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Lecture - 13
Governing Equations I

Welcome  back.  As  we  discussed  will  talk  about  governing  equations;  and  these

governing equations will essentially described are basically used for describing the entire

flow field for any combustion process. So, as we will see that or as we can anticipate that

these governing equations comes from basically conservation principles, conservation of

mass, conservation of momentum, conservation of scalars, conservation of energy. So,

basically all these conservation principles and how generation of something leads to the

depletion of that one or generation and depletion of these quantities and how that effects

that can couple with the flow field etcetera that will see.

Basically  you will  see  that,  that  this  conservation  of  mass  is  essentially  is  coupling

between we will see that will basically involves density and velocity. The conservation of

momentum once again involves density, velocity and pressure, because essentially the

pressure gradients  is  the  characteristic  force  here and that  will  cause acceleration  or

discoloration  in  a  flow and as  well  as  this  the  fictional  loss  due  to  the  presence  of

viscosity. Then we will see that how species can be advected or a particular species can

be advected along with the flow, and how it can defuse a region of high concentration to

region of flow concentration and how also it can be generated or depleted because of the

source terms which comes from the chemical reaction rates.

And the conservation of this energy that is which will start with a internal energy form

and then will go into the enthalpy form and then we can show that we can show that we

can allow at a temperature form. And we will also see that how this enthalpy can be

transported with the flow then it can be also can be there can be pressure that can affect

the enthalpy if the time variation of pressure. And then also there can be like conduction

processes, heat conduction processes as well as enthalpy transport due to the different

diffusion velocities and also how the enthalpy of formation is essentially get converted

into sensible enthalpy through the heat release term inside the energy equation.



So, this governing equations are very, very pivotal are central to your understanding of

the flow processes inside a combustor, because it is using this governing equations we

actually  plug  in  our  understanding  of  kinetics  or  understanding  of  transport  or

understanding of convection all these things come into are basically assembled using this

governing equations.

So,  with  this  governing  equation  of  course,  when  a  discretized  when  you  do  a

discretization and then in a grid you can actually solve using CFD computational feed

dynamic technique to solve the flow inside actual combustor also, either you are doing

theory  or  you  are  doing  experiments  or  you  are  doing  CFD,  you  must  know  the

governing equations and understand what each term represents.

(Refer Slide Time: 03:42)

So, first we will do this with do will do this control volume derivations, and then we will

also for different things like mass, momentum and energy. We will go to this conserved

scalar  formulation.  And  then  these  two  things  this  reaction  sheet  formulation  and

simplified one-dimensional numbers will go into in a latest stage when we will go into

look into the actual flames.
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So,  as  we  said  that  chemically  reacting  flows,  combustion  is  of  course,  very  solid

example  of  chemical  reacting  flow.  So,  chemically  reacting  flows  are  governed  by

conservation laws for mass, momentum, energy and concentration of individual species.

So,  the  conservation  laws are  derived keeping in  mind the  continuum hypothesis  of

course, you know about the continuum that is when you look in to a small part inside the

flow, you will still find density to be uniform. Inside very small part of the flow and it is

not happen does not should discrete jumps due to presence of one molecule and then

nothing then one molecule. So, it is nothing like that. So, the continuum hypothesis is

certainly preserved in these cases. So, one can define density as a continuous variable

which is mass per volume.

And then the governing equations model the multi component reacting flow with a set of

partial differential equations. So, we will start with integral equations and then will move

onto  partial  differential  equations.  And  along  with  the  governing  partial  differential

equations, the constitutive and auxiliary relations are required to form a set of closed

equations. So, the conservation laws that will use that these does not close the problem,

this  will  only  give  rise  to  this  partial  differential  equations,  but  to  close  this  partial

equation differential equations, we need this constitutive and auxiliary relations. And of

course, as we will see that or this equations will be very complex in their full forms, and

will appropriately simplify them under suitable assumptions.
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So, the central theorem that we use for understanding the conservation laws in fluids is

the  Reynolds  transport  theorem.  Now,  this  Reynolds  transport  theorem is  very,  very

central because it allows us to use our knowledge of conservation laws for a system to

our control volume. That is to give you an example, suppose this is my control volume,

this is red boundaries my control surface and then there is a packet of fluid which is this

there is a system which is moving. So, say this packet of fluid I was at this position at

time t minus delta t this occupies inside of the control volume at t and then this packet

moves out at time t plus delta t.

