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 Hello everybody. Here, we are at the end of the lecture series and this is the last lecture 

of this course on, “Optimal Control Guidance and Estimation”. Last two lectures, as I 

told in the previous lecture, we are reviewing this material what we have a covered in 

rest of the 38 lectures. Then the lecture 39, just previous lecture, we summarize many 

things like up to LQR theory and SDRE also. So, let us continue that series and then kind 

of quickly review the rest of material as well. 
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So, next topic that we discussed is something called dynamic programming and this was 

kind of motivated with the objective that we want to have state feedback optimal control 

solution really; open loop sort of all things, we are not happy with that any more. Then 

there is a fundamental theorem of optimal control, which tells us that any part of the 

optimal trajectory is also an optimal trajectory, and that was slightly explained in this 



way. That if it happen that A to B and via C; if you claimed that this path is optimal, the 

colored one, colored solid one and then if is there is something like a non-optimal path 

from A to C; it is not going to happen, because in that case then this path A to C via 

dotted line and then C to B, would have been the optimal path. 

But, by definition, we are telling that to begin with, this path is optimal and hence this is 

not allowed. That means if you confine our problem from A to C, then this is also going 

to be an optimal by its own way. So, that means, any part of the optimal trajectory is an 

optimal trajectory and using that and expanding the cost function something like cost to 

go and thing like that.  
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We come up with this optimal control problem formulation and the associated solution 

like this. We started with minimizing this cost function, there is no terminal penalty 

remember that. Subject to this non-linear state equation with initial condition and final 

conditions like this, where U now happens to be kind of an admissible set, where it 

cannot be arbitrary, but it must belong to something like an admissible set. It may be 

finite or can be infinite, which can depend on the situation. 
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Then after the analysis we end up with these formulation that if you define something 

called optimal cost, means that these cost function is evaluated on using optimal control 

trajectory as well as optimal state trajectory, then that we define as optimal cost. This 

optimal cost must satisfy these equations, which is famously called as HJB equation that 

means Hamilton-Jacobi-Bellman equation. 

So, this Hamilton-Jacobi-Bellman equation, you can see that these Hamiltonian is not 

any Hamiltonian, but these Hamiltonian is Optimal Hamiltonian, which this Hamiltonian 

evaluated on the optimal path. And on the way the Hamiltonian takes lambda also; 

lambda happens to be Del V by Del X here and then you can see that H of t is function of 

lambda and lambda is a Del V by Del X; that means, this equation is essentially a non-

linear partial differential equation.  



(Refer Slide Time: 03:24) 

 

So, that is the observation and to get into these further observation is if omega is infinite; 

that means, there is no control bound per se, then H opt can be computed by computing 

this for standard things like del H by del U equal to 0. Otherwise, you have to account 

for these control bound and then find the solution. Now, you can tell if you consider that 

t f is fixed, then V of t f, X f, as the integral happens to be from t f to t f; that means, 

integrally is 0. So, that will give us the boundary condition. 
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Now, if there is a terminal penalty also, the integral part will become 0, but V of t f, X f 

will be phi of t f, X f and that is only the change; the HJB equations remain the same. 

The boundary condition happens to be instead of 0, it will be happen to be the same 

function evaluated at X of f. And then another observation that if t f goes to infinity then 

Del V by Del t is 0. So, we have only that part of equations, which is coming from H opt 

(Refer Slide Time: 04:22) equal to 0. But, still remember it is still a partial differential 

equations and lambda is a vector valued function, Del V by Del X. If it is a scalar 

problem then only it becomes something like ODE problem after that. 
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So, this is how it is. Then some fact also to be studied on the way that a dynamic 

programming is an essentially a powerful technique in the sense that if the HJB equation 

is solved, then it is essentially leads to “state feedback form” of optimal control solution. 

The second is HJB equation is both necessary and sufficiency; necessary and sufficient 

for the optimal control function. For optimal control problem, we do not have to realize. 

Once you solved for HJB or we demonstrate that some solution satisfies the HJB 

equation. Then it is both necessary and sufficient condition. 

Then also that it even though HJB equation is non-linear PDE, essentially it means it can 

have multiple solutions. Then this result tells us that it is also at least one of the control 

solutions that results from the solution of the HJB equation is guaranteed to be 

stabilizing. So, we have a final set of solution out of which will be able to will be able to 



select one stabilizing solution at least and that will be our optimal control solution also 

basically. 
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But they are difficulties also that the resulting PDE of the HJB equation is extremely 

difficult to solve for in general. If you really run into these numerical ways of solving 

these then it runs into these huge computational storage requirement. And to the extent 

that is the modern computers are also not useful, it runs into the computational 

complexity problems and all that. So, this is essentially called as “curse of 

dimensionality”, which is the well known terminology term and defined that if control 

duration of control application duration is longer or here the number of states are higher; 

the dimensional of state vector is higher, then with these problems I mean the 

computational requirement grows exponentially.  
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So, that is not possible in general and to avoid that they are recent ideas called 

Approximate Dynamic Programming and then this formulation in discrete time frame 

work. The cost function happens to be like these and the state equation is in discrete 

domain where X k plus 1 happens to be like these.  
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Then we write in a very similar way that we wrote for dynamic programming equations. 

