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Non-reacting turbulent flows II

Welcome back. So, as you have seen very exciting things happening in turbulence that is

turbulence the whole mechanics works like this. That the mean or the or the energy of

the mean flow the kinetic energy of the mean flow is taken away and that is used for

creating turbulent kinetic energy and that clearly shows up in this equation.

(Refer Slide Time: 00:41)

That you have seen that the transport equation for the transport equation for the for the

kinetic  energy mean flow,  and the transport  equation  of  the  turbulent  kinetic  energy

where p was acting a appearing as a as a sink term for the form on and the source term

for the latter. And of course, this is happening through this through this production which

contains  the  Reynolds  stress  times  the  mean  velocity  gradients  and  the  then  it  is

happening then it is dissipated at the small scales by this thing which is the dissipation

rate turbulent kinetic energy dissipation rate, but the how does this happen.



(Refer Slide Time: 01:14)

For that we need to go into the turbulent scales and energy cascade. So, as we have seen

that from the jet image itself from the turbulent jet is that the turbulent motions range in

size from length scales comparable to the comparable to the to the flow length scales that

is a flow length scales can be for a jet can be the width of the jet to the size orders of

magnitude smaller with to the size which is order of magnitude smaller. So, the smallest

scales if the if you have a jet like this, the largest eddies you will see is basically the

essentially of the order of the size of the jet, but the smallest eddies this then becomes

actually  cascades into small  and smaller  eddies and these smaller  eddies are actually

much smaller.

 So, if this is of the order of say 10 centimeters. This larger steady for a jet then this can

be of the order of few microns given that Reynolds number of course. So, that is how this

thing happened how does the turbulence convert this energy that is coming into the large

scales and how is that going into the small scale. So, that is the whole concept of this

cascade and the small scale smallest scales at which this the smallest scales of turbulence

and we call the kolmogorov of micro scales which will come later.

 So, and as you have seen that just from the image from that the jet image we have seen

that the scale separation what do you mean by scale separation by scale separation we

mean that the we can say that the ratio of the largest scales of turbulent motion to the

smallest scales of turbulent motion and that increases as Reynolds number increases. So,



what happens is that. So, at the largest scales we have this, if this l is the largest scale and

say this is the smallest scale.

So, at the larger scales we have the energy containing range. So, we where the energy is

essentially injected where the turbulent connect is injected by the production mechanism

and then it basically travels through a whole range of scales through this range of scale

call the inertial subrange, which is essentially we will show that is universal in nature

and until and unless it is dissipated into this dissipation range to the smallest scale will be

the eta.

(Refer Slide Time: 03:29)

So, this demarcation between the energy containing range and the inertial subrange we

will call this as lei and the demarcation between the dissipation range and the inertial

range will because ldi. So, that is how the definition scope now kinetic energy as we

have seen that  the kinetic  energy enters  turbulence  at  the largest  scales;  and is  then

transferred  to  smaller  and  smaller  scales  until  at  the  smallest  scales  the  energy  is

dissipated by viscous action. So, that is the whole point. So, that a kinetic energy enters

turbulence  of  the  larger  scales  and  is  then  transferred  to  smaller  and  smallest  scale

something at the smallest scales the energy is dissipated by this viscous action

 So, this concept was realized by Richardson, actually by much earlier than Kolmogorov

and he were up and down this point that big holes have little holes which we on their

velocity and little holes of less a holes and so on their viscosity. So, it is a nice point by



which this whole picture is essentially base basically put in which convey to the general

audience.

(Refer Slide Time: 04:19)

Now,  then  the  question  is  that  then  what  is  the  size  of  the  smallest  eddies  are  the

universal in nature. How can you relate the size of the smallest eddies to those of the

larger  eddies? As length scale  increases do the characteristic  velocity  and time scale

increase decrease or remain same, these are important questions to answer.

And of the kolmogorov hypothesis of local isotropy is these are now what we will do is

that. So, to understand these things we will introduce Kolmogorov’s different hypothesis,

basically we will introduce 3 hypotheses and the first hypothesis is this Kolmogorov’s

hypothesis of local isotropy. And this t is that are sufficiently high Reynolds number the

small scale of turbulent motion are statistically isotropic and it can be revised to the first

state that at sufficiently high Reynolds number the small scale turbulent motions, which

are  away  from the  walls  are  statistical  isotropic  means  that  you  define  a  statistical

quantity which is invariant upon translation and rotation of your coordinate system.

