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Laminar Non-Premixed Flames II

So, with this in mind we can now actually go in with this recapitulation of this with this

recollection, we can actually just go into this one dimensional chambered flame of this

coupling function formulation.
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So, then this is the problem derivation is your problem definition as you have seen that

on the left hand say one dimensional flame, and on the x axis we plot distance and on the

y axis we plot both the fuel mass fraction as well as temperature of course, these are

different axis properly axis properly has to be chosen, and then on the left hand side you

have the fuel region, but it is not pure fuel on the right hand side if the oxidiser region,

but it is not pure oxidiser. So, then the mass fraction of this thing essentially becomes

this is the mass fraction on the left hand side which is given by Y F 0 and this is the mass

fraction on the right hand side for the mass fraction of fuel on the right left hand side

which is given by Y F 0 and this is the mass fraction of oxidiser on the right hand side

which is given by Y o l and then of course, then I can define the boundary conditions that

at x equal to 0 your Y F is essentially is equal to Y F 0 and your Y 0 is equal to 0 because



this is the boundary that is at x equal to 0 that is on the left hand side your Y F is equal

nothing but Y F 0.

On the right hand side, but on the left hand side on this boundary they have no oxidiser

because the entire oxidiser has been consumed any time of course, any point beyond x f

your oxidiser has been consumed. So, on the left hand side your oxidiser is equal to 0

now product oxidiser is equal to also 0, and your temperature on left hand boundary is

equal to T 0. So, on the right hand side similarly you have Y F is equal to 0 because the

entire fuel has been consumed after the reaction sheet and, but your y oxidiser is nothing

but Y 0 l that is once again this is not equal to 1, because there can be some nitrogen

mixed with the it can be air you have nitrogen mixed with oxidiser we are talking in

regionals. So, on then left on.

So, your product is equal to 0 and your T is essentially equal to T l on the right hand side

all right. So, with this we can do a coupling function for formulation of course, you see

that there is no flow. So, we do not do any have to involve there is an option that your

convection is less in power than diffusion, though on the straight away it is a and also of

course, it is a steady flame. So, essentially your unsteady term the time the dou dou t

term goes away, your dou dou your divergence of rho u Y i rho u h s this traverse type of

terms go away and you are essentially left with the balance of diffusion and reaction.
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And then of course, we can do this what we just did in this this thing and we arrive at this

coupling  function  formulation  function  for  apply  immediately  we  can  apply  this

formulation  in  this  case  and  we  have  this  Laplacian  is  also  now  dissolved  into  is

simplified into this term one dimensional dou 2 B i dou x square is equal to 0 and your

beta i essentially now can be straight away solved into in two integrations as is a linear

function of x.

So, beta i is nothing but c 1 i is a constant and c 2 i, but of course, beta i can be like there

can be i is for fuel they can be because your beta i is nothing but beta i is nothing but

your T tilde plus Y i tilde or by the way you are also showing that the Lewis number is

equal to 1 here. So, is this denominator of Y i tilde goes away. So, this essentially T tilde

plus Y i tilde now then for beta we can have a beta F is equal to T tilde plus Y F tilde we

can have a beta o as that is this is for the fuel this is for the oxidiser, we can have T tilde

plus Y o tilde ok.

So, there can be two betas essentially and then of course, we have to use that because we

want to invoke these boundary conditions. So, this coupling formulation what we have

here we can this is essentially contains the information about the temperature within the

system it  also contains  information  about  the  mass  fraction  within the system,  mass

fraction  within  this  domain  and  we  can  now what  we  to  move  further  we  need  to

basically  apply  the  boundary  conditions  here,  and we need to  apply  these  boundary

conditions to obtain these constants.
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So, applying these boundary conditions what we get is essentially that, we get that beta f

is essentially T tilde plus Y F tilde, and Y F tilde that is our beta we assumed that the beta

one is equal to essentially beta fuel, and that is given by T tilde plus Y F tilde and then if

you apply this sort of things in here we get this and we get Y F tilde 0 plus T 0 tilde plus

T tilde minus T 0 tilde minus Y F 0 x tilde of course, it is to be linear in x. Similarly, with

applying this we get this boundary condition. You should this simple this on your own

and this will give you the confidence to basically solve any kind of flames later.