The cost to go from time t k we can be written something like utility function at time t k 

plus cost to go from t k plus 1. Then defining lambda k is something like del J by del X k 



and optimal control equation that means to be satisfied; del J by del U k equal to 0 and 

this leads to these condition that this expression has to be 0. 
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Now, lambda k plus 1 is coming now here. Similarly, the Costate Equation, if you 

analyze that turns out to be like long expression, but on the optimal path this is 0 and 

hence these expression is 0. So, we will end up with only that. So, this is the costate 

equation on optimal path. 
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Essentially, we will end up again with these state equations, costate equation, optimal 

control equation, boundary conditions thing like that, even though, if we start with these 

dynamic programming ideas. We will end up with simultaneous sort of formulation of 

necessary conditions, where we had the state costate optimal control equations 

essentially. Using these we also talk something like Adaptive Critic and single network 

Adaptive Critic Design on how do you make use of these approximate dynamic 

programming designing . 
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The philosophy was like this. We have two neural networks; one takes the input X k and 

gives the output U k, the other takes the input X k and gives the output lambda k . Now, 

after mutually consistent training, eventually this action network will capture function, 

the optimal control function that lies between X k and U k. Hence, after successful 

training, we keep using this, which will produce optimal control relationship as a 

function of X k. So, that was the idea there. So, action network leads to the optimal 

control solution or of course after, mutually consistent training of both the networks. 
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So, there are advantages and the first advantage was it is applicable to non-linear 

problems in general and that does not require any approximation like linear or quasi 

linear like that. We do not need any of that. The second is that it is possible for the 

solution is valid directly for a large number of initial conditions. Essentially, it leads to 

these feedback optimal controls in the domain of interest. It gives some sort of 

computational load sense and it is feasible because it do not really run into these huge 

computational requirements of running into months and years.  

Here, it is possibly to do that in a few minutes or maximum like tenth or twentieth of half 

an hour. So, it is feasible computational load even for neural network training. 

Remember, after training it is just be evaluation of a close form of expression. I mean 

that is certainly possible to use in a real time , but even during the training it does not 

take too much of time, it takes maximum about, I mean, I will put something like 20 to 

30 minute to train as network. 

Then it is self contained methodology; it does not talk about relying on others. 

Essentially, it is possible to use it for real time control applications, ultimately after 

training, all that is evaluation of something like a close form expression from this sector, 

using and utilizing this train in a neural network is a close from function of X k, so that is 

possible to do online computation basically. 
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How you do this synthesis? We have come up with this structure where we assume that 

while action network training critic network is a optimal and vice versa. So, while action 

network training, we randomly select X k and pass it through action network and that 

way you get pass U k, utilizing X k and U k in the state equation, we get X k plus 1. 

Utilizing that in the critic network, which is assume to be optimal you get lambda k plus 

1 and again utilizing this X k and lambda k plus 1 you get the desired U k star. 

Now, you remember that out these three conditions of state, costate and optimal control, 

you have use state equation and an optimal control equation while training the action 

network. Now, this is the U k where as this U star k is the desired U k. Now, if these two 

are very closed to each other and essentially the difference if you do take the norm is to 

be small number; if there close to each other then you stop; that means, of the action 

network is trained. If not, if you keep training, I mean that in other words, take this as 

input and take that is output, the desired output and then rejects the weight and then 

repeat the cycle with respect to different set of X k. this trainings are typically down in 

batch mode training where you do not use only one particular X k, but generate bunch of 

X k, let us say 100 X k together and things like that. 
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Now, going back to the critic training and that structure is something like this. Here, we 

are assuming that action network is optimum and then the critic network at the next time 

step ahead is also the optimum. That is justified because the boundary condition if you 

see in costate that is given at the final time. So, if you come from that side of story, it 

tells that I will start from equal to t f, the close approximate it to zero basically in the 

regulator problem and then the utilizing this feat in two philosophies, that action network 

is optimal and critic network is also optimal for future time. 

Then I can come up with this algorithm, I mean this idea of training this. Start with a set 

of X k, randomly selected again and get my actual lambda’s, but the same X k can be 

used in action network and then get U k and once X k is also there, U k is also there. I 

can use that state equation an get X k plus 1, then use that in critic equation, critic 

network, you get lambda k plus 1 and utilizing X k and lambda k plus one, I will get the 

desired lambda k . So, these two are close, I will not train, the network is already optimal 

and if not I will try this as input and that as output and train it. 

So, I will keep on doing that and then go back to action network training, come to critic 

training and things like that, ultimately when there is no cycle training improvement, we 

assumed that is the training is consistent and then we tell whatever converge network 

from there that gives us the optimal control for that particular plan. 
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But moving on we also had this Single-Network Adopted Critic Design where we do not 

really have to do two networks for all type of problems. For a class of problem, where 

the optimal control equation is explicitly solvable or symbolically solvable for control in 

terms of state and costate, all that I need to know is to get my lambda k plus 1. X k is 

known and some of I get lambda k plus 1 then I can utilize this closed form of solution 

that is available with me to evaluate my U k. 

So, I really do not need to have an action network training as a part of a training 

procedure. The advantage is it returns all the advantages of adaptive critic synthesis. 

Essentially, eliminate the action network and also eliminate the iterative training between 

action and critic. So, that is also gone there. So, this leads to several advantages or 

improvement, especially it save a lot of computational time even for off line training. It 

also eliminates the approximation involved in the action network that is no more required 

and because action network is also not required, the cycle training is also not required. 

So, all that you do is one set of training for the critic network and you are done.  
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So, that is an idea of single network adaptive critic. How do you do it? All the three 

necessary conditions are use in these settings. you take X k and get lambda k plus 1 and 

use both X k and lambda k plus 1 get U k. Now, you can get U k I mean use X k and U k 

to get X k plus 1. Once, you have a X k plus 1 you can lambda k plus 2 assuming the 

critic network is optimal for the future time. Then X k plus 1 and lambda k plus 2, if you 

used in costate equation, you get decide lambda k plus 1. Again, if these two are close, 

do not train and training is already done. if not then you train this network again in a 

batch training sense . 

Here, you can see if optimal control, state equation and costate; all three are getting used 

and by using this structure you are also using this structure, your also using this 

boundary condition, because in the future time we are assume the critic network is 

optimal. That is guaranteed by fast trainings of the network using the boundary 

condition. So, it start with the boundary condition that lambda t f whatever of that del phi 

by del X n for finite time or infinite time problems you that lambda t f goes to zero, but 

the state also close to 0. That means if you start with very small numbers around 0 and 

then if the corresponding lambdas should also be close to 0; that means, LQR solutions is 

valid in that sense. 

