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So,  welcome  back  into  this  Flamelet  discussion  that  we  were  doing.  So,  we  have

essentially  shown you  that  by  obtaining  the  by  solving  the  continuity  momentum k

equation epsilon equation and then solving for the mean mixture fraction equation and

the variants mixture fracture equation, we can essentially been a very powerful position.

So, that after that if you obtain a pdf of that of the mixture fraction, we can using this

chamber flame assumption that at each point in the flow wherever you have a flame that

essentially the whole flame is composed of numerous flame lets, and this all this flame

lets obey the only chamber flame solution.

Where your enthalpy can be written as a function of Z or your reactive scalar can be

written as a function of Z, and immediately we can by doing the prism shape pdf we can

just go and find out the mean mixture of mean scalar of mean reactive scalar at each

point in a flow using that prism shape pdf. Now that of course, the penalty is that you

assume that each at each point in the flow your equation your flame let behaves in a

manner which is exactly equal to the ideal one delamina flame ok.

Now, that is that can be a reasonable approximation as you have said that that is could

approximation long as your flame let  your fuel reaction zone thickness is essentially

smaller than the Kolmogorov skill. So, that your eddys does not disturb the reactions on

thickness, but well the thing is that that may that may be mostly true, but in these cases

were it is not true then this assumption this whole thing fails ok.

So, will we have to find out and another better method by which we can find out psi this

reactive scalar mass fraction is a function of the mixture fraction and we will see how

can be done. So, will see that this lamina flame structure of a non premise flame. So, first

assumption  is  that  we  will  assume  equal  diffusivities  for  the  chemical  species  and

temperature.
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So, Le i is essentially lambda which is Harmon conductivity divided by rho Cp Di is

equal to 1 and Di is equal D, essentially and D is equal to lambda by rho Cp. So, it is a

generalized diffusivity which is also equal to the Di. So, that is the thing now we have

shown that of course, using the different Yi is we can obtain a we can obtain an equation

for the mixture fraction and this is the mixture fraction equations.

So, which we have essentially averaged and found out the set till then the set variance of

set  now of  course,  we can obtain a mixture  fraction  equation  like this.  So,  this  is  a

mixture  fraction equation and this  is  our temperature equation  whereas,  this  alpha is

essentially the repeated indices on the right hand side you have the heat release you have

the radiation you have the pressure fluctuation term and this is the species mass fraction

equation ok.

So, these are all the equations and of course, you have to you have the continuity and the

momentum equation also along with it and. So, those needs to be solved in the enter flow

of course. 
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Now what we do is that we want to do want to first define a surface of stoichiometric

mixture fraction that we call essentially as our flame.

So, once we have solved for this.  So,  we define a surface of stoichiometric  mixture

fraction Z x alpha or this Z x at any position x is equal to Zst and because the fact is that

the combustion occurs is at the vicinity of the surface because Zst is essentially that am

location where the your mixture fraction is at stoichiometric value and that is as we have

seen before that the flame always stabilizes  at  the point,  where your scalars reactive

scalars the fuel and oxidizer are essentially meeting at a Stoichiometric value ok.

That is apparent from the fact that the flame temperature is adiabatic flame temperature

in an non (Refer Time: 04:19) as well. So, what we do is that we do this by this thing by

this assumption that the flame is essentially the located at the point where adios mixture

fraction is at stoichiometric value.

We can essentially want to do want or we want to do a coordinate transformation so that

we go from the physical space of x, x 1, x 2, x 3 or that is xyz and time into this space

which is the mixture fraction Z and Z 2 and Z 3. So, what we do is that we said that say

this is our any generalized structure of a flame. So, say the fuel is coming from the

central part and this air is coming from outside ok.



So, of course, then the mixture of fraction Z value is equal to one and in the centers Z is

equal to 0 outside and then you have the flame stabilized like this. So, we say that at any

point in the flame. So, our Z is perpendicular to the flame surface, because this is the Z

equal to Z stoichiometric this is the flame surface. So, of course, if this is the iso contour

of Z then of course, Z cannot vary along the iso contour.