 So, that is what is isotropic. So, it does not have any direction since. So, it is whichever

direction rotated state is the statistical the statistics says stay say that is very important it

is not the instantaneous field we are talking about is the statistical field we are talking

about so, but this scale has to be is much smaller than the energy containing scales. So,

that is important. So, you see that is what is very important over here. So, this using this



we can go to the second Kolmogorov’s of the of the first similarity hypothesis. And he

says that in every turbulent flow at sufficiently high Reynolds number the statistics of the

small  scale  motion.  This  is  what  is  very important?  The statistics  of  the small  scale

motion have universal form and that is uniquely determined by the kinematic viscosity

and the turbulent kinetic energy this is dissipation rate.

So, this is very more important  that this is a small  scale motions are independent  of

anything  are  universal  are.  So,  this  3  is  towards  important  small  scale  motion  are

universal and determine by kinetic energy are by the kinetic energy dissipation rate and

kinematic viscosity, but it is only the small scale motion or the large scale motions.

(Refer Slide Time: 06:33)

So, what does that mean; that means, that that to be small scale motion if you consider

the smallest scales of turbulence to be the Kolmogorov length scales and the smallest

scales of velocity or the velocity the Kolmogorov of velocity scales and the Kolmogorov

of  times  scale.  So,  we  can  only  determine  this  from  this  quantity  using  kinematic

viscosity and dissipation rate.

So, by dimensional analysis kinematic viscosity is as a dimension of meter square per

second it is essentially the same dimension of diffusivity. Whereas, epsilon is essentially

has a defer as a unit of you see it is about what is what it is essentially, twice nu times sij

times sij right. So, this has unit is of meter square per second. So, this has unit is of meter

per second times meter per second sorry this is not meters per second. So, this is meters



this is meter per meter second and meters per meter seconds of this cancels. So, this is

essentially has a unit of meter square per second cube.

 So, dissipation rate has an unit of meter square per second cube and kinematic viscosity

has a unit of meter square per second. So, then and whereas, this Kino this will have a

dimension of meters this will have a dimension of meter per second and this will have a

dimension of one per second have a have a dimension of second. So, if. So, then we

using this quantities how can we form this scales. So, this we EK this can be found only

if it is nu cube by epsilon to the power of one-forth it is Kolmogorov of velocity scale

can only be formed if it is epsilon times nu to the power of one-fourth and tau it can be

only form this epsilon by dissipation to the power of one-half right.

So, that is the thing. So, this is how the different scales of turbulence are formed by eta u

eta and tau eta. So, these are very important things and these are essentially universal in

nature. So, that is what Kolmogorov’s claim is and it is actually it turns out to be true

using this we can have a very well good definition of a essentially what are the smallest

scales of motion are and they, but this has to be stead this as statistical in nature which

should not be confused with instantaneous observations.

(Refer Slide Time: 08:31)

So,  far  we have  talked about  that  far  from the  walls  small  scalar  isotropic,  yes  and

Secondly, he introduces the first similarity hypothesis we said that yes when the flow is

at large Reynolds number. So, these are very important all the these hypothesis holds that



very large Reynolds number. So, at a large Reynolds number the statistics of small scale

motion have a universal form and they are uniquely determined by kinematic viscosity

and kinetic energy dissipation rate. So, he only talks about small scales what happens at

the intermediate scales.

So,  the  intermediate  scale  he  says  that  in  every  turbulent  flow  at  sufficiently  high

Reynolds number the statistics of motion of scale l, which is an intermediate scale that is

which large between your largest energy containing scale l 0 and the dissipation scale

which is Kolmogorov of length scale which is far away from both. So, this intermediate

scale l which is or this intermediate range of intermediate scales l, which is far off from

which is far smaller than the energy containing scale which is of the size of the largest

energy continues scales is the order of the say the jet width, and at the same time which

is which is also much larger than the kolmogorov of length scale they have a universal

form and that is determined by turbulent kinetic energy dissipation rate only and it is

independent of kinematic viscosity.