So, utilizing that LQR solution, if you to pertain the network properly then the boundary 

conditions enclosed in this network and that validates that justification counts form that 



sides. This is how it is done and if it is not close to each other, again keep training and 

keep validating. So, that is how the network training proceeds. 
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Then we moved on and we also had a glance of that is called transcription method that 

people have solved it. The philosophy turns out to be something very close to static 

optimization really. So, what peop\ what what one idea I mean what is this idea tell as is 

something like this. We convert the dynamic systems variable into a finite set of static 

variables or what you call as parameters now and pose an equivalent static optimization 

problem. Solve this static optimization problem using this various a static or parameter 

optimization methods using non-linear programming technique.  

Variety of methods are available in literature, which you can recite now and then solve 

this and then go head getting that. Then access the accuracy and the repeat the steps if 

necessary. The question is how do you pose the static optimization problem depends on a 

variety of ways. Then we started with idea of finite difference and then you can use this 

Euler integration method formula and then set of grid point solution and all that we came 

up with for the state equation. And for the cost function we thought we will take 

trapezoidal rule something like that where we can discretize the cost function. Now, it 

will, but at the every grid point, every node point or every grid point the state equation is 

satisfied as a kind of algebraic constraint of variables.  



So, if you see that for better accuracy we need lot of grid point and then if you have lot 

of grid points, then essentially it will sub the side dimension optimization problem, 

which has its own difficulties. So, this kind of issues, which comes to focus then people 

have use something like sparse of algebra or then start with something like grid 

refinement and then variety of ideas where you start with course grid and then once you 

get converge solution for that, refine the grids and again start solving it and things like 

that. That is grid refinement and then we have this sparse matrix algebra where you can 

eliminate this algebra around lot of zeros. 

So, using that people have come up with somewhat efficient algorithms, but still they are 

I think they are not suitable for online sort of application where you really need very fast 

computation. But, then we had this glance of these evolving methods called pseudo 

spectral transcription which hold lot of promise in my view. 
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And the idea was something like this, we wanted to have a very generic formulation 

while want to minimize this generic cost function with this terminal penalty and path 

penalty, subjected to the cost function and with n point conditions, both in equality sense 

as well as path constraints and equality sets. The whole idea is to have an equivalent 

discretized formulation, by using this is so called pseudo spectral descritization. But, 

essentially the idea here is to convert the problem into a lower dimensional non-linear 



program problem. The dimensionality of the problems should not grow actually. We 

should able to do the job with very less number of grid points. 

And then we are not interested in sparse matrix formulation sort of things. Essentially, it 

can lead to dense matrix algebra basically. So, it is lower dimensional, but we do not 

waste our computation by having a sparse matrix formulation sort of things. That is the 

whole idea of how do we go further and people have come up with various things for last 

10 years, from about 2000 onwards this gained quite big momentum. 
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So, one idea is like this. We can start something like this. We can have a control 

parameterization in the form of basis function that typically (( )) polynomial, legendary 

polynomials like that and control also can be parameterized. Sometimes, people tell 

control need not be parameterized because if you parameterize the part of this continuous 

function sort of things then essentially this discrete controls cannot be approximate it.. 

So, if you want to do want that kind of generalization with control bounds and all that 

then probably that not a very good idea. That is not the point I have, the point is to see 

the philosophy. So, we have this start. We can start with control I mean state using 

approximated that way and control using approximated that way with a set of basic 

functions. Now, we have to select a set of grid points and how is this grid points selected 

and all sort of things are sort of questions. But the whole idea here is we have discretize 

the state equation and costate I mean cost function by utilizing this thing as well as the 



system dynamic and then we formulate this lower dimensional non-linear programming 

problem.  
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So, selection of grid points has this something called collocation coincide. So, they are 

points such that it satisfies the state equation exactly at these points. So, they are called 

collocation points or simply called grid points. And there are ideas like what kind of grid 

points you want to select because uniform grid points are no more good for this kind of 

things. As one idea is to have if you select uniform things then if you see free end points 

one fixed end points, arbitrary end points, then none of the boundary conditions are 

satisfied there. But, slowly we can see Gauss flowing I mean Gauss collocation points or 

Gauss-Lobatto, Gauss-Radau, like those are available in literature. Now, an increasing 

generality, I mean satisfying all the boundary condition and variety of things, now the 

universal recommendation is something like Gauss-Lobatto points. 
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So, we can select something like this. Now, proceeding further with the algebra like that. 

It essentially is a non uniform grid point side where the problem dimensionality gets 

reduced quite a lot and satisfies the boundary conditions well. Now, coming back, you 

have these approximations, so the state equations constraints, once you start something 

like this and then we are interested in that, I mean we can substitute X dot as X hat dot. 

then see if this X hat dot coming for this expression takes the form of something like this 

where this phi n of t is essentially function of time, but it is an explicit function of time. 

So, phi dot of t is essentially a number once evaluated at any grid point. 

That is phi n dot of t is an expression of time, explicit expression of the time, and hence I 

can evaluate that any point of time to get a number for phi n dot. In the right hand side, 

where ever X is there, I will replace that with X hat. So, this expression comes here 

where ever U is there I will replace that with this U hat I mean this expression comes.  

Now, multiply both sides with this delta function I mean situated at t n. Then you can 

essential telling that evaluate this now phi n t at that particular gird point. So, that 

becomes a number now and all these things become a number in the right side also. So, 

essentially this tells us now algebraic constraint because this has become a number; no 

more differential equation form and all that. Once, it becomes a number, this is a 

constraint equation in the form coefficients a n and b n and that is how it results in 

algebraic constraints starting from the state equation. 
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Now, coming to the cost function again similar things can be done, but there are ideas 

like something like quadrature rule and all that, where this cost functions can be 

evaluated in the much better accuracy sense basically. So, that can be also discretized in 

that from. Now, this goes to, I mean utilizing this constraint, algebraic constraint and this 

discretized cost function we have parameterized cost, I mean formulation other words 

static optimization problem . 
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The way to solve it this static optimization problem and essentially it leads to lower 

dimensional non-linear programming problem and hence it is computationally efficient. 