And what I want to say is that the laws of physics say like Newton’s law or the mass

conservation that you know is for this packet of fluid which is moving. The mass of it is

not changing the momentum of this if there is no external force it is not changing. And

this energy, if there is no external in supply of energy or loss of energy that is also not

changing, but that is not what we are interested.
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We are interested in applying this law inside a control volume. Why, because suppose

your engine your engine is actually a control volume all right. So, you are not interested

in the mass of packet of mass that goes in at different state and that goes out. We are

interested in what happens inside this control volume. So, first we need to understand the

law that will translate the conservation laws from the system to the control volume. So,

what does it say, it says that of course, we can go this in details, but this is not our fluid

mechanic class or thermodynamics class. So, we will just leave it leave it here itself.

It says that the time rate of change of an extensive property psi. Please note that this is a

time rate of change of the extensive property psi which is within a system is essentially

equal to the time rate of change of psi within the control volume, and the flow rate of psi

across the control surface. So, of course, when you are moving a packet of this fluid,

there is no inlet or outlet, but in this control volume that you are defined in this thing,

there is continuous inlet and this continuous outlet. So, it says that it is a time rate of

change of psi that is happening inside this control volume and that amount of psi that

comes in and that amount of psi that gone out, the difference between them, so that also

you need to take care of. So that is the basic essence of Reynolds transport theorem.

And here we use this extensive fluid property psi capital psi is nothing but capital psi is

equal to integral small psi d V that is so this psi is equal to integral v psi small psi d V

where V is the volume of the control volume in this when it is capital V in this manner.



But you have to careful sometimes we will use v as velocity also. So, please be careful

with that. So, this says that this d psi this d t that is the total derivative of this property

psi following it in a in a system sense is essential is equal to dou psi dou t integral over

psi d v that is integral over the control volume plus the integral over the surface psi times

v time v vector dot n d s v vector dot n cap d s, where the n is essentially the surface

normal. So, this part this v vector dot n d s basically characterizes the mass flow rate that

is happening, and also this multiply with psi gives us the flow rate of the property psi

that is happening.

If this is a moving control volume then this essentially becomes v relative. So, that is

velocity  the actual  velocity  minus the velocity  of the control  volume.  So, this  is  the

Reynolds transport theorem. And then using this which is defined entire surface, you can

this convert this surface integral into a volume integral using gauss divergence theorem,

so which is given this. So, once you have converted it, you see that that basically this is

also an in volume integral, this is also volume integral. So, you can write that using this

you can write that d psi d t is equal to integral v times dou psi dou t plus divergence of

psi v vector integral over the entire control form.

So, this is the basic formula for going from a system representation to a control volume

representation. This is for a system that is a rate of change of property psi for when you

are following that packet when you are following that system by system we mean that

there which does not through which there is no mass flow rate that is happening. So,

when you are following the packet of fluid the rate of change of that over psi on that

packet is given by this, but when that packet enters passes to a control volume, this is

given by this volume integral.

So, this is how you basically connect. So, essentially this is the rate of change of psi of

the connection happens that this is the rate of change of psi happening inside the packet

of fluid when it is inside in the inside the control volume and that must be equal to the

rate of change of the property psi. When it is within the control volume plus the flow rate

of  psi  that  is  happening  across  the  control  surface,  so  this  is  how you connect.  So,

integral of v is nothing but this dou psi dou t plus divergence of rho divergence of psi

times v vector d V.



So,  now  this  psi  is  essentially  a  generalized  property,  but  we  can  use  this  for  any

property. And we will use this to basically derive the basically change the representation

of  psi,  sometimes  we  will  consider  psi  as  mass,  sometimes  will  consider  psi  as

momentum, sometimes will consider psi as a mass of certain species certain kind, then

sometimes will consider psi as a total energy. And by changing this representation of psi,

as we see did before also for the for deriving the transport properties, we will arrive at

the conservation loss is essentially mass, momentum, species and energy
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So, now first we need to understand that this we need to understand the concepts of the

definitions of the velocities because here as we know combustion the difference between

combustion and other an fluid mechanics because here we not only involve reactions, but

we also involve multiple species, it is not one kind of a fluid. So, so v i is the velocity of

the i-th species, this small v i and this average this small v is the mass-weighted bulk

fluid velocity. So, this is these v is essentially the velocity that we have familiar with. So,

this is the mass-weighted bulk fluid velocity with which interfere is moving v i is the

velocity  the average of the of the i-th species  with is  a velocity  with which the i-th

species is moving.