 So, this is very important. So, the smallest scales are determined by kinematic viscosity

and turbulent kinetic energy dissipation rate intermediate scales which are smaller than

the largest length scales or the hydrodynamic scales. So, let us call this hydrodynamic

scale  l  0,  which  is  smaller  than  hydrodynamic  scales  yet  much  larger  than  the

Kolmogorov’s  length  scale  those  are  determined  by  the  turbulent  kinetic  energy

dissipation rate only why is that. So, why did kolmogorov say this things what does it

actually mean; and as you will see that the second hypothesis useful in deriving a scaled

relationship for the energy spectrum at the inertial range.
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So, this is what he is meaning these are the largest scales like this. So, this is largest and

this is smallest. In between you have this intermediate scales. So, what he have what is

happening  is  that  and  this  is  the  largest  length  scale  which  is  like  the  size  of  the

combustor or the size of your pipe or something like that, l which is the largest flow

length  scale  this  is  the  large  ld  length  scale  l  0.  So,  production  through production

turbulent kinetic energy enters into this flow at this energy containing scales through this

production mechanism you have already seen that.

So, then what happens is that after this l EI when it enters into the inertial subrange it is

basically  behaves like an inertial  system, where it  is  not acted upon by any external

force. So, in these inertial subrange you neither have the effect of viscosity not you will

have any kind of a other force. So, this behaves in a kind of an inertial  manner.  So,

essentially this kinetic energy that comes in enter here. These travel through all these

length scale until it is being dissipated here. And in this range there is no production in

these intermediate range there is no production. So, production is equal to 0, there is no

dissipation in these intermediate ranges. Production happens at the largest length scale

dissipation happens at the smallest length scale. So, these full this full range is essentially

we have like a concern in a in a conservative manner. And actually it can be shown that

the angular momentum is essentially constant and there is no external torque of these

eddies that can be shown, but we will not go into that.



 So, if there is no source of sink in this in this intermediate scales in terms of in terms of

the of the energy flux. So, it means that across the scales the energy turbulent kinetic

energy flux at each given length scale remains constant. Because this is the only point

where it is actually coming in and this is the only point where it is being dissipated. So,

this whole breakdown procedure is essentially inertial where this eddies break down and

there is no source or sink in this. So, there is no production no dissipation.

 So,  that  the  turbulent  kinetic  energy  flux  crossing  the  length  scales  which  remains

constant. Now then if you have a dissipation process at the end, so then it means that the

rate whereas, this dissipation happens at the smallest length scales, then it means that the

rate of the turbulent kinetic energy flux which crosses this different length scales must be

equivalent to the dissipation rate so that a steady flow of turbulent kinetic energy across

scales can be maintained.

So,  then  it  means  this  tau  well  which  is  the  transfer  of  kinetic  any  of  energy  to

successively smallest scale that can be equated to the dissipation rate. So, that is why the

dissipation rate is independent of the kinematic viscosity. So, that is why even though the

dissipation itself contains dissipation itself is given by twice nu sij times sij, but the fact

is that because dissipated dissipation is almost an identity that dissipation can be equated

to this transfer of energy across successively smallest scales, which is the which is the

transfer of turbulent kinetic energy across this small scales.

So, these thing is essentially  independent is essentially independent  of viscosity.  And

because  dissipation  rate  has  to  be  equated  to  the  turbulent  through  this  transfer  of

turbulent  kinetic  energy,  this  transfer  rate  this  dissipation  rate  it  becomes  essentially

independent of viscosity though it is you see is explicitly dependent on viscosity to get

through these things. So, it means that. So, the only way that can happen is that that if

you change the viscosity, this quantity also changes and just in such a manner that this

whole  quantity  becomes  independent  of  viscosity.  So,  that  is  the  whole  beauty  of

turbulence that is all beauty of high Reynolds number fully developed turbulence the

production happens at  lengths at production is of turbulent kinetic  energy happens at

large  lengths  scales  then  this  whole  turbulent  kinetic  energy  travels  through  these

different length scales. And when it travels through those different length scales there is

no source or sink, there is no dissipation mechanism there is no production mechanism at

this intermediate length scales which is the inertial subrange.