There are varieties of application problems, variety of convergence guarantees, and 

variety of analysis tools, generalization, and particular problem, everything available in 

our last ten year in variety of literature. 
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Then we moved on this idea of MPSP, model predictive steady programming design 

where we started with some problem formulation like this. We had this system dynamics 

and this output equation. So, if you discretize that it takes this form and the idea was that 

t equal t f; that means k equal to n, our objective was this output Y n should go to a 

particular set Y n star the particular values. That means if I take this around delta Y n 

that should go to 0 basically. 



(Refer Slide Time: 24:36) 

 

Now, this essentially leads us to this constraint formulation, if you start with a guess 

history and try to evaluate this and then finally, you have to see why this comes because 

at every grid point I met some error in the control and then I have tell that as dU1, dU2 

and all those are error over about my previous guess history. Then essentially it leads to 

this kind of a formulation where this linear sort of constraint comes in to picture. If I 

want to minimize the quadratic cost function, I can do it that way. It essentially starts 

from t k; t k is my current time in that sense. 

And then we have this standard quadratic cost function with linear constraints. So, it is 

possible to solve this in close form. Now, the point to observer here is this is a static 

equation. This is not a dynamic equation and the dimensionality of this equation is also 

small. It is a state dimension happens to much more than the output dynamics. So, that 

essentially tells us that this is nothing but a parameter optimization problem where the 

constant alpha I mean constant lambda will do the job. We do not really need to have a 

dynamically varying lambda basically. So, that essentially leads us and not only utilizing 

that we can also get close form solution for these errors in the control, so that the 

iteration can proceed faster. On the way we have compute this sensitivity matrices also, 

but, that can be computed recurs severalty. 
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So, because of all this it leads to a very fast computation essentially and hence we think 

that it is possible to kind of utilize it for online applications, essentially. The necessary 

conditions have to be is this a static optimization problem, so the very standard way of 

approaching that is to formulate an augmented cost function and then utilize this, I mean 

use these necessary conditions of optimality. These partial derivatives have to be 0. 
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So, solve these two equations and then that can be this. Then arrive at this kind of control 

update I mean formula utilizing these lambda and lambda can be given something like 



this where a lambda and b lambda can be computed that way. Also if somebody wants a 

finite number of iterations at any grid point then this idea of iteration unfolding can be 

exited there. 
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So, there are reasons for this computational efficiency and I have told many of that. So, 

this costate variable becomes static and that is the major point I mean the dimension of 

the costate vector is also small. The costate vector can be computed symbolically in 

closed form solution. Then this computation of these recursive matrices, I mean 

computation of sensitivity matrices can be done recursively. Because of these, this 

method happens to be computationally quite efficient. Then we thought of extending this 

idea to something called model predictive spread control approach also, 
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Where the control is parameterized in the form of a kind of a polynomial expression, let 

us say. So, if you parameterize that in something like a linear or quadratic thing like that, 

essentially it further reduces the dimensionality of the variable, pre-variables and also 

guarantees control smoothness by enforcement. So, utilizing this idea, we come up with I 

mean we put this expression back into this error equation and essentially we will kind of 

constraint the freedom to the parameter freedom only basically. 
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Then it all is ok, we can formulate a parameter optimization problem in the framework of 

a’s and b’s and then we get a quick solution from that side of the story. 
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And then the same idea can be done for quadratic problems also and this quadratic 

formulation d U k cast in that way. There errors in a b c and then we can come up with 

this constraint equation. 
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Now, the question is if it is a square equation; that means, we have something like three 

variables and three constraints then you can directly solve it like this, but if it is of only 

two constraints and you have three freedoms like that, you can talk about some 

optimization also. This optimization if you select a quadratic function like that in the set 

of parameters. And then I mean it leads to this fast computation of this enclosed form 

also.  

So, very quickly you can update these parameters and proceed further. So, that is the idea 

of spread control and you have given good real life example problems of missile 

guidance and all that as part of the lectures in this course. Then you entered and thought 

about putting this very recent idea that one of my students have proposed in his Phd is 

something called generalized model predictive static programming; generalized MPSP. 

That is the whole idea that somehow we do not want to start with discretization basically. 

We want to do all the things all the algebra in the continuous time framework itself. 
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Then the formulation does not demand that you start with a discretization. So, start with 

the original system dynamics in continuous time and we have this output also in 

continuous time. The whole idea is at t goes to t f, Y of t f should go to Y star of t f. Then 

analysis of this output error essentially landed up with some expression like this. The 

details are there in the lectures and you can see the corresponding lecture you can find 

that. Then if you have this then, this B of t has to be computed. This is sensitivity, a kind 

of a time variant sensitivity matrix. 
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And that can be computed like this; B of t is nothing, but W times this one where W 

whereas, W of t can be computed backwards. So, this final boundary condition turns out 

to be like this and W dot turns out to be like this. You start with this final boundary 

condition and backward integrate it from t f to t not, then evaluate this B of t all over. So 

if you do that essentially it is called as very closed MPSP, but it generalizes that, so that 

you do not get confined to various kind of discrete formulation and all that way. 
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So, the idea here is again you can have or you can formulate a quadratic cost function 

control variable for minimization, subject to this constraint equation now. How this 

equation came and all, I encourage you to see my other lectures for details. Then if you 

solve this parameter I mean this optimization problem what you see here, then essentially 

you have to have this. Remember, this is not necessarily we are talking about like 

parameter optimization problem here. We are still talking about something like integral 

function minimization and all that way. So, we have this augmented cost function, which 

is like this. But still this is algebraic constraint, it is not a differential constraint 

remember that. So, this constraint comes outside the integral. 
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And then as utilizing the necessary conditions of optimality and in that way we land up 

with some expressions this way. These two expressions for which we need solve for this 