So, summation rho i v i is equal to rho v. So, rho i v i is nothing, but the rho i is nothing

but the partial density and we will see that how rho i is defined is nothing but y i, there is

a mass fraction is essentially rho i divided by the divided by rho. Partial density means



the mass of the species i divided by the total volume; velocity density is the mass of the

full thing of the entire all the components divided by total volume. Where is this v i is the

molecular  diffusion  velocity  which  is  nothing  but  capital  which  is  this  represent  by

capital V i is nothing, but this velocity if the i-th species minus the bulk velocity mass-

weighted bulk velocity. So, consequently it can be shown that summation rho i capital V

i is equal to essentially rho i v i summation rho i v i minus rho v.

Why this is so because if we consider this thing summation i rho i v i vector is equal to if

you start with let us start with v i vector is equal to v i vector minus v vector. So, let us

multiply both sides with rho i rho i rho i and then you sum over it, sum it, sum it. So,

then what we will  get is  that  summation rho i  v i  vector is equal to this  stage as is

summation rho i v i vector minus when you this does not contain i. So, we only sum over

rho i, summation rho i is nothing but rho. So, this is equal to rho v, but as we have seen

here that summation rho i v i is equal to rho v. So, this two are essentially equal and this

becomes is equals to 0.

So, also this v i is so using that using this formula and this formula, we can find out the

actual  v velocity  is  essentially  nothing but  summation  rho i  y  i  v i,  y i  is  the mass

fraction. And also we can show that using this because this equals to 0 which is divide

both side by rho and you get  both side is  dividing by rho,  you get  y i  and you get

summation  y  i  v  i  is  nothing  but  equal  to  0.  So,  these  are  some  of  the  important

definitions of velocity is that we will use.

Now, please understand the difference between this velocity this velocities this is the

velocity of the i-th species this is the mass-weighted bulk fluid velocity and this v i is the

molecular diffusion velocity which is nothing but difference between the velocity of the

i-th species and the bulk weight velocity. So, that is the molecular diffusion velocity and

none of this will be actually equal to 0 in a given scenario in a particular case inside a say

flame or something.
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Now, how to give:  now also if you remember now you consider  that we derive this

formula that is d psi rate of change of this property psi capital psi and the system which

is inside just inside the control volume is given by v dou psi dou t plus divergence of psi

v vector, this v is a bulk fluid velocity d V. This V is volume. So, this is what we have

got.

Now so the rate of from Reynolds transport, Reynolds transport theorem we can say that

the rate of change of mass just by why changing with from the property psi to property

mass. So, if you now write that this psi is this psi we say that this was equal to psi dV.

So, we can write m we can basically change the representation of psi to mass, we can say

m is equal to essentially rho dV and then we can write the Reynolds transport theorem

for this whole thing.
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And that will see if as noting but so instead of capital psi we have replace with m replace

capital psi with m. And we see that this is nothing but integral of volume d partial d rho

partial d t plus divergence of rho v or integral over d V. So, now we know that total mass

is conserved when there is chemical reaction. So, of course, this d m d t there cannot be

no rate of change of mass possible and this then this thing is possible this thing is equal

to 0, and then this becomes is equal to 0 so that is what you get. So, if the integral and

this b because this d V is the essential arbitrary, so we can remove the integral, we can

remove this d V and remove this integral sign. So, what will get is nothing, but this

inside this d partial d rho partial d t plus divergence of rho v is equal to 0.

So, just to recap what we did because this is so important that is how we can understand

the  other  things.  I  will  just  repeat  again.  So,  we  just  apply  the  Reynolds  transport

theorem d psi d t is equal to is equal to integral v dou psi d t plus divergence of psi v

vector times d V. And now if we write that psi is equal to m, and then it means that this

implies that psi is small psi is nothing but rho because capital psi is equal to integral was

equal to integral psi d V.

So by obviously, v then small psi is equal to rho and then we can say that dou m dou. If

in the sense is arbitrary we can remove the integral side and we can convert this integral

equation to this partial differential equation which is nothing but d partial d rho partial d t



plus divergence of rho v vector and that must be equal to 0. Because there is no rate of

change of no mass change is possible. So, this is our continuity equation.