So, this is what we have arrived and you see that this result is in general we are not

limited to a reaction sheet why, because I mean we are not invoked any assumptions

about the how large the chemist reaction rate is you can comparison to diffusion etcetera

ok.
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Now, we will come where the reaction sheet approximations will be incorporated. So,

this is where we apply the reaction sheet approximation, that is we assume that that is if

this was our flame, this is the left boundary Y F 0 this is our right boundary Y of Y o l

and this is our T 0 this this is t and this is our T l and. So, this is we assume that this Y F

goes to 0 are the flame location, this is 0. Similarly, we say that Y 0 all Y 0 goes to y o

goes to 0 at the flame location. So, in this region there is no fuel and in this region there

is  no  oxidiser.  So,  this  is  only  possible  when  the  reaction  sheet  representation  is

incorporated that is when we say that the reaction rates are much much much infinitely

fast when compared to diffusion. So that there is no reactant leakage and as a result of

that your these things is 0.

So, as to put it informally we said that Y F tilde is equal to 0 between x f tilde when x

lies between x f tilde x and 1. So, of course, we can non-dimensionally as x is equal to x

by l. So, x which is x tilde which is one when x is when x equal to l and of course, in

these regions since oxidiser is equal to 0 your mass fraction of the oxidiser is equal to 0

when between 0 and x when x is between 0 and x f tilde. Now, then you can apply all

these equations and get the basically the you can apply this, we can to this using this this

and this we can essentially obtain the temperature, because your y is get eliminated in

this sides and then you obtain the temperature on these two sides as this and this that is

the temperature in this side is given by this this equation and the temperature on this side



is given by temperature this equation, but the most important thing to note is that the

temperature is linear in x T tilde is linear in n x tilde.

Now, that is why the where does this come from this comes from the fact that this is a

this  is a essentially  a diffusion problem and the is  essentially  we are solving for the

Laplace equation and we are applying for the boundary conditions essentially we find

that the beta i is essentially linear in x, that is where it comes from because the solution

of Laplace equation when you have boundary conditions like this, it  gives you linear

solutions.

Then of course, we can also when we incorporate this temperature equation back into the

beta i equation, we also get equations for this Y F tilde and Y 0 tilde and those are also

given by linear in x and this is essentially the profile we get that this decreases like this

as a Y 0 decreases like this and the temperature increases like this and decreases like this.

So, what is what is one point is clear here that this this in a whole domain the maximum

temperature  point  is  that  t  is  at  t  equal  to  x f  tilde.  So,  this  is  that  point  where the

temperature is maximum and, but then that is completely solves the problem. So, you see

how straight forward it is that just by this whole coupling function this this problem

contains all the complexities.

It contain the reaction rate etcetera, but we just converted removed those things by just

considering the fact that your coupling function formulations and by as a constituents

Lewis number is equal to 1, and using that we just solve this whole thing in just one step

by forming a Laplace equation out of this complicated diffusive reactive equations. So,

that  is  the  strength  of  coupling  function  formulations  yes  it  requires  some  time  to

properly normalise them properly stoichiometric weight them etcetera, but once those

things those parts are done it we can just get the solution in one step and that is the power

of normalisation also.
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So, this is strongly encouraged that you solve these things in a in this kind of in this

manner instead of going through the full  dimensional  form or going through the full

diffusive reactive reactions.

Now, the interesting thing is that what needs to be noted is that, that if we set that Y F

tilde is equal to 0 and or Y tilde is equal to 0 then we can using these two things we can

find out what is the location of the flame, that is what is x f tilde. So, that gives you

basically x f tilde and we find that x f tilde is just nothing but this Y F 0 tilde divided by

Y F 0 tilde plus 1 Y 0 l. Now this is equal to 1. So, this becomes essentially 1 by 1 plus Y

o  l  tilde  and  which  is  essentially  given  by  the  phi  star  that  is  equivalence  ratios

normalised equivalence ratio is a equivalence ratio star divided by 1 plus phi star and

which  is  essentially  the  normalised  equivalence  ratio.  So,  essentially  the  flame  is

stabilised at a the normalised the x by l, x f by l is essentially phi star which is it is the

normalised equivalence ratio of the fuel mixture that we have ok.

So, that is the thing and we can also find out by because we know the gradients we can

also find out what is the fuel mass fuel consumption rate, and that is given by this thing

that is minus lambda by C p is equal to d Y F d f you may surprise this essentially what

we have done is that we have just replaced the rho d, d y by d f with lambda by c p

because our assumption Lewis number is equal to 1. So, that is why we can do this

switching between rho d and lambda by C p. So, that is what we have obtained and then



we can also show what is the criteria of mass maximum burning when Y F 0 is obvious is

that when Y F 0 is equal to and Y is equal to 1 well that is when you have pure fuel and

pure oxidiser then you have maximum burning and the final thing is that how to obtain

the flame sheet temperature.