control and all that. 
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So, that can be solved. So, we start with these and that. So, you can substitute this 

expression and solve for lambda, then back substitute here and get this delta U.  
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So, the control update happens to be in this form where lambda can be evaluated that 

way. That was generic MPSP ideas and all that. These are all a various control ideas that 

we talked about and little more further towards end also we talked control constraint 

problems and all that again back in the control design. But that point of time I mean after 

talking, after discussing these concepts, we thought we will go back to the estimation 

side of the story and have these ideas on estimation as well. 
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So, we started with LQ observer design and we thought if the system is linear and then 

we have this sensor output vector something like this, then we fit an error observer 

dynamics like that. The difference between this and that is this term where this is an 

actual output of from the sensor and this is a predicted output sort of thing. So, if you 

take the difference and augment these in the observed dynamics and especially if you 

design K in smart way, in a good way, then the error that is X tilde is X minus X dot; this 

error will go to 0, I mean asymptotically. That is the whole idea of observer design. 
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Then we analyze these two ideas; one is control design, one is observer design. This 

happens to be very close to each other. So, the only problem is here the gain matrix 

appears right whereas, this gain matrix appears left here. So, about this, we observe that 

we can accept this eigen value concept. So, eigen value of any matrix is same as the 

eigen values of its transpose. So, utilizing that fact, we can write it something like this 

and then we can now correspond, I mean we can now correspond to this observer to 

control formulas and all that. 
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Finally, you can have this concepts of system versus dual system; one is controllable and 

the other is observable, the other is one is observable the other is controllable and that 

kind of ideas you can excite.  
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Because you know the LQR design, the final results you can actually come up with 

observer designs also, which talks about K e transpose and K e transpose is given 

something like that and hence K e will be given as something like this transpose of this 

entire thing. Then these are the designees and where this is the Riccati equation for 



control design whereas, this becomes the Riccati equation for the observer design. So, 

this is called the observer Riccati equation and all that. 

And also remember that this happens to be a kind of continuous Kalman filter where 

Kalman filter gives us much more tuning capability. Whereas, this observer technique is 

a filter, but it does not give that much flexibility for tuning and that is the only difference 

there. Then we entered and after discuss some probability theory random variables and 

all that to get ready ourselves for Kalman filter and then finally, switch over to, I mean 

going towards Kalman filter design and solve the derivations in detail. 

(Refer Slide Time: 34:18) 

 

So, that is the problem here. We have this system dynamics. X dot is A X plus B X plus 

G W and the measured output is something like C X plus V. Here, now G W; that means, 

W is a process noise and V is a sensor noise, they are now start appearing in the system 

dynamics and we are assuming the variety of things that initial condition and the process 

noise and sensor noise are given by this characteristics. Especially, the process noise and 

sensor noise are 0 mean; white noise essentially. 

We also tell that they are mutually orthogonal; that means, if you take cross covariance 

matrix and all that they will turn out to be 0. Then the whole idea is to define this error 

between the actual state and an estimated state and then we define the covariance matrix 

something like X tilde times X tilde transpose, expected value of that as limit tends to 



infinity. The whole idea is somehow we have to find this X dot such that this error, this 

covariance matrix has to be minimized and we had a lot of algebra analysis and all that. 
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So, finally, it gives us something like this. We have to initialize with some guess value 

and then it lands up with this filter Riccati equation in this form very close to observer 

equation, remember that. If you see this observer equation here, and then if you see this 

filter equation here is very close, only this G times G transpose is not there before. Now, 

this process noise influence matrix whatever this comes here it will start appearing 

explicitly.  

So, that is our continuous time kalman filter. Once you solve this Riccati equation, filter 

Riccati equation we have this gain computation that way and you can propagate the filter 

dynamics like this and Y happens to be the measurement vector and CX hat is nothing, 

but the predicated output sort of thing. So, this error is also called innovation and all like 

that way. So, I mean if you continue to operate it from an initialized state and for linear 

system it is guaranteed to converge by the way. Ultimately this error will go to 0 and 

hence X hat of t will be a good representation of X of t. That is the whole idea of kalman 

filter basically.  
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Now, extended that for time varying systems and how do you that and all that, so we are 

now instead of our constant matrix, this A B C, all these are time varying matrices now. 

So, how do you do about that? The assumptions were fairly similar, we had this process 

noise and sensor noise here and both of them are assumed to be 0; mean white noise all 

the time. Whereas, then at the initial condition, process noise and sensor noise they are 

all assumed to be mutually orthogonal and then we have this W and W t and V t are 

uncorrelated, non stationary white noise. We assume that kind of a thing. And this 

expected value happens to be, I mean white because of these conditions. The expected 

value of W, W transpose, they are at the Q only when t is equal to tau sort of thing; tau 

not equal to t, and then they are 0. 
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Utilizing that now there is no guarantee that this matrix Riccati equation will, I mean 

there is nothing called matrix Riccati equation now. So, we have this P dot equal to the 

differential Riccati matrix what I mean. Now, the idea is if P cannot be minimize then 

can we at least minimize P dot, so that leads to the idea of selecting this cost function to 

minimize trace of P dot essentially a norm of P dot. The solutions represent to be like 

this. If I evaluate this partial derivative Del J by Del K e that has to be equal to 0 and 

then this expression gives us that K e is nothing but that. Very close to what you have 

before, but the Riccati equations is no more stationary. This is not equal to 0, but it is 

equal to P dot. 
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But we start with some P dot I mean P naught, some guess value for P, and then 

propagate this P dot equation. Remember, the nice thing about filtering theory is 

everything is propagated forward. Nothing like control theory, something like the Riccati 

equations is solved backwards and things like that. But here because of dual system 

properties and all that it turns out that even Riccati equation have to propagate forward 

and basically. So, we have to propagate P of t starting with this initial condition and 

using this equation and then every point out time you can compute a kalman gain is time 

varying and then use that in the filter dynamics or observer dynamics. 
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That we have this discrete time kalman filter, DKF sort of thing, essentially the summary 

is like this. We have a discrete time complete discrete time formulation. It initializes the 

state and initializes the covariance matrix also then you compute the gain this way. 
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And then we have this update, once you compute the gain you can update the state to the 

next time state, sorry at this same time step. Then you can update the P k also at the same 

time step. So, this minus plus notations are necessary because minus is something that 

either you start from guess value, or you kind of propagate there from the previous value. 