So, then Z must be varying perpendicular to the iso contour, and this is Z and this is also

we define a local coordinate system which is essentially x 1 and then we have the other

two coordinate system 2 coordinates x 2 and x 3 and which are also like Z 2 and Z 3 also.

So, Z is not equal to x 1, but x 2 is equal to Z 2 and x 2 equal to Z 3.

So, this is the our local coordinate systems whereas, x 1, x 2 and x 3 are essentially our is

essentially  Cartesian  coordinate  system  whereas,  this  set  is  essentially  the  mixture

fraction, but you see the idea is that that here its always perpendicular to the to the flame

surface, because we have defined the flame surface to be essentially Z is equal to Zst

where the mixture fraction is constant.

So, now what we want to do is that we want to express all this quantities temperature and

yi as a function of Z, and that will follow this, this different transformation rules that is

we will see that this transformation rules will be followed now why is that. So, then we

can be shown in a simple manner by the following that is if we define a quantity like this

that say f or psi i is a function of Z, Z 1, Z 2, Z 3 and tau ok.

So, this is the transformation this x 1, x 2, x 3, t is equal to Z 2, Z 3 and tau. So, then del

psi i del t is essentially del psi i del tau times del tau del t plus del psi i del Z times del Z

del t plus del psi i del Z alpha times del Z alpha del t.

Of course you see this because and of course, you see that there is the or assumption is

that that x 2 is equal to Z 2 and x 3 is equal to Z 3 and t is equal to tau. So, then this is of

course, equal to 1 and this since Z alpha is independent of t this is equal to 0. So, then we

are left with this part. So, we can write that d by partial duo duo t is to essentially duo

duo tau plus d psi i dz times partial duo Z duo t.

So, this is essentially the transformation of according transformation where you go from

physical spacial coordinates to variable to a coordinate which is essentially one of the

dependent  variables  of the system itself  which is  Z and. So, this  is  how you do the



coordinate  transformation  and  its  essentially  done  was  inspired  by  the  crocco

transformation which is applied for boundary layers ok.
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So, this is the thing and using this type of approaches you can obtain the other thing also

this is what we just derived and you can derive, this d duo duo x alpha also in terms of z.

So, essentially your transforming what you want to do is that that psi i is written in terms

of x 1, x 2, x 3 and t and you want to basically transform into psi i that is the reactive

scalar in terms of Z, Z 2, Z 3 and tau

Essentially and we will show that this variation along this the only variation that will be

important is essentially variation along Z and variation along Z 2 and Z 3 will not be

important because psi i is also a flame property right is also a reactive scalar and psi i

will vary only perpendicular to the vary direction of the flame ok.

So, if this is the flame you have fuel this is fuel this is the mixture fraction iso contour.

So, the fuel will not vary to the fuel mass fraction will not vary too much along this

flame surface right it will vary perpendicular to the flame surface. So, that is make sure

that these variations along this will be small and essentially it will become a equation for

like this well that is the idea.

So, we saw that in the previous presume shape pdf approach what we did was that we

wrote that psi i is just a function of Z as it is in a 1 d chamber frame. So but here what we



want to do is that we want to derive an equation by which we can write the variation of

psi i as Z as an independent variable.

So, we want to write psi as a we want to find out a governing equation by which psi i can

make source as a function of that. So, that is what we are trying to do here and for that

we have  introduced  this  thing  where  essentially  your  that  is  perpendicular  to  the  is

perpendicular to the Z varies perpendicular to the flame which is the iso contour of the Z

itself and that is that is defined by that zxt is equal to zst.

So, this is the approach and to do that we introduce this coordinate transformations and

which are obtained by like this that is duo duo t is essentially duo duo tau plus duo Z duo

t plus duo duo Z duo duo x alpha is essential is equal to duo duo Z alpha, alpha going for

2 to 3 this plus duo, duo Z times duo duo x alpha times duo duo Z and duo duo x alpha

this very important, x 1 that is the in the direction of the perpendicular to the x 2 and x 3

is essentially duo Z times divided by duo x 1 times duo z.