(Refer Slide Time: 20:21)

Similarly, we can we can apply the Reynolds transport theorem to device to derive the

species transport equation, momentum equation and energy conservation equation. So,

this all this will just derive right now.

(Refer Slide Time: 20:45)

Similarly just we derive write m i v just we wrote that psi i is equal to m i we can write

psi is capital psi is equal to m i and then it means that the small psi is nothing but rho i



that is a partial density of the species i. And then we can write d m i d t is equal to

integral dV integral over v partial d rho i partial d t plus divergence of rho v rho i total

bulk  velocity  times  d  V.  Now,  please  note  that  this  is  the  bulk  velocity,  but  now

interestingly this is not for the total mass. So, of course, the total mass is conserved, but

in this case, there can be sources and sinks of d m i d t that is a mass of a particular

species  need  not  the  rate  of  change  of  the  mass  of  a  particular  species  inside  a

combustion  involvement.  Of  course,  will  may  not  be  zero  suppose  this  m  i  is  i

represented by the by methane a fuel.

So, of course, before and after combustion or in a as the flow is happening if we suppose

there is a flow, and there is a flame, this is a flame you have. And suppose m i or or rho i

will be large here if say i is equal to mass of psi like m of CH 4 will be very larger, but

that will be equal to 0, there will be no mass of CH 4 here right. So, of course, there will

be we need to find out some sources and sinks. And those sources and sinks basically one

is a volumetric which comes from reaction that is this is given by this rho i d V, this d is

given by this w i d V; w i is nothing but the reaction rate and that we have learnt, but it is

different units, we will come to that. It is actually units of mass. So, this is different this

is slightly just very slightly different from the reaction rate that we have seen.

Whereas, this surface we will also see that there can be also surface fluxes especially

from the diffusion flux v i and that can be given by the diffusion velocity capital V i. And

that will be given by this integral about the surface with the minus sign and given by rho

i times V i vector dot n dS vector, V i vector is the species diffusion velocity. And now

this since this V i vector dot n vector is essentially zero which are which represents loss

and hence we have the negative sign because that contributes to make it as a source term

and that to represent the flux is coming inside from outside.

So, as a result this will be we can write is that. So, this is the equation, but this is not

equal to 0, but instead it is this equation is nothing but minus integral of rho i v i vector

dot N vector times dS plus integral w i d V. Of course, you can now convert this dS this

control  integral  over the surface to  a  control  volume and this  is  now then it  is  now

balanced. So, what I want to say is that the rate of change of m i inside the system which

is residence inside this control volume. So, as a result this rate of change of this m i at the

control volume is given by this two things. That is number one there can be a species

flux which is the flux of species carried by this molecular diffusion velocity and also it



can change due to the reaction rate that is happening inside which is volumetric in nature

happening inside the control volume.

So, these two contributors will now balance the rate of change of the mass of the species

i inside the control volume. And when you is apply the gauss divergence of theorem to

this and convert this to a volume integral, you can basically transport it into this direction

into the left hand side. And as a result, you can write this simplified equation which is

partial d rho i partial d t plus divergence of rho i times this is the bulk velocity. And this

is the diffusion velocity.

So, and this is essentially is equal to the and this is of course, after you are remove the

integral and just gone into the partial for differential equation form and this is given by

the reaction rate w i and which is this is of course, in a mass form. So, this w i also in a

mass form, units a mass essentially not in some mass, but in some mass per grams per

cubic meter second that is the typical unit of this one. And this is coming of course, true

for any species.

So,  thus  what  we sees  that  essentially  this  is  our  species  balance  equation.  It  looks

simplified,  but  actually  it  is  not  because  we  have  not  specified  anything  about  this

species diffusion velocity. And we will need this some constitutive relations for this rho

V i to be supplemented to close this equation because we have not specified anything

about this. Now, of course, we leaves our knowledge of chemical kinetics that we have

studied in sufficient details to use this two model to basically to describe this term which

is the basically the rate at which the species i changes because of the chemical reactions.

So, this is the source term in this species equation.
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Now, we can also use the conservation of momentum. Now, psi is equal to psi is equal to

the momentum which is m times velocity. So, this is essentially m times v and now then

becomes in the partial the small psi this was the extensive property, this is the intensive

property.  This is the essential  as specific  property then small  psi essentially becomes

equal to rho times velocity.  And then the rate of change of momentum inside this is

essentially integral of we just replace this thing into the which is replace the small psi in

this, and we get that essentially partial d rho d rho v d t plus divergence of rho v vector v

vector over this.