Now, since  we know the  x  f  star  location  we can  substitute  this  in  the  temperature

equation and what we get is essentially this form that is if we substitute this x f tilde in

either these two this this one that you have obtained as in either these two equations, 5 or

6 which was the temperature equations we could easily get recovered the temperature

that is this was the x f tilde equation that we have got. 
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And then what we can get is that we will get this this equation that is t actually I will just

write in the next sheet this is that is if you this needs some discussion that how to get the

temperature substitute in temperature equations, we get T f tilde minus T 0 tilde that is

what I want to say is that if you substitute this thing, in these equations that is in the

temperature equations, where you see that Ts minus this this this in this part T minus is

essentially T 0 tilde plus T l tilde minus T 0 tilde plus y o l tilde times x tilde, that if you

instead of x tilde if you substitute x f here ok.

X f is  a  function of what 1 by 1 plus Y o l  tilde  similarly  that  in this  thing if  you

substitute x f here, which and then the similar things and then you if you substitute the

other values of this Y F Y 0 etcetera what you will get finally, is this form n that is T f



minus T 0 tilde divided Y F 0 tilde plus T f tilde minus T 0 tilde divided by Y 0 l tilde is

equal to 1 all right. Now what are all these things? Now Y F tilde is equal to Y F divided

by Y F 0.

Similarly  Y 0  tilde  is  equal  to  Y 0  divided  by sigma 0  Y F  0  and q  c  is  equal  to

summation y is equal to 1 2. So, and essentially this sigma 0 is given by w 0 times sigma

0 double dash minus sigma 0 dash divided by w F Y F double dash minus Y F dashed. If

you now substitute all these things here what you will get is that you T f tilde by the way

the T f t f tilde is given by C p T divided by Y F 0 q c, and if you substitute all these

things into here all these things goes if you substitute here.

So, essentially what we have done is that we have substituted except till did the equation

in the T tilde equation right and then all these normalisation this weighting functions if

you substitute back here what you get is essentially C p by Y F 0 q c T f minus T 0

divided by Y F 0 is actually equal to 1, but anyways plus sigma 0 divided by Y 0 l times

T f minus T 0 is equal to 1 you can just do the normalisation like this. Now, of course

these two cancels and this is q c. If you now we can write this as then this implies T f

minus T 0 plus sigma 0 times Y F 0 by Y 0 l times T f sorry this is this is T l tilde is equal

to q c Y F by c p this is what you get let me just put it here itself.

So, this gives you the flame temperature that is what is the temperature at x f that is T at

x f is equal to T f, and that is given by this equation there is a temperature at x f is given

by T f minus T 0 plus sigma 0 times Y F 0 divided by Y o l, times T f minus T l plus q c 1

by f by C p. Now what does this mean, what does this significance? Now to understand

the significance the right hand side you see what you have? On the right hand side you

have q c that is a chemical heat release and which is given by this times Y F, that is it is

the heat release that is you get by burning Y F k g of fuel all right.

Now what does that do, where does Y F come from? Y F come from the fact that that in

the mixture that we have considered that the fuel mixture on the left hand side 1 k f of

fuel mix, mix is a short form mixture you can write contains Y F k g fuel at rate. So, that

is  where Y F comes from. So, basically  this  amount  of heat  release you can get  by

burning is in terms of basically one k f of fuel 1 k g of fuel mixture.

So, q c times Y F is this thing. So, 1 k g of fuel contains Y F k g of 1 k g of fuel mix

consider the what fuel mixture contains Y F k g of fuel now similarly for stoichiometric



burning what you need for stoich burn w F times nu f double dash minus nu f dash k g

fuel needs w 0 times nu 0 double dash minus nu 0 dashed k g oxidiser all right now. So,

for stoichiometric burning this amount of k g of fuel pure fuel needs this k g of oxidiser.

Then it means that 1 k g of fuel needs w 0 times nu 0 double dash minus nu 0 dashed

divided by w F times nu f times double dash minus nu f dashed k g oxidiser and if we

just replace this with Y F then this needs Y F k f of oxidiser ok.