You can just  the  way we showed that  the first  transformation  you can  do the other

transformations also. 
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Now after do the transformations you can have a transformed energy in equation, you get

a complicated equation like this is all the transient term the transport terms, but you see



now you have your this  mixture on the left  hand side your this is eliminated your x

coordinate is eliminated and you have transport convection in the Z space ok.

But of course, you will have this x coordinates also and then you have this term and then

you  have  all  these  different  terms  on  the  right  hand  side  remains  same  which  is

essentially the heat raising radiation and pressure fluctuations. But it can be argued that

essentially these variations that dd duo duo Z in terms of x 2, duo duo Z and x duo duo

duo Z duo x 3, duo Z duo x 2, duo 2 t duo 2 Z 2 and duo 2 t duo 2 Z duo Z 3 square.

I mean these will essentially can be neglected because this will be small. Because the

reason is that this is your flame and the temperature is mainly varying like this on the

two sides of the flame say this is the fuel side and this is oxidizer side. So, on these

variation this is the this is the temperature. So, the temperature is much strongly varying

on the one along this direction than along this direction.

So, this temperature variation is much stronger as a result we can be able to neglect all

these variations that is happening along the along the iso contour of Z itself. So, that is

the idea and this all can be neglected and once you do that this what we will see is that

the dominant term that will emerge is essentially this term.

 (Refer Slide Time: 13:18)

So, the dominant term that will emerge is essentially this term and all of the terms can

essential  neglected.  So,  will  talk  about  this  dominant  terms  later.  So,  this  is  the



assumption of a vary with thin flame let  in Z direction and use order of fine drawn

analysis similar to the boundary layer theory. So, essentially what will have is that we

will have this term transient term for extension drew problems and this term.

And conviction of course, we have also will also neglect, because we are only interested

what happens in the vicinity of the flame. In the where the temperature gradients where

the scalar gradients are very very strong, but only the scalar gradients  in the normal

directions are very very strong that is along our scalar gradients along the Z direction are

very very strong.

So,  will  neglect  only  keep  the  transient  term  will  keep  the  which  is  important  for

extinction or ignition type problems will keep this term and will keep the source term.

So, will see what can be done with that. So, similarly the equation of species should

convey also found out.

(Refer Slide Time: 14:14)

So, then we can introduce the stretch coordinate by Z minus Zst, and the fast time scale

and like this and we can obtain an equation for this like this.

So, the term that will see is that as we said that the transient term is retained, and this the

other term that is this term is retained that is the first term on the there is the first term of

this third brackets is retained, and this right hand side source term is retained and this



equation is essentially called the this equation of the reactive scalar in Z space, where we

have essentially removed all convection.

So, you have retained the transient term we have retained the diffusion type of term, but

in Z space you must remember that and you have retained source term same for the yi

also. Now you see that there for the diffusion of temperature in the Z space there is a

characteristic diffusivity that is emerging, and that is essentially the scalar dissipation

rate ok.

Which  is  given  by  2  D  del  Z  duo  Z  duo  x  alpha  square  and  instantaneous  scalar

dissipation  rate  at  the  stoichiometric  conditions  and  this  is  presents  essentially  the

universe inverse of the diffusion time. So, this will the chi is essentially is as a dimension

of one per second. So, it made just essentially as the inverse of the diffusion time scales.

So, this essentially gives you the flame structure of course, with simplifying assumption,

but now you do not need to essentially,  but with this equations with these governing

equations we do not need to go back to the one d chamber flame, but of course, if you go

you can obtain the 1D chamber flame from these equations also, but with these equations

you have you can obtain how temperature varies with Z independently.

As long as you are you know this what if this chi st, which is the function of this dz dx

alpha, which is a function of Z again and x alpha again. So, this as long as you know the

local characteristic diffusivity in terms of this scalar dissipation rate, and you are one can

find out how the temperature varies with Z without having this simplified one d chamber

flame assumption.