But, once the measurement value keeps coming at that point of time where gain is ready. 

So, we can update the values depending on the measurement error here. 

Error between the actual measurement and predicted measurement whatever is the error 

that will help us in giving a different value compared to this minus. Similarly, the 

covariance matrix needs to be updated also and then once these values are updated then 

you again propagate it using this noise free system dynamics like this. Then we have the 

whole motivation of continuous time discrete time and everything is to be is the fact that 

we are interested in continuous discrete klaman filter; that means, the system dynamics is 

continuous, but the process that is the sensor output I is strict. 
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So, in that setting what happens? So, that is where the idea comes that I start with some 

guess value t naught, but I can propagate in a much better way like utilizing higher order 

numerical methods for integrating continuous time system. then I land up with some 

predicted value and there when the output comes, the sensor output comes, I can update 

that and then I can keep on predicting until the next centre output comes at t 2 and then 

update then continue like that. So, for the prediction part, we want continuous system 

dynamics in a continuous time of frame work, but for updating you know the sensor 

cannot be continuous and output cannot be continuous. It can from only a discrete time 

discrete points of time. So, as the prediction becomes continuous where as update 

becomes discrete. 
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So, in that setting the result turns out to be like this. We have this model, which is a 

continuous time state equation, linear still and then we have this discrete time output 

equation. We initialize this again with some values of X hat of 0 and P 0 minus of I mean 

these two values have to initialize and then you compute the gain. 
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When the measurement comes we will update it in the discrete time setting, the discrete 

time results sort of thing. Now, you can update the covariance matrix in both way so, 

but, again it is always preferable to use this to avoid the state difficulties. Even though 



this expression turns out to be quite kind of simplified compare to that, but this retains 

the symmetric properties and all that. So, it is just still advisable to use this expression 

instead of this expression. Anyway, the propagation again, after update, you have to 

propagate and propagation can be done this way. The only difference is this additional 

non-linear term of P is not here. That happens, because the output is not continuous and 

hence it does not get correlated in each other sense. Anyway finally, there was an idea 

that all this we studied because of understanding this so called EKF or extended kalman 

filter. That is what it used in practice. 
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So, here the system dynamics in non-linear and the output equation is also non-linear. 

So, then we have this idea of continuous EKF or in the sense that system dynamics is 

continuous and output is also continuous, but if you can generalize that and tell that you 

can also have continuous discrete formulation, where the system dynamics is continuous 

where as the output is discrete.  

The initialization, again the procedure is very similar. Again, I do not want to derive and 

explain and all that here in this last lecture, but I hope all of that is done. So, essentially 

the idea is we can linearize these two non-linear equations about the current value of the 

state and then you can utilize the kalman filter theory for the corresponding linearize 

problem. 
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That is the whole philosophy there. A operation happens to be like this, you start with 

initial value and initial guess value for the state and initial guess value for covariance 

also, covariance matrix, then you compute the gain and then you can propagate the 

system dynamics as well as the Riccati matrix in these two equations actually. 
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Eventually, this continuous discrete EKF and that is what we need, the system dynamics 

happen to be continuous whereas the output happens to be discrete and that sorting was a 

mixture of ideas. 
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Again we have to initialize this and then compute the gain at every point of time, in that 

way and then update as soon as a measurement comes, we involve the discrete 

relationship and update that and then after we are done with the update, we can predict it 

or go for propagation node using the continuous time theory. Once again the non-linear 

term is not there because that the measurement happens to be discrete that is the reason. 
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So, after sorting kalman filter, we also had a glance of what is called LQG design in the 

certain of non-linear control theory again, so essentially the philosophy was we have this 



LQ controller or a rather LQR controller and LQ estimator or kalman filter in that loop. 

So, if we put both the things together then the thing called LQG design. Essentially, we 

are using the control formula for LQR, but the state U equal to minus K X, instead of 

that you are saying U equal to minus K X hat. So, X hat is nothing, but the estimated 

state in that sense basically.  
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 So, this is what it is written, instead of U equal to minus K X, we use U is minus K X 

hat. And justification comes from the fact called separation principle, which tells us that 

these two thing designs can be done independently without harming the close loop 

behavior. Essentially, if you see that analysis tell you that the closed loop, I mean the 

closed loop system dynamics and the error dynamics if you send eigen values of both the 

things and then put them together and analyze the eigen values; they do not get altered 

actually. So, in other words they happen to be kind of a separate. So, that is the basis of 

these LQG design and remember that is valid only for linear system. Even the people do 

that for non linear system, there in a no proof for sake for non-linear system and all that. 
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So, towards the end we also discuss something called control constrained optimal control 

entity. So, we went back to the objective and tell ok we start with the same objective 

whatever the regular control, optimal control is suppose to do that should find an 

admissible time history of control and this region, so that this cause the system governed 

by the system dynamics to follow an admissible trajectory, and on the way it should 

optimize the cost function, it should satisfies the boundary condition as well. But, at the 

same time it should be confined to a set; that means control is not really infinity and it 

confined to allowable limits or component wise they can be restricted between some 

minimum value and maximum value.  
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So, if you do that, the essentially this is a great contribution from Pontryagin and it 

essentially tells us that the regular theory can be used; you can still define Hamiltonian in 

that way and carry out the necessary conditions optimally. The only difference is the 

optimal control equation. So, instead of Del H by Del X equal to 0 and try to solve the 

control out of that, you carefully analyze this relationship; that means, Hamiltonian 

expression evaluated for optimal control has to be less than equal to that same expression 

evaluated for the non optimal control. And utilizing this relationship carefully you should 

be able to kind of come up with some sort of a control function. This equation has to be 

honored also by the way. I mean this state, costate and boundary condition has to be 

honored also on the way.  