Now, what is this? This is nothing but Y F sigma 0 where sigma 0 is nothing but this. So,

now, Y F k g of fuel was contained in 1 k g of fuel mixture therefore, 1 k g of fuel mix

needs Y F times sigma 0 k g oxidiser. Now Y 0 k g oxidiser you get in 1 k g of oxidiser

mixture  right  because  on the right  hand side  you have basically  Y 0 is  a  fuel  mass

fraction of the oxidiser. So, this amount of oxidiser Y 0 times Y F times sigma 0 k g

oxidiser,  which is  needed for stoichiometric  burning in sigma 0,  Y F by Y 0 k g of

oxidiser mix. So, what you get is that for stoichiometric burning 1 k g of fuel mix needs

sigma 0  times  Y F  by Y 0  k  g  of  oxidiser  mixture,  this  is  very  very  important  to

understand.

So, just please go over this once again that is what we have done is that 1 k g of fuel

mixture contains Y F k g of fuel all right on the left hand side, now for stoichiometric

burning w F times this k g of fuel needs this k g of oxidiser. Therefore, Y F k g of fuel

needs this k g of oxidiser which is nothing but sigma Y F times sigma 0. Now you find Y

0 k g of oxidiser, because you see on the right hand side. Now Y 0 times sigma Y 0 k g of

oxidiser in 1 k g of oxidiser mixture. Therefore, this amount of where will you find this

amount of oxidiser mixture you will finds Y F times sigma 0 k g of oxidiser mixture in

sigma 0 times Y F by Y 0 k g of oxidiser mixture all right for stoichiometric burning 1 k

g of fuel air mixture, essentially needs sigma 0 times Y F by Y 0 k g of oxidiser mixture

because on the left hand side and the right hand side both contains inverse that is the

whole point ok.

So, for stoichiometric burning 1 k g of fuel mixture contains sigma 0 times Y F by Y 0 k

g of oxidiser mixture, now going back into this what is this doing. This is considering per

k g of fuel mixture. So, if you have 1 k g of fuel mixture this is the amount of heat is

being released which is the standard heat release in 1 k g of mixture u c times Y F and

that is heat doing what that is heating up 1 k g of the fuel mixture from T 0 to T f, and it

is also heating up exactly the amount that is required for stoichiometric burning exactly



the amount of oxidiser that is oxidiser mixture that is heating required for stoichiometric

burning.

So, these heat release it is doing the job of heating up 1 k g of fuel mixture and this also

heating up the exact  amount  of oxidiser mixture for stoichiometric  burning. So, then

what is the flame temperature? Exact then at the then it says that at the flame what is

happening is stoichiometric burning is happening because of the flame your temperature

is raised from T 0 to T f and T l to T f and the this amount of heat is released is heating

up one k f of fuel air mixture not 1 k g of fuel air mixture 1 k g of fuel and inert mixture,

1 k g of fuel mixture and the exact amount of oxidiser mixture which is required for

stoichiometric burning.

So, the burning that is happening in the flame is essentially stoichiometric burning and

the flame temperature corresponding flame temperature is essentially the adiabatic flame

temperature all right. So, this proves that the flame temperature is a non-premixed flame

is essentially the adiabatic flame temperature and this is the one of the most important

hallmarks of the of the of a non-premixed flame, that the temperature unless there is no

reactant  leakage  that  is  you are  the  flame temperature  is  strongly  the  is  exactly  the

adiabatic flame temperature you have no control over it, because the mixing at flame is

always at  the  stoichiometric  is  at  a  stoichiometric  proportions.  Then the  flame itself

stabilises  at  a  location  where  you  are,  it  is  exactly  of  the  fuel  air  mixture  at  a

stoichiometric proportion.

So, the temperature the mixing is the burning air stoichiometric and the temperature the

such thus reached is also the adiabatic flame temperature. So, that you cannot control the

temperature  and because  you cannot  control  the  temperature  you cannot  control  the

emissions and also you have soot and lot of nox, because the temperature can be so high.

So, this is one thing one very important thing about the non-premixed flame that the

temperature reached is always the adiabatic flame temperature and you can clearly show

that. So, find it from this equation that the flame temperature reached is the why the

flame temperature reaches the adiabatic flame temperature.

But I suggest you go through the book also, and you go through this derivation once

again to convince yourself that this is the case all right. So, that is for this class and we



will meet again to discuss the Stefan flow that is liquid evaporation and then droplet

evaporation and condensation.

Thank you.