So, the flame let  this  is  another  refinement  of the flame let  assumption,  but  we can

follow those other steps as has been shown before. So, this transformation essentially

what  has  it  includes  the  convection  and  diffusion  normal  to  the  surface  of  the

stoichiometric mixture, and as chi st goes to zero that is as the scalar that is the mixture

fraction gradients disappear, it approaches homogeneous reactor ok.

And it is valid in the thin reaction zone near Z is equal to stoichiometric of course, you

where you go far away from this then all those things that things varying the reactive

scalar varying only normal to the iso surface of Z, those type of assumptions will not be

valid anymore ok.
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So,  time  scales  in  non  premixed  for  combustion  you  just  have  a  check  comparison

between premix and non premix flames.

So, this is the time scale for non premix combustion Zst square by times 1 minus Z st

square divided by this scalar dissipation rate and for a non premix flame of course, this is

the quenching essentially is there is a scalar dissipation related quenching. So, of course,

when  you  have  the  very  high  scalar  dissipation  rate  you  will  see  that  the  flame  is

essentially will be quenched and.

So, this, but this thing is of course, we need to take care and then for a non premix flame

of course, we will see that the premix flame the time scale is essentially given by this and

that is the one point of deviation between relationship between non premix and premix

flames ok.

So,  of  course,  if  you compare between the compare  the above at  from the above at

extinction, you see that the non phoenix flame its essentially the heat that is conduction

at the is essentially the heat that is conducted towards the lean and the rich site balances

the  heat  generation  by chemistry.  So,  that  is  what  non premixed  that  is  what  a  non

premix flame is essentially ok.

So, for a non premix flame you is flame is situated between the fuel stream and the

oxidizer  stream and  it  conducts  heat  towards  the  lean  and  the  rich  side  and that  is



balanced  by the  heat  generation  by chemistry,  but  as  for  the  premix  flame the  heat

conduction happens towards the un burnt happens towards the unburned mixture and it

just balances the heat generation at that bonding velocity.

So, diffusion flame can exist at lower chi and has lower characteristic flow time. So, of

course, the of course, it is then it also has the flexibility to choose the convective to the

reactive time because as such because there is no flame speed for a non premix flame,

there is no constraint on the fact that how it should balance with the flow.

However for the non premixed that means, that the non premix combustion is essentially

controllable and diffusion flames or non premix flames are stable in comparison to the

premix flame. So, that is one advantage that has apart from the fact that though despite

the fact  that non premix flames are more polluting the premix non premix are more

stable and that is one good thing about non premix flames ok.

So, of course, but at large chi at chi quenching the flame quenches and that is one thing

we have to be careful about. 

(Refer Slide Time: 19:53)

Now then we go to this different flame let models where we have essentially discussed

this stretched flame let model by peters and Eulerian particle flame let model Lagrangian

model and the conserved scalar equilibrium model.



And  that  is  what  we  have  essentially  discussed  just  before  this  conserved  scalar

equilibrium  model,  which  is  where  we  had  in  the  presume  shaped  pdf;  we  have

essentially just plugged this conserved scalar equilibrium assumption or this thing. So,

this one deep non premix flame into this presumes shape pdf ok.

(Refer Slide Time: 20:18).

Now, going back to this what we were discussing that we have obtained this laminar we

have obtained a flame surface which is essentially defined by Z is equal to Zst, and the

reactive diffusive structure of the flame let at near Z is equal to Zst is given by given by

this equation which is we have obtained by transforming from the physical coordinate

into Z space ok.

Again we just recapitulating the discussion that we just had 5 minutes ago, and now that

reactive diffusive structure of this is given by this you have this wire of this reactive

scalar we have this by d rho d psi i dt and this is rho divided by Le i where we can use

also that this non unit loose number of assumptions and psi by 2 times d 2 psi i dZ square

plus the of course, the source term is also there, this is in the reactive scalar.

So, from yi we have gone onto psi i area also and this is psi the scalar dissipation rate is

at the defined at the flame surface psi is equal to psi st. And this is an external parameter

essentially  on  the  flamed  structure  because  of  Z  and  its  essentially  the  inverse  of

diffusion time scales and is represents the diffusivity in Z space. Now one thing is that

the the most important thing that allows us to reduce to this simple equation this very



elegant and beautifully equation of psi i in terms of Z space is that, the reactive scalar are

constant along Z surface ok.