(Refer Slide Time: 47:08) 

 

So, topics that we studied in detail talks about Pontryagin minimum principle; some sort 

of a cursory proof is also there, the idea behind how it comes and how we will end up 

with that. And then we talk about a great deal of analysis for time optimal control 

system, the minimum time control problem. We have been taken a double integral 

system to demonstrate the idea in fact in detail actually. We essentially come up with 

switching control sort of ideas; we define some sort of a switching function and then 

switching regions and thing like that. We told that it can be; control can take a 

discontinuous sort of thing, one time it can be discontinuous, but with some sort of 

appropriate switching at appropriate time, we should be able to do this job and try the 

system towards origin even if the control is constrained. 

We also studied energy optimal control for LTI system, in general, where things were 

much more benign compare to this time optimal control. On the way also I told that there 

is another concept called fuel optimization problems and which was left out for self 

study. So, both this time optimal control and fuel optimal control leads to this singular 

arc, I mean this discontinuous control or singular arc problems like that. Whereas, the 

energy optimal control where you want to minimize something like a quadratic cost 

function of control variable is much more benign and it naturally leads to something that 

we feel intuitive. In other words, as long as the control is away from the bound then you 

apply the regular value and the moment it goes away from the bound you apply the 

bound value.  



And that is possible only when we have this nice formulation of quadratic cost function 

and control variable and all that is called energy optimal control. The details you can see 

that in the lectures and you can study the corresponding books also basically. Then 

towards the end we also talked about state constrained optimal control; that means, it 

need not be only control constrained, inequality can come instead variable also. 
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There we studied two methods; one was a penalty function approach, where you had 

these problems like this. We have the system dynamics like this and performance index 

was given like that, but also had a bunch of inequality constraints as functions like g 1 to 

g p in that way. So, we assumed that the constants are smooth. In other words they have 

this continuous first and second partial derivatives and things like that. 
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Then the whole idea here is to formulate an auxiliary state equation. So, X n plus 1 dot is 

something like this. It is something like a quadratic function times Heaviside function 

like h of g 1 and up to g p is exactly similar way where this Heaviside step function is 

defined something like this. If it satisfies the constraint, it is 0 as that is not active, but if 

it does not satisfies, this become one; that means, this function is suddenly active . 

But the critical observation was like we are not only this state equation, along with the 

state equation we want to put this boundary conditions also; that means, this equation 

which is guaranteed to be positive the moment any of the constraint is not satisfied the X 

dot is guaranteed to be positive. Hence, these boundary conditions will never be met 

together basically. So, essentially it tells you that this formulation makes it some sort of 

an infeasible problem unless all constraints are satisfied. 

So, now the idea is I will take the original problem as it is, but I will augment that with 

this state equation and this boundary condition as well. So, essentially I will solve some 

sort of an artificial problem, which talks about problem in n plus 2 dimensional spaces. 
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So, that was done and I mean that is the one idea basically. The other we talked about is 

also slack variable method and in my personal view this is a kind of better than the other 

one. Here, the problem was again revisited in a little more generic sense, this terminal 

penalty is also there here, but that can also be there in the other formulation. I mean that 

that is not a restriction pursue. The idea is here is we have these constraints even if we 

have something like this. 
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Then we wanted to formulate this equality constraint out of this inequality by introducing 

this half alpha square. Remember, this is a scalar constant. So, if you have multiple 

constraints, you have to do multiple times all this steps. So, if a scalar constant like this 

we can have this equality constraint now, but remember going back to the static 

optimization problem where we kind of a did the similar thing for well deriving KKD 

conditions, but here the idea is not to neglect the value of this slack variable, but to 

compute the slack variable and its derivatives together. 

So, to do that there was an observation that this equality constraint, if I take a derivative 

this leads to that. If I take subsequent derivative of the same expression, ultimately I will 

end up with some equations like that. But, also remember that this assumes that this 

polynomial is of p th order; that means, if you take p th order derivatives of this 

polynomial then control U appears explicitly basically. By utilizing that fact, so from this 

expression, I can solve for the control in terms of other variables. So, the last derivative 

that p th order derivative equal to 0. If I utilize that thing then I should be able to solve 

control in terms of other variables. 
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Now, once I do that I can revisit the state equation and I put the state equation is nothing 

but f of X u, but u is now something like this. If I put it there here and in this I will 

consider alpha p is control, but all other things are states. So, I should be able to augment 

these state equations also which is very much straight forward. 



Alpha dot is alpha 1; alpha 1 dot is alpha 2 like that I will be able to do that and alpha p 

happens to be a control variable. Say, under the fact is alpha p is unconstrained also. So, 

the same constrained constant has been taken care on this equation itself. So, alpha p it 

turns out to be unconstrained actually. So, again we had a kind of p states to the n states. 

In other words, we increase the state dimensionality, but ultimately we are able to kind of 

convert a constraint optimization to a free optimization problem. 
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Now, if you introduce this state equation, we also need one step initial conditions for that 

and that was unfortunately, it is possible to solve or the initial condition as a function of 

the initial condition for the state and time. So, utilizing this equation, you can actually 

solve this alpha t 0, alpha 1 of t 0, and things like that. So, this formulation is kind of 

very compatible in that sense. 
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So, again the formulation takes a little bit a higher dimensional, but essentially ends up 

with a free optimization problem, when alpha p is considered as a control variable. That 

was given there and you can go ahead and solve this problem in that way. So, these are 

the two methods that we kind of discussed as part of the state control, state constraint 

optimization problem. 
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Now, towards the end of this course, we also thought we can extend this scope of this 

optimal control to the distributed parameters systems, as well. Distributed parameter 



systems, by nature are governed by partial differential equation, which is very different 

from whatever you seen so far. But there are many examples where we have to talk about 

partial differential equations. For example, heat transfer process fluid flows, I mean 

chemical reactor process and vibration of structures and then ecological problems many 

things are there where ODES are not sufficient. 
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So, how do you handle with those kinds of problems? Now, going back and seeing what 

can we done for this distributed parameter systems. There are two approaches; one thing 

is a kind of design and then approximate that is what mathematician will love to do that. 

