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Reacting turbulent flows VI

Welcome back. So, next we take up as we said that dissipation and scalar transport of a

non-reacting and reacting a linearly reacting scalar. So, we will show that how this kind

of moment, this moment methods can be useful for a non reacting scalars and then we

will show for a simplified scalar that how this can fail. And then we will go into this the

simplified modeling for the source terms and with that that will close this class or this

module on turbulent combustion. In the next modules we will take up more advanced

modeling approaches for turbulent non premix flames and turbulent premix flames.
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So, here we take up this, dissipation of non reacting and linearly reacting scalars. So, as

we have seen previously that this term is also unclosed and this also is a major term

major problem.
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This turbulent transport term, turbulent transport of the species which is essentially the

similar to the Reynolds stress terms, but here it is in terms of the species essentially this

is the covariance of the velocity fluctuations and the species fluctuations and a Favre

averages of that. So, how we can introduce a model for this?

So,  as  we said  that  the  modeling  for  this.  Now it  is  a  general  practice  in  turbulent

combustion  to  employ  this  gradient  transport  assumption.  So,  what  is  the  gradient

transport assumption you will see that and, but you will see that that is mainly useful for

reactive non reactive scalars, and we will see what are the problems that you face when

you apply them for reactive scalars. So, the gradient transport assumption is that is that

this v prime psi prime covariance is equal to minus Dt times this one.

So, it is similar to the Reynolds stress closure. Where we saw that this Reynolds stress

was essentially the Reynolds stress tensor essentially closed by the by this kinematic

viscosity kinematic turbulent eddy viscosity times the strain rate the strain rate tensor the

Favre average strain rate tensor. So, similarly here instead of the kinematic viscosity we

introduce this turbulent diffusivity. And it is a modeled in analogy to the to the turbulent

eddy viscosity. So, Dt is the turbulent diffusivity, and we define turbulent diffusivity is

essentially nu T by the turbulent Schmidt number.

Now, we want to show that that the gradient transport assumption may not be acceptable

for reacting scalars. And for that we need to essentially derive an equation for this thing



that is the with the variance of the of the this reactive scalar itself. And this once again

you see is analogous to the turbulent kinetic energy our turbulent kinetic energy is the

variance of the is the essentially the variance of the velocity fluctuation cy or. So, k is

essentially; if you remember ui ui this one and for a k tilde it was like ui ui tilde this way.

So, here it is essentially this was this is essentially the psi i prime. So, here we have this

thing is essentially psi i times psi i, but here i is not in terms of the direction size in terms

of species. So, this is essentially these terms. So, it is analogous to this turbulent kinetic

energy. So, we need to have an equation for that also, but first we have an equation for

this thing, that is we have an equation for a transport or an evolution equation for psi i

prime and that is given by is equal to 1 by rho.

So, this is the species diffusivity term and this is the averaged contribution. This is the

turbulent transport term that we are discussing about last the si the source term. So, si is

the source term fluctuation is essentially is equal to si minus the Favre average design

now from this,  similar  to  the  turbulent  kinetic  energy derivation  we can  derive  this

equation for this the variance of the Favre variance of the Favre average variance of a the

reactive scalar.
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And this  one  is  given by plus  is  the  temporal  term the  convective  term,  where  the

variance of psi i is transported by the mean velocity is equal to minus this divergence of

the mean density the turbulent transport  term. Once again you see this is that this is



essentially the production, we will see this is essentially similar to the production term

the production of the scale of fluctuation done, just like similar to the production of the

turbulent kinetic energy term scalar dissipation rate Favre average scalar dissipation rate

just like the turbulent kinetic energy dissipation rate and the scalar reactive scalar source

term covariance.

So, this we will say that this is T 1 this is T 2 this is T 3 and this is T 4 on the right hand

side. And this is of course, the left hand side is of course, the transport of this psi prime

square Favre average that is the on the this thing this the Favre the variance of the of the

reactive scalar fluctuations, the transport of that which is the left hand side is of course,

that and on the right hand side we have different terms; which of course, determines the

local rate of change of this of fluctuations the variance and the and the terms and then the

convection by the mean flow.

 So, that this left hand side tells that about the right hand side what does the different

terms. So, the right hand side terms say that T 1 is essentially the those each of this can

be modeled and has different meanings for we will not go into that, but I will just say the

what the terms mean essentially this is the turbulent transport term. And T 2 is essentially

the production of scalar fluctuations. Actually we should derive all these equations by

yourself because then the physical significance will also be clear.