And the fields of reactive scalars are aligned with Z the reason is that if reactive scalars

are constant along Z then of course, then it varies perpendicular to the iso contour of Z,

reactive scalars are not constant along Z reactive scalar is essentially constant along Z is

equal to constant surface. So, iso surface of Z reactive scalars are also constant along the

iso surface of Z.

And then if it is to vary this reactive scalars they must be varying along the perpendicular

to the iso surface of Z, then it varies essentially along with Z. So that means, the fields of

the reactive scalars are run with said and both are transported with the fuel. And now Z

and psi both are fluctuating quantities and to calculate the statistical moments and we

have to consider the statistical distribution.

(Refer Slide Time: 22:48)

So, once again we see that we need to essentially go back to this to the to this steady

flame let equations that, if we now have the of course, now if we have this joint pdf of

this psi Z and psi st surface is known then we can solve the steady flame let equation to

get psi i and this Favre average mean is given as this whole equation ok.

This is once again that is from the joint distribution of Z and psi st we can find out the

mean psi. Never as (Refer Time: 23:23) various point psi as a function of Z this thing can



be obtained from the this steady flame let equation where of course, this term has to be

neglected. So, this is then valid only under the steady case that has to be remembered.

But now if the unsteady case if you have an unsteady flame let equation then this joint

pdf  is  becomes  impractical  and then  one can  use multiple  flame lets  each  of  which

essentially represents different ranges of chi distribution, and this is typically used in the

eulerian particle flame let model. And the scalar dissipation rate can be modeled as a

function  of  Z,  and  the  above  formulation  is  used  in  modeling  condition  of  Favre

averaged of the mean scalar dissipation rate chi Z which is defined like this. As you see

that this difference is that it is a conditional on z.

So, it is like this means that its rho times the scalar dissipation red giving Z condition on

Z divided by the rho given Z and then averaged. So, then the frame let equation in a

turbulent flow is then given by this quantity, then you can use basically for the unsteady

flame let in this form whereas, this psi has been replaced with which psi tilda at Z ok.

So, then once again you have come to this equation, but now you see that the as I said

that the original this model that this conserved scalar equation model of this where we

have essentially  plugged in the solution of  this  1D chamber flame or  the 1D or the

equilibrium solution into at each point in space from the pdf.

And the solution was Z average it on Z variants of Z that we have realized by solving by

accounting  for  this  either  this  steady  flame  let  equation  or  the  unsteady  flame  let

equation where we have replace i with this essentially psi this Favre average of Z. Now

of course, there are trouble because this one in points which involves large departure

from the mean psi Z values where we encounter small Z as well as or large psi events

that is when you have when the psi is very large you go to extinction ok.

So, then one then one has to use large de simulations for that. So, that is one thing one is

to keep in mind.
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So,  next  we  go  into  two  advanced  concepts  of  modeling  turbulent  non  premix

combustion and this will just skim through, but. So, in details we have discussed this

flame let approach, and these two things are more advanced and it is more complex also,

but  we will  just  discuss  them and these  two are  essentially  the  conditional  moment

closure are approached by Klimenko and Bilger.

And the pdf transport equation model by pope and Dopazo and will just go to this. 
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So, the first will go to this conditional moment closure and this is just an overview are

not  going to the details.  So,  conditional  moments,  you see conditional  moments  and

essentially this just we have seen that this is psi given z. So, that is typically a conditional

moment.

So, conditional moments are averages and variances taken from those quantities, which

comply with the certain condition. So, if this conditional moment this conditional pdf

this f if is the pdf of u is given by a fu, and the pdf of say some quantity G is given by f

G. So, the pdf of u given G is essentially pdf of u and G divided by pdf of G.

So, this  is  the how the conditional  moment from that one can obtain the conditional

averages also. So, the conditional moments are averages and variances and taking with

quantities  which  you  comply  with  the  certain  condition  and  rather  than  taking

conventional averages the condition that reactive scalars and the mixture fraction.