So, it is untouched this flux is untouched flux remains constant across different length

scales and then when it goes into the smallest length scales it is essentially dissipated into

the in to thermal energy and the rate at which this dissipation happens must be equated to

the turbulent kinetic energy rate. So, consider like a pipe if you the amount by continuity

equation the amount of if there is no mass generation or loss through the pipe. So, the

amount of mass we put in at one end must be the amount of mass flow rate at the other

end.

So, it is similarly this continue to maintain the continuity of turbulent kinetic energy this

like which is happening through this pipe is across different length scales. So, this in a

turbulent kinetic energy is passing through this different length scales and is dissipated at

the end and this dissipation at the end therefore, can be equated to the transfer of this rate

at which this energy is successively formed into small and small scales. And that is why

this  transfer  rate  becomes  essentially  independent  of  viscosity.  Because  there  is  no

viscous action in this one and because the epsilon can be equated to the transfer rate

epsilon essentially becomes independent of viscosity though it is very paradoxical in the

sense that it is essentially dependent on viscosity, but the fact is that this strangers adjusts

in such a manner. And that is it depends on because independent of this viscosity actually

it can come out here also that why this small scales are formed you see that in the large

Reynolds number turbulent. Suppose we consider make a flow more and more turbulent

by reducing the viscosity.

So, this one goes becomes smaller, but the thing is that I mean if the dissipation rate has

to be in essentially kept constant. So, what will happen is that then this dissipation rate

the dissipation rate has to be held constant. So, then this sij must increase. So, what is sij

sij is nothing, but the gradient of the derivatives of the fluctuating velocities are strain

rates. So; that means, the strain rates must increase the same strain rates can increase

only by reducing your length scale essentially  and that is why that becomes that the

dissipation  rate  essentially  remains  the  same  and  whereas,  your  size  of  the  scales

becomes smaller and smaller.
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So, that is the basically the basic mechanism of turbulence. Now here we can estimate

different length scales how do we estimate the large this l length scale essentially or the

characteristic length scale in the inertial range. So, we can define a correlation function

to do indicate the extents extent of interaction between eddies, and that is defined by this

r one xr quantity which is this autocorrelation function, average of u x t times ux plus r

which is shift at a same time divided by the variance of u and this is the autocorrelation

function behaves like this. Where your that is it is correlated at itself, but this correlation

reduces.  So,  that  is  the  important  point  that  if  it  was  turbulence  was noise then  the

autocorrelation  function  would  have  been  a  peak  like  this  would  have  been  a  delta

function which is not. 

So,  this  is  then the this  becomes the length scale  here lk  and then this  becomes the

integral  length  scale  and you can define  integral  length scale  l  0  essentially  as  0  to

infinity R 1 1 x r dr and we can also identify a characteristic velocity fluctuation by

essentially the rms of velocity.
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So,  these are  the definitions,  we will  use in  the latter.  So,  essentially  your  for  large

Reynolds number transfer of energy from large to small it is independent of viscosity nu

for the range of turbulence and that is the inertial subrange. And that is what we have

learnt and because the rate of energy transfer you see that we have equated epsilon is

equal to tau and this tau at any length scale 

Now what is tau is essentially, we can equate it to like if it is entering into this eddy. So,

we can equate it like turbulent this is energy transfer rate. So, it is essentially have must

have unit  is  of energy kinetic  energy per unit  time.  So, we can estimate  this  as u 0

divided by tau 0 and tau 0 we can write it as l 0 by u 0. So, we essentially can get u 0

prime cube divided by l 0. Whereas, this is the rms of velocity this is the integral length

scale and this is essentially becomes this, but then we can actually write this as we can

write epsilon is equal to tau l is equal to u 0 prime cube by l 0 l 0 is equal to u any l

length scale as long as it in the inertial range divided by l or any length scale K l at any K

we can we can write this for any essentially any intermediate length scale whereas, lk is

basically lies between your l 0 and eta.

