidating this is the most

important  term.  The  whole  equation  is  important  in  terms  of  quantitativeness,  but

qualitatively,  this  is  the  most  important  terms.  Why,  because  you  see  our  R  -  the

perturbation R this was given like this epsilon e to the power of omega t plus ikz.

So, if omega is positive which means that the growth rate, if omega is positive then this

R will have an exponential behavior? So, it will continue to increase. Whereas, if this

omega is negative it will have a damp behavior; whereas, it will be unstable if omega is

complex. So, now you have a dispersion relation omega squared is equal to given by this

thing. And all these things are positive. The only thing that can be negative is this one

that  is  omega  square  will  be  less  than  0,  this  means  omega  will  have  imaginary

component if k R 0 is less than 1. This means, this is the condition for which unstable

modes are possible; of course, we know from experience that this liquid jet can never

just diverge into can this perturbations can never grow infinitely large, so that is a invalid

condition it can dam down or it can happen, it can be unstable.



So, under what conditions it can be unstable. It can be unstable if the disturbances if the

wave number of the disturbances times, the radius the steady state of this unperturbed

state radius is less than 1. So, of course, we can then plot this thing. And if you plot this

dispersion  relation  as  k R 0,  we will  find that  its  only less  than one conditions  are

important. So, it has a plot like this, this is one and it maximizes that a value of this is

0.6, this is 0.8. So, this is a maximum value which it attains and this value which gives

and this is my omega actually. So, this is omega by k R 0. So, omega is max when k R 0

is equal to 0.693, 697, so that means, when k R 0 is equal to 0.697. So, for all k R 0, k

times R 0 less than 1 omega is unstable.

And of course, if you just the plot; no that this part is also actually important. So, if you

just plot the real part of it, you see that this is max when k R 0 is equal to 0.697. And this

means that the growth rate will be maximum when k R 0 is equal to 0.697. Now, what

does that mean k is of course, your 2 pi by lambda which is lambda is better because a

lambda is wavelength. So, essentially this perturbations when you have then this is the

wavelength lambda. So, this means that when 2 pi by lambda times R 0 is equal to 0.697

then the omega is maximum at that lambda. So, then that lambda is given by or if we call

the lambda max that is given by 9.02 R 0.

So, now, you see where the 2 pi comes from this. So, if you just put this curve at the 2 pi

essentially comes from this criteria that if we just take any lambda and we write that 2 pi

by lambda. So, the criteria for this jet to be unstable essentially is 2 pi by lambda times R

0 should be less than 1, this means that your lambda should be greater than 2 pi by R 0.

So, for all two lambda greater than 2 pi by R 0 as long as the lambda the perturbation

wavelength is greater than the circumference of the jet, the jet becomes unstable. So, of

course, that is the that is the thing. And of course, it maximizes when the lambda is equal

to 9.02 times R 0. So, using this we can even have a breakup, we can have a breakup

time for the jet.
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And do that we can obtain as if we try to introduce a time scale I am sorry. So, what we

have obtained is that the fastest growing mode or the maximum the fastest growing mode

happens when k R 0 is equal to 0.697 and that corresponds to a lambda max of 9.02 R 0.

And if we correspond the time scale the t break up is equal to 1 by omega max then that

becomes essentially 2.91 square root of rho R 0 cube by sigma. So, if you have take a

water jet of 1 centimeter radius of diameter, so if a diameter of a water jet is 1 centimeter

then this t breakup is about 1 8 seconds which is seems pretty consistent from our own

experience.

So, this much is the Rayleigh plateau instability. And this is the fundamental mechanism

by which a liquid jet breaks up even in absence of any cohesion, even in absence of

gravity even when there is no viscosity in the liquid. So, that means that a liquid jet is

inherently unstable because of the surface tension forces or that is present in the jet. And

when that completes with this it is a competition between pressure surface tension forces

and inertia forces that leads to the breakup of this jet at a characteristic line scale.
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So, then now we will go into fuel injection. So, now coming back to the practical gas

turbine engine where essentially you have to have something like this.
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Where you send out the liquid jet and you expect that the liquid jet will break up because

of this fundamental Rayleigh plateau mechanisms because of other Kelvin Helmholtz

instability is Rayleigh Taylor instability is because of atomization you need to create fine

droplets. So, the purpose as a engineer you have to then manufacture or you have to

select atomizers or you have to select a proper fuel injection devices through which you



can inject this these liquid fuels. And one more thing is that one more thing that you have

to keep in mind is that that there can be different kind of injectors available, but these

injectors,  there are multiple like a conflicting requirements.  Number one you need to

have very small droplet sizes on one hand, but at the same time if you want to use two

small sized orifices because of course, you see that the smaller the jet the smaller the

droplets will be produced.

So, you from here itself you can understand that given this analysis that if you have if

you have very small sized if we have a cylinder which is a very small size then the size

of  your  then  the  break  up length  that  this  lambda  will  also  be  small.  Because  your

lambda max is directly proportional to the R 0. So, what is happening is that you are

creating this, I will say this is the largest perturbation that is happening on your liquid jet

and this is the perturbations that is happening on the liquid jet. Now, where will it pinch

off it will pinch off at this point. So, essentially this lambda this whatever volume of

liquid is contained in this lambda will become a droplet.

So, after it breaks up in the next step can be like this. So, if I just show you like what is

going to happen. So, this liquid jet is like this. In the next step, it can be formed this

things and then it can form droplets like this in this in different times. So, this lambda the

amount  of  liquid  contained  in  this  lambda will  become a droplet.  So,  clearly  if  this

lambda is small this, but it will you cannot have arbitrary small number because then it

will not break up. So, this lambda max a typically it is a nine times or this nine times this

radius of this liquid jet. So, this is a droplets that we will gain get eventually should be

proportional this droplet size or this d should be proportional to your R 0 somehow.

So, what you get is essentially if your liquid jet is very thin if it is a small in size then

you get a very small droplets right obvious, but. So, to make small liquid jets what do

you have to do is that you have to use very small orifices, your orifice should be very

very small how but of course, the physical you cannot make orifice very small suppose

you want to make it 1 micron. But the problem is that some impurities will get unclog in

this one micron orifice practically, so that is a problem practically. So, you can have a

theoretical result, but to convert that into reality you need to put some more you need to

do some more engineering, so that it can be practically implementable.