They invoke this infinite dimensional operator theory and does all sort of nice algebra 

there and then finally, come up with the control expression, then they discretize it 

ultimately and then try to implement it. That is kind of design and then approximate. But, 

the engineering approach follows their little bit reverse way. First of all, it does 

approximation and then does the design.  

For that approximate problem and that way it can be done in two ways; one is design 

without model reduction, which is a not very much advisable, because you really end up 

with a large number of grid points again. But, then we can also utilize the concept of 

design with model reduction; that means, not only we approximate the system, but you 

introduce the system, a kind of model order reduction sort of ideas there, and they come 

up with a lower dimensional representation of the same thing and then utilizing that 



lower dimensional system you can design like a control system So, that is the idea of 

design with model reduction. 
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Then the various topics that we covered under that in relatively fair detail are something 

like this. First we started with the idea of putting finite difference and then utilize the 

same idea of LQR for linear distributed parameter systems. And we gave some examples 

also to demonstrate the ideas there. Then we took a little digration after that where you 

talked about optimal dynamic inversion and then that was done by utilizing this 

continues actuator and the set of discrete actuators subsequently. As not very much in the 

frame work variation calculus and all that, but I still thought it is a nice idea to discuss 

about. Variation calculus is used not in the frame work of what optimal control frame 

work would like to do in away. 

In other words, we have this quadratic error quantity and then quadratic error was 

enforced to go to 0, utilizing the dynamic inversion ideas there. Why do you enforce this 

stable linear error dynamics and all that, but that will give you only a constraint with 

infinite freedom. So, there is a scope for getting this calculus of variation little bit and 

then we solve for controls assuming both continues actuator and also subsequently we 

had this discrete actuator formulation and all that, where this control singularity starts 

coming as the objective starts getting met. So, there is a necessity of switching power 



and then we having some two goals; one in the beginning and one towards the end like 

that. We demonstrated that utilizing examples also basically. 

Also we have this single network adaptic critic based optimal control formulation and 

that we can directly do that utilizing only directly finite difference and then putting the 

grid points and then solving the problem on the grid points only. But, we can also have 

this idea of invoking this model reduction through this basic function design using this 

proper orthogonal decomposition sort of ideas, where you can starts something like set of 

snapshot solution. Utilizing the snapshot solutions, you can design the basis functions 

which are tailor made to that particular problem.  

And utilizing those basis functions, you can actually come up with those basis functions 

to be utilized in Galerkin approximation, to come up with something like a low 

dimensional ODE representation of the system dynamics. Then utilizing that ODE in the 

model form you can come up with some set like a state feedback control design. The 

details of that can be seen in the particular lecture basically also, given examples on the 

way basically. 
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So, finally, at the end of the course there are some concluding remarks. First remark is 

variety of difficult real life problems can be formulated in the frame work of optimal 

control. Do not forget that. An incorporation of optimal control issues leads to a variety 

of advantages like you can talk about minimum cost, I mean minimum time or whatever 



maximum efficiency or non conservative design things like that. So, optimal control 

frame work gives us a very good platform, very good tool for doing that. 

 And then modern techniques are capable of addressing the fundamental issue of what 

optimal control theory was kind of suffering from for long time and that is nothing but 

computational complexity. So, in computational complexity, various good algorithms are 

come up and then still developing actually and that is a resource for doing a good 

research also. But, I have said that many techniques available like pseudo spectral 

method, MPSP, SDR techniques like that which kind of try to address computation 

complexity issue in some sense basically. 

 Then this computational advantage coming from the computer side; that means, the 

computational power is increasing day by day that also helps. Now, it does not make 

sense to kind of get confine to the old idea that optimal control cannot be used in real 

time. It can be and in this particular course we discussed variety of classical and 

advanced optimal control techniques both in the setting of linear and non-linear 

framework. So, both have been covered in this course also basically. 
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Then coming to the estimation theory part of it, we also remember that it is a very good 

compliment for the control design part of it and state feedback control design needs the 

state information for control computation. That is the first thing why we want to study 

estimation theory. An estimation theory, once we know it enables the optimal control or 



any of the state feedback control design in a very good way. So, do not forget that part of 

that is a good motivation for us to study estimation theory. Then sometimes we need 

auxiliary information like the target information, obstacle information, like that for 

coming up with strategies; that means, guidance strategies and things like that. 

 For that we need to have target estimation, obstacle estimation or things like that, which 

is not the states of the own vehicle or own system, but states of the other system, which 

is necessary for doing some computational of another system. For that also we need 

estimation theory. So, many other applications are also there like something like 

parameter identification, fault diagnosis and many things like that, where if we know 

estimation theory in a good way, then it enables you in a very good way. Non-linear 

estimation theory is a kind of a combination of scientific as well as heuristic thoughts. 

So, for example, extended Kalman filter, even though there is no theoretical guarantee, 

but we know that it works very well, but it has difficulties in tuning also. So, tuning part 

you can put it into heuristics or experience sort of thing, but once it starts working it 

works in a very good way. Finally, Kalman filtering, which is kind of most commonly 

used in practice has been covered in this course in detail and both basic fundamental as 

well as advanced topics something like EKF, even some little bit kind of (( )) ideas also 

we have discussed.  

So, you can go back and study this course in a good way. I mean if you do not 

understand take your time and thus there will be practice problems on the way. Try to 

find and solve those problems, get a better understanding. Now, that after going through 

the course I am confident that you can also be able to read many books and then enrich 

knowledge further. So, with that let me sign off from this course thank you and good 

bye. 