So, this is this how this equation I we can equate the dissipation rate to the turbulent

kinetic energy transfer rate across different length scales. So, whatever this quantity even

if you define this at the large length scale; this is also equal to the same quantity at the

small length scales as long it is larger than the Kolmogorov of length and smaller than



the your l 0 itself. So, that is the whole beauty of turbulence and then using this we can

essentially show that of course, we have also shown that that the dissipation is essentially

dominates at a small scale and the Kolmogorov of length scale.

 now turbulent kinetic energy spectrum derivation now one very important quantity in

turbulent turbulence is the kinetic turbulent kinetic energy spectrum. Now what is that.

So, we can define now. Instead of instead of length scales we can define we can also

define  wave  numbers  whereas,  wave  numbers  K  is  nothing,  but  2  pi  times  the

characteristic length scale.

(Refer Slide Time: 21:12)

So, this is the wave number. So, we need to define this quantity we want to see how this

quantity EK e of K behaves which is nothing, but the d of small K by d of capital K this

is the turbulent kinetic energy and this is the wave number.

 now for that we can just do the dimensional an analysis. Whereas, K has unit is of you

see K has unit is of meter square per second square whereas, this capital K has unit is of

one per meter. So, then this guy in K has unit of essentially meter square per second

square divided by 1 per meter. So, it is essentially meter cube per second square. Now in

the inertial range you have seen that the statistics will only depend on dissipation rate.

And of course,  this quantity  can depend on K itself.  So,  EK .  So,  by Kolmogorov’s

second similarity hypothesis EK can only be a function of the turbulent kinetic energy



dissipation rate and k. So, by dimensional analysis let us say this is epsilon to the power

of alpha and K to the power of beta.

 now this has unit is of meter cube second square and let us write down as this thing itself

meters cube second square. And this is unit is of meter square per second cube to the

power of alpha and this is unit is of meter to the power of beta. So, using this we can

immediately derive 2 equations 2 algebraic equations that is for equating the dimension

of meter, we get 3 is equal to 2 alpha minus beta and 2 is equal to equating the dimension

of second we get 3 alpha.

So, alpha is equal to 2 by 3. So, epsilon the power of epsilon will be equal to 2 by 3. So,

now, if you just plug in this we can estimate beta. So, 3 is equal to 4 by 3 minus beta. So,

then it means beta is equal to minus 3, 3 here minus five. So, it becomes essentially

could the minus 5 by 3. So, then it means K is you have nothing, but the dimension is e 2

epsilon to the power of 2 thirds times wave number to the power of minus 5 by 3.

So, this is the origin of the famous minus 5 by 3 spectrums. So, we see we expect that in

the inertial range the turbulent kinetic energy spectrum EK should have a dimension of

epsilon to the power of 2 thirds K to the power minus 5 by 3. And does it really have it.

So, actually it turns out beautifully to be. So, and this is one of the famous designs of

turbulence that in fully develop turbulence for different configurations different thing

channel jets etcetera is taken from popes book actually.

(Refer Slide Time: 24:16)



So, this has a slope of when you plot it in log scale this has a slope slop of minus 5 by 3.

So, this is the (Refer Time: 24:35) famous minus 5 by 3 spectrum of turbulence.
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So,  essentially  we  have  looked  into  this  about  the  whole  spectrum  and  the  whole

dynamics of turbulence, how turbulence can basically sucks energy from the mean flow

and then converts into turbulent kinetic energy and then how this turbulent kinetic energy

which comes into turbulence at the large scales because of the mean velocity gradients.

And internal stresses then the how that cascades into the smallest scale where it is being

dissipated and the while it travels through these different scales we see that the flux of

turbulent kinetic energy transfer rate remains constant. And because it remains constant it

can  be  essentially  equated  to  the  turbulent  kinetic  energy  dissipation  rate  and using

Kolmogorov’s first.

And second similarity hypothesis we can find out using Kolmogorov’s first similarity

hypothesis,  we  can  find  out  the  dimension  or  the  equations  for  the  parametric

dependence  of  the  Kolmogorov’s  length  scale  velocity  scale  and  the  time  scale  on

epsilon. And dissipation rate and using second similarity hypothesis we can find out how

this energy spectrum will look like.

So, that is all for fluid turbulence and using this concept, we will move on to turbulent

combustion and that will take up in the next class.

So, until then thank you very much.