So, we have not. So, here in this conditional moment closure we are not will not go with

directly mean like mean like this like psi i average that we were discussing. So, what we

what will go is that what we want is that, we want something like this given an average

something like that the psi i given Z that at a particular point in if you know the value of

Z what is the that given the value of that what is the average of psi I so, that is the

conditional average of Z a conditional average of psi i given z. 

So, that is the what we are interested in here why? Because Klimenko said that turbulent

diffusion can be better model than Z space and Belger form that fluctuation of reactive

scalar  is  associated  with  the  fluctuation  of  Z.  So,  that  is  for  this  raise  two reasons

essentially  both  of  these  people  both  of  this  very  highly  decorated  scientists  and

proposed this conditional moment closure models.

So,  the  flame  let  model  the  flame  surface  statistics  and  laminar  reactive  diffusive

structure is attached to the flame surface. So, the what we have done is that we solve in

the flame let model we solve for Z tilde, we means Z Favre mean Z we solve for the

variance of Z and then we attach a diffusive reactive structure to it either by solution

from 1D or by solving psi i as a function of Z. In the conditional movement closure at fix

basically here we are obtain the conditional moments at fixed location and time in the

time in the flow field ok.



So,  that  is  the that  is  the  conditional  moment  closure approach that  we use.  So,  the

conditional pdf is given by this, that is a p that is that is a pdf of psi i given Z is given by

the joint pdf of psi i and Z this is the joint pdf of psi i is Z at x and t and this is the pdf of

Z at x and t. So, it is a ratio the conditional pdf of psi i just be. So, sure now that is a

conditional pdf of psi i given Z is essentially the joint pdf of psi i and Z at the at a

particular point divided by the pdf of Z at the particular point ok.

And the conditional moment of the reactive scalar is given by this, that is a Qi Z xt is the

conditional moment of reactive scalar is this essentially psi i given Z averaged is we can

find out from the conditional pdf of psi i given Z and if you just get the first moment of

the is given by the first moment psi i times the pdf of psi i  given Z at  that and we

integrate between 0 and 1.

So, this is how the conditional moment of a reactive scalar is defined 

(Refer Slide Time: 30:19)

Now in bilgers approach we decomposed the reactive scalar into conditional mean and

conditional fluctuation. So, we define psi i is essentially not psi i an average plus psi i

fluctuation is this is the conditional mean and this is a conditional fluctuation, and using

the above decomposition in the governing equations for the active scalar, we obtain one

can obtain this equation this is a very very important equation which is has important

influence in the turbulent non premixed combustion modeling and I mean to some extent

in turbulent premix combustion modeling ok.



So, this is the equation and on the left hand side you means to have a some temporal term

of  this  conditional  mean  and  then  the  conditional  mean  is  transported  by  the  mean

velocity uz, but in Z space this is not just simple velocity and then you have this same

thing that the diffusion of the conditional mean in Z space.

And once again the Favre average is scalar dissipation rate of Z appears as the diffusivity

characteristic  diffusivity  and  then  you  have  a  closure  for  the  may  have  the  closure

problem for the reaction rate. So, here you see that this is the Favre conditional velocity

and psi i which is replaced by the replaced by Favre mean velocity Favre mean velocity

in replaced by this and Favre conditional scalar dissipation rate and calculated based on

the pdf  transport  equation,  and then the  Favre conditional  chemical  source term and

calculated based on the presumed shape pdf approach.

So, those thing has to be integrated then the higher moments of chemical source term are

neglected  and this  implies  that  we can model  this  psi  i  this  omega i  that  is  species

consumption  or  production  rate  at  a  given Z  is  essentially  psi  i,  and  then  this  as  a

function of this mean of psi i given z.

So, the derivation of CMC equation follow that of the laminar flame let the concept;

however, CMC as advantage that it clearly defines or identify the chi Z in it. So, this is

the thing.
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And next we will go into the pdf transport equation model. The pdf transport equation for

the velocity and reactive scalars for one point statistics it is at a particular point in the

flow you obtain the pdf.