Now, of course there can be forces acting on this  control  volume.  And there can be

surface forces in terms of flux stress and pressure. And this capital P is essentially full

surface force tensor and it will contain also force from pressure two different viscous

stress etcetera. And there can be also we have volumetric source like a body force f i

though this will not be of our interest mainly in this course, which comes from this f i,

but will keep this one for generality. This will be of course, very important because as

will  see later  all  this  will  contain  both a pressure component  as well  as  the viscous

components. And this viscosity will actually come into this. So, this is the form that I

want  to  remove  the  convert  this  volume  this  integral  form  to  a  partial  differential

equation form.



What we get is nothing but this partial d rho d t which is the transient term then we get

this advective term both are actually in the both are nothing but this in this is nothing but

the auxiliation of the fluid and this auxiliation is caused by this surface by the gradient of

the of this pressure tensor which is nothing but the force. And this force can also be

exhorted by a volumetric source and from body force. And this is in another form this

way we have get the total D v D t which is the total acceleration is given the minus

gradient of p pressure tensor which is nothing but the total force and plus the body force.

And we will  later  break this  up into the actual  pressure and viscous forces and will

eventually neglect this.

(Refer Slide Time: 29:39)

Finally, the conservation of energy: now this is the most actually this is the most complex

situation and this is also the most important when it comes to combustion because in

combustion  temperature  is  the  king  and  essentially  we  will  see  later  that  from this

energy, we will derive useful form for temperature. So, this transport of temperature or

this transport of thermal energy, we will be coming from this conservation equation. So,

for now we start with the very modestly we write this extensive property that is capital

psi is the total energy which is the total internal energy.

And then the corresponding a specific  property small  psi  becomes density  times  the

specific integral energy plus this is the kinetic energy component rho v square by e. So,

this is the internal energy and this is the kinetic energy component.



So, once again proceeding similarly we can actually by the Reynolds transport theorem,

the rate of change of this total internal energy inside the system which is resident inside

the control volume is equal to the rate of change of this internal energy inside the control

volume. And that happens due to the rate of change of that property inside the control

volume plus the fluxes of this property that is coming through the control surfaces. So,

this is the control rate of change of the property inside the control volume, this is the flux

of that of the internal energy plus the kinetic energy that is coming from the surface

integral convert into volume integrals using the gauss divergence theorem.

So, this is the left hand side, this is the other rate of change, that is we also need sources

and sinks because they are definitely be sources and sinks, because there can be a energy

flux Q vector there can be heat flux vector. And that will actually in the volumetric form

appear though it is actually in the surface form in this form Q vector dot it is the you

consider this as essentially heat flux vector; heat flux vector dot normal vector in the

surface integral which becomes essentially equal to the divergence of heat flux vector

volume integral. And then there also be surface stresses, which is if you remember flow

work and that is the work done by pushing work done by pushing the fluid because of the

by the external surface forces like pressure. So, to account for that need to the will come

into this and this is that form

And also there can be volumetric  sources of body forces which can be also coming

which can do some work and by body force and this is also coming. This typically once

again will not be will not be importance in this thing and will not consider this much, but

all these things, these things very, very important I will inform it in integral form integral

part of our integral meaning very important part of our and analysis here.

So, if you write thing down this is the total thing, this is the essentially the though it is

RHS is here we had actually when you write down the governing equation this forms

LSH and this plus this forms the RHS - right hand side, this from left hand side, this

from right hand side. Say, if you collect this and if you collect this, what you get is this is

your  transient  term d  rho  times  internal  energy  specific  integral  energy plus  kinetic

energy by y viscous by 2 partial d t partial d t plus this advective term, this divergence of

rho velocity  vector times specific  internal  energy plus v square by 2.  This is  can be

totally written in a this total material derivative format that is rho times total derivatives

of e plus v square by 2 divided by d t



Then that is equal to the sources and sinks. This is the surface flux of heat that can

coming and that is given by divergence of q vector. Heat flux vector and then there can

be this flow work which is basically the work done by the external surface forces by

pushing the fluid in. And then there can be this force due to the then this can be the work

by the body forces as we said this will not be of important we will not consider this.