And these are not very hard to derive, but of course, in a due to limited time of the class

we are just  showing all  these  equations  that  this  can be derived we just  need some

algebra can be Lucians and a averaging and commutation of this  average inside and

outside  the  gradients  derivatives,  but  you  have  to  be  careful  there  is  could  be  this

derivation  is  prone  to  mistakes.  Production  of  a  scalar  fluctuations  the  meaning

molecular transport term you can be neglected for simplicity, but you see that the mean

molecular diffusivity term still appears in this one, which is a scalar dissipation rate and

that is T 3 and whereas, T 3 is given by just like the energy dissipation rate scalar this is

scalar dissipation.

So, before that this- as I said that this T 2 this is essentially the production of scalar

fluctuations and that is produced by once again the mean scalar gradients and the this

velocity scalar covariance. So, it behaves just like the mean just like the mean turbulent

kinetic energy production and dissipation. So, the production term was there Reynolds



systems times the mean strain that duid, I mean of a d of mean uid xj and here also it is

exactly  behaves  in  a  similar  manner.  So,  when  there  is  a  mean  velocity  gradient  it

produces and there is a presence of some burden on stress locally it produces that a that a

turbulent kinetic energy.

So, when here we have this mean a scalar gradient it produces these fluctuations of these

things, and the variance of these reactive scalar fluctuations.  So, it is it  behaves in a

essentially similar manner. And T 3 is this psi i is essentially the Favre averaged scalar

dissipation rate. And that is given by this is the thing just to you remember it was like 2

nu sij sij fluctuation. So, here also it is like sij is the velocity gradient Du. So, just if you

remember that epsilon was nothing, but mean the turbulent kinetic energy dissipation

rate was nothing, but twice nu sij sij whereas, ij it is equal to dui dxj plus duj dxi.

So, this is  exactly  analogous to that term. So, production happens to this production

happens to this term and dissipation happens to this term. So, it is essentially we see that

analogies come out and then T 4 is essentially the covariance of the reactive scalar with

the chemical source term. So, that is what T 4 is. So, now, we will define we will see that

how this gradient transport assumption can be good for a non reactive scalar, but it can

be problematic for the reactive scalar.

So, now before that we need to introduce some this introduce the corresponding integral

time scale for the scalars and in terms of this scalar variance and this and this scalar

dissipation rate and that can be defined as this.
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 just like if you remember the integral time scale can be define like this. Favre average

turbulent kinetic energy divided by the Favre averaged dissipation rate. And then this can

be related by tau is equal to c psi by tau i whereas, c chi is typically taken to be 2.0 in

commercial softwares and using this we can essentially model.

Now, we can say that using combining these 2 things we can write that mean k by mean

dissipation rate is essentially equal to c chi times and this means that. So, this way the

scalar dissipation rate can be modeled. So, this is the thing.  Now if you use that the

concept that in this equation, if we say that this production is equal to dissipation that if

we equate this T 2 and T 3, if we equate d T 2 and T 3 by this thing that production is

equal to dissipation. And then we can justify essentially what we will show that that the

gradient transport assumption can be justified.

How do we do that we said that, if production is equal to dissipation then the production

term is  this  thing.  So, production is  equal  to dissipation.  And since Dt the turbulent

dissipation the turbulent diffusivity can be written as this form you see by dimensionality

this has got 2 meter squares per second and this is meter 4 per second 4, and this is this

dissipation rate is essentially meter square per second cube and. So, it has got the same

dimension. So, it is like meter square per second.

So, using that dimensionality we can write in Dt is equal to minus v double prime psi I

double prime. So, the whole purpose of these thing is to show basically that this gradient



transport assumption that we just introduced that is this turbulent transport term v prime

psi prime that is written as minus Dt times this um minus Dt times this thing that this

assumption  is  justified  for  a  non reactive  scalar,  but  it  causes  some problems  for  a

reactive scalar. So, that is the whole thing.

So, we will see we are proceeding in that manner. So, what is the justification is that that

if we write it in this form we can this guy can be written as essentially Dt times this time

psi i can be written as proportional to c chi k, and psi i prime square and this guy is

essentially proportional to v double prime psi i double prime and therefore, therefore, if

we combine these 2 things we can write what we get is minus v prime psi prime is

proportional to c chi minus one Dt psi i tilde.

So, you see that the gradient transport assumption is justified in this case. Why is it what

is the basic code assumption the more basic code assumption is that the probably have

equated production equal to dissipation. That is this we have said that T 2 is equal to T 3

and that is why we can have this gradient transport assumption, but the problem is that

we  have  totally  neglected  this  term T 4  right  which  is  the  fluctuation  which  is  the

covariance of reactive scalar with the chemical source term.

Now, when you have reactions you cannot neglect these terms and that is why, but when

you do not have reactions, you see that this assumption not this thing that is the gradient

transport assumption holds pretty well and it actually can describe things, the scalar the

mean scalar transport equation pretty well using the gradient transport assumption, but

when you have reactions  then the just  production  equal  to  dissipation  is  not  enough

because you have other source terms, which is like the covariance between the scale of

fluctuation and the reactions.