So, here in the pdf transport  equation models you do not model the velocities or the

species as such you model the pdf of that you see how the pdf is essentially is essentially

changes under the effect of advection diffusion and reaction at a particular point. So, the

pdf  transport  equation  for  velocity  and  reactive  scalars  and  inclusion  of  velocity

gradients in the reactive scalars and we have to solve the modeling issues with viscous

and scalar dissipation ok.

(Refer Slide Time: 33:15)

So, this is psi is the reactive scalar and this is the pdf of finding the velocity and reactive

scalar this is joint pdf of velocity and psi of the reactive scalar, and the this is essentially

the  pdf  P times  du times d psi  is  essentially  the  probability  of  finding velocity  and

reactive scalar within u minus du and u plus du and psi minus psi probability of finding

psi within psi minus t psi and psi plus t psi.

And the  pdf transport  equation  for the pdf  the transport  equation  for the probability

density can be obtained you can see popes book for this derivation it is an important

derivation and. So, here we have the different terms, and you see that this divergence of

u is respective the three components of the velocity this means this angular brackets are

the conditional averages with respect to fixed values of u and psi.



This is of course, much more involved as you can see that this T 1 is the local rate of

change at time T 2 is the convective derivative in physical space, T3 is the transport of

velocity by gravity and the mean pressure gradient by the forces and T4 is the chemical

source term one advantage of this pdf equation is that this term is fully closed, and the

transport  of pdf in velocity  space T5 is the transport of pdf in the velocity  space by

viscous stresses and fluctuating velocity gradient this is unclosed.

And the T6 is the most difficult term to handling in this thing is essentially the transport

in reactive scalar space and this is the T 6 term. 

(Refer Slide Time: 34:50)

 And  you  see  that  how  to  do  this  how  to  get  this  pdf  is  that  because  of  high

dimensionality of pdf transport equation, this finite volume and finite difference methods

are not suitable they were very high cost when you apply these things.

And. So, the montecarlo techniques are employed and for this the Lagrangian particle

tracking algorithms are used to overcome the difficulty of montecarlo methods and for

that you have to basically insert particles which falls the dxj dt over the j particle is equal

to ujx and this is the reactive scalar essentially changes. So, this is just the basic very

brief claims of these two advanced techniques of conditional moment closures and pdf

methods.



So, will close this discussion on the non premix flames by just looking at to the regime

diagrams of course, the regime diagrams will be much more useful in the premix flames,

but in non premix flames you can also use that. So, in this regime diagrams you have

basically two coordinates one on the Reynolds number large scale Reynolds number on

the x axis and the Damkohler number on the y axis ok.

 (Refer Slide Time: 36:04).

Now we define our transport layer thickness whereas, which is of course, you do not

have a flame thickness as such here and either you have a velocity scale. So, we have to

construct  this  transport  layer  thickness  based  on  this  on  the  gradient  of  Z  at  the

stoichiometry location, which is defined like this and which can be shown to scale like

this  viscosity  divided  by  the  scalar  dissipation  rate  at  psi  st  and  then  you  define  a

transport time scale. 

And the transfer time scale of course, is the inverse of this scalar dissipation rate at the

stoichiometric location, and from that we can define a flame damkohler number which is

essentially the ratio of the transport time scale to the chemical timescale and this is given

by 1 by psi st times tau c and now assuming Kolmogorov eddies to be most effective for

mixing.

We can have this kind of thing and we can define a revised Damkohler number which is

the ratio of the flow timescale at large scales to the chemical timescale and that can be



shown to be essentially the square root of the hydro dynamic scale Reynolds number to

the n times the flame Damkohler number ok.

So, this is my y axis and this is my x axis of course, you see when the Reynolds number

is  small  then  of  course,  all  flames  will  be  laminar  of  course,  when  the  Damkohler

number is large then you will only have distributed then when the Damkohler number is

large essentially you have thin reaction zones. So, you only have essentially the regions

which  are  we  only  have  flames  which  are  essentially  wrinkled  and  folded  by  the

turbulence.