Because will not really consider body forces will not even consider gravity in this mostly

in this thing. So, though gravity can be important because of the buoyancy effects, but

especially  when we talk about fires,  but in terms of this  combustion course will  not

consider also much gravity and acceleration due to gravity will not consider and will not

consider any body forces as such.

Though  there  can  be  important  in  certain  circumstances  like  electromagnetic  ironic

wings etcetera, if you took plasma assisted combustion this sort of forces might become

important.  But  for  this  for  this  course  will  not  consider  this  will  our  equation  will

essentially we restricted to this part only.

So, now, if we summarize, so using starting from a very generalized Reynolds transport

theorem  for  any  property  capital  psi  and  we  started  with  notion  that  capital  psi  is

essentially  and  extensive  property  of  a  system.  And  with  the  system  is  essentially

coincident inside a control volume and then we can write our loss for that system and

then we can write a loss for the control volume. And this Reynolds transport theorem that

equates this to loss by considering the by the additionally we considering in addition to

considering what happens in the rate of change of the control volume. We additionally

consider what comes in a and what goes out of the control volume the flux of those

properties.

And  then  this  flux  of  this  property  is  actually  come  in  surface  form  and  then  we

converted this surface actually a surface integrals and we converted this surface integrals

into the volume integrals using gauss divergence theorem. And then we apply this for a

generalized volume, and we apply this for mass, we apply this was species we apply to

this momentum. For mass there is no balance extra source sink required, because the

mass is a essentially equal to the rate of change of mass inside the system coincident

with the control volume and the rate of change of mass in the control volume plus the

mass flux coming in the mass flux is going out that is equal to 0.
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So, we do not need additional source in terms, but when it comes to like things like

species when it comes to things like species we need additional sources and sinks. There

can be sources of sinks in terms of this reaction which can generate a deplete, a particular

species and also there can be species flux coming in crossing the control over surface and

we need to account for that. Momentum also the rate of change of momentum is given by

this rho D v D t then that can be changed by surface forces through pressure or rather the

gradient of pressure and also by body forces. Once again this is not important will not

consider this will not consider this.

And also in terms of energy will see that the rate total internal specific internal energy

that  will  be  changed  here  we  actually  can  do  some  take  the  dot  product  of  this

momentum equation.  And subtract  with this  equation  and we can arrive  at  a  energy

equation for purely for specific internal energy and that is what we have done here. And

will  see  that  we  are  derive  this  from  divergence  of  this  c  flux  times  p  tends  are

constructed twice with divergence of v, and then we can neglect this body force term. So,

this is what we have done. 

Now,  we  have  these  complete  conservation  equations  ready.  We  have  conservation

equations  for  continuity  conservation  of  equations  of  species,  we  have  conservation

equation  of  species,  we  have  conservation  of  species  of  momentum,  we  have

conservation of equation of species, we have conservation of equation momentum, and



we have conservation of energy that is all the conservations we need. But then these

equations are not complete and this forms we are not be able to do solve them. Why,

because we see that there are very interesting things which we do not know, we do not

know about how this V i will look like we have equations for v we have equations for the

bulk velocity, but we do not have any equation for V i which is the species diffusion

velocity.

Similarly, we do not have any constitute of relation for pressure, we need to supply that

we what can be that can be this. So, this something that this V i can be supplied this by

fix diffusion law, this pressure this can be come from this equation of state. And this heat

flux  vector  this  divergence  of  q  that  can  happen  many  things  like  can  have  heat

conduction, Fourier law of heat conduction, it can have like radiations source and it can

have also heat flux due to heat different heat contents of different species will see that

all.

And also very, very importantly what we need is that we need to close this we need

constant tribulation for this omega this w i, but of course, we know w i we can use this

law of mass action that we have fully learned in the previous classes. And also we can

use this that k that comes in front of this products of species raised to the (Refer Time:

39:36) exponents and then we can use them to basically come at reaction rate for w i.

So,  we  will  come at  this  will  come  to  this,  so  this  conservation  equations  are  two

supplemented by specification of the diffusion of velocity capital V i, the pressure tensor

capital  p and the heat flux vector q and of course,  a reaction rate  w i.  And we will

supplement this things we will come at this specific closures this auxiliary equations or

this constitutive relations for this quantities in next class.

Thank you very much.