So, this is the essentially the thing reaction zones and then you have as you reduce the

Damkohler  number you have broken reaction  zones  when you cross  this  Damkohler

number equal to flame Damkohler number equal to one line you have broken reaction

zones, when the reactions get detached and then you have distributed reaction zone when

you have the reactions happening in different spots happening in different spots in these

things.

So, this is the and you have ignition happening at different points in the in the flow. So,

this is typically a very basic regime diagram which we have shown you and of course,

this regime diagram should become much more useful in the premixed combustion. So,

in  this  class  what  we  have  learnt  is  that  we  have  learnt  that  to  analyze  turbulent

combustion  one very  important  concept  that  can  be  introduced is  a  mixture  fraction

concept.

And the introduction of the mixture fraction concept what you can do is essentially of

course,  you  solve  for  the  you  essentially  as  soon  as  you  have  the  mixture  fraction

concept we essentially can construct, go back to the 1D chamber flame and construct the

solutions of the reactive scalars in terms of mass fraction and temperature exclusive of

any function of the mixture fraction ok and store that solution.

Then for turbulent flames we essentially have to solve the average momentum equation

averaged  kinetic  energy  turbulent  kinetic  energy  equation  scalar  dissipation  mean

turbulent kinetic energy dissipation rate equation that is key epsilon model is essentially,

then the density  for  our  radiations  of  course,  have to  take  care by solving  the other

equations.



We have to couple it with somehow and that coupling for that you essentially has to

obtain this reactive scalar field how you do that? You also then solve for the average

mixture fraction and the variance of the mixture fraction equation and as soon as you do

that you know the average mixture fraction and average the variance of mixture fraction

at each point in your combustor ok.

Then at each point in the combustor is you basically construct a pdf when the pdf of Z

which  tells  you  the  what  how much  this  mixture  fraction  can  vary,  and  this  pdf  is

essentially controlled by your Z average your mean mixture fraction and the variance of

mixture fraction which you already know at that point because you solve the governing

equations; after you do that you obtain. So, you have a know that what is can be the

distribution around this rate and Z primes.

And then you essentially map your reactive scalars temperature enthalpy and reactive

scalars on to the mixture fraction by using the 1D chamber flames solution, and then

immediately you know the all possible values of the temperature and reactive scalars that

can that can happen at that point, and then by using that pdf of Z you can immediately

solve for the find out the average of this reactive scalars that can happen at this particular

points,  and  then  once  again  from those  densities  you  can  again  couple  back  to  the

continuity and the momentum equations.

So, this is how you can have a complete solution of course, you may this one may not

like the idea that we use the one d chamber flame or this partial flame or an equilibrium

solution at each point in the flow. So, for that one can basically define one can go from

the physical space to a mixture fraction space and basically attach a coordinate system

which is where the mixture fraction varies normal to the to the flame surface.

Which  is  considered  to  be  the  mean  mixture  fraction  which  is  considered  to  this

stoichiometric iso contour of the mixture fraction, and then you basically transform your

reactive scalar equation from the physical space to the mixture fraction space and then

you basically can obtain psi i this reactive scalar as a function of the mixture fraction.

So, once again then going back you can one can find out the given or steady or unsteady

situation would and appropriate choice of the scalar dissipation rate one can find out the

pdf or the or the mean psi or the mean reactive scalar at a particular point. And then of

course,  we  have  seen  that  in  this  approach  the  one  big  takeaway  is  that  the  scalar



dissipation  rate  emerges  as  the  characteristic  diffusivity  of  the  reactive  scalar  in  the

mixture fraction space.

And then of course, we introduced just came through just glance through the two modern

approaches, with this conditional moment closure and pdf approach and then we closed it

with  the  turbulent  non  premixed  combustion  diagram.  So,  this  is  so  much  for  the

turbulent non premixed combustion and then in the next class we will take up turbulent

premix combustion, and then later we will take up appropriate will take up the practical

aero  engine  combustors  at  the  towards  the  end of  the  course.  So,  till  then  goodbye

friend’s bye.


