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Hello everybody, we will continue our lectures on optimal control of distributed 

parameter system. As I told in the last class, we will see some essential ideas getting 

embedded into optimal control of DPS, distributed parameter system. This is what we 

will largely talk here, both in the frame work of without model reduction and with model 

reduction. 
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Largely the topics that I will carry for model reduction, we will talk about these two 

publications for some time, made it happen 2003 and 2008 like that. Then there are other 

ideas also in 2001 and were thinking like that way. Anyway you can find more details in 

some of these references. 
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So, a little bit very brief review of optimal control through single network adaptive critic; 

I mean we have taken lecture there, one full lecture is there for adaptive critic where you 

can see details on that. Just is a little bit of recap on what it is. 
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So, first thing is optimal control formulation in general has several advantages like linear 

assumption for system dynamics or error dynamics is not necessary either. So, it avoids 

typically high control magnitudes normally. The system dynamics is accounted for 

planning the trajectory and hence your control normal does not become very high as 

some point of time. Then system need not… Now, coming back to this topic, what 

happens to be typically if the system error is large, if you go for stability sort of control 

theory then the control magnitude will become are large like PID control or dynamic 

universal like that. But, if you have optimal control in and it will tell there is time. It is 

not talking about moment sort of behavior, it talks about a behavior over period of time 

and all that. That is philosophical reason why it happens to be better distribution of 

control magnitude over a period of time accounting for the system dynamics. 

 So, that is one advantage of optimal control theory. The other one is system need not be 

square; that means, you do not have to have number of controls need not be equal to 

number of states or output. The third one is feedback form of control solution is very 

difficult these are good things, but this is very bad thing because feedback form of 

control solution typically happens to be quite difficult. 
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So, now coming to the review of little bit distinct time domain optimal control theory, 

especially coming through this approximate dynamic programming set of ideas, this is 

finally the thing. We have State equations, we have Costate Equation and we have 

Optimal Control Equations. A typical list closed to a state equation double of forward 

costate equations double was backward and these are two dynamic equations. This is 

static equations. So, all this things we know, and remember U k is a function of X k. But, 

lambda k plus 1, is the discrete time optimal control theory. 
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Now, coming to this single network adaptive critic idea, we have to synthesize a set of 

new networks in a such way that given an X k information, we should be able to find 

what is a our lambda k plus 1 information, so that is what the single network adapter is a 

critic synthesize is all about. An assumptions here is optimal control equation is 

explicitly or symbolically solvable for control in terms of state and costate. The 

advantage is obviously it retains all the advantages of adaptive critic and it eliminates the 

action network from the training process and also eliminates the iterative training 

between action and critic. This is what it is; there is a little bit comparison with respect to 

adaptive critic versus single network adaptive critic. We have talked in detail in one of 

the previous lectures. 
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Then the whole idea here is single network adaptive critic is something like this. We 

have this X k; we have this critic networks, here is to get lambda k plus 1. Obviously, to 

begin with this is non optimal. So, you have to get something like optimal lambda k plus 

1 with respect to this X k, so that knowing this X k and lambda k plus 1, you can use that 

in optimal control equation and get U k. So, initially this is non optimal, but still you can 

use these two and get your U k. When your X k and U k are known, hence you get an X 

k plus 1. Again, you use same critic network get lambda k plus 2 then using these two we 

get lambda star k plus 1. Taking this has come to an input and that is desired output, you 

trained this network and stop when this two are kind of close to each other and that is 

what we have discussed little before. 
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Now, the advantage of the single network adaptive critic is it retains all good feature of 

adaptive critic and eliminates the action network. Hence, it eliminates the approximation 

errors due to action network. No necessity of iterative training also between action and 

critic networks. It turns out to be much simpler than the neural network architecture, 

much simpler than the neural network architecture for synthesis of optimal control for 

this class of problems. So, it leads to some sort of significant amount of computational 

savings, especially when we talk about distributed parameter system synthesis. But, 

limitation again is it is applicable only when the optimal control equation is explicitly 

solvable in terms of other two variables. 
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Now, how do extend these ideas to distributed parameter systems? Here, this finite 

difference method comes very handy. We are not bothered about model deductions and 

things like that. We will just blindly put the grid points and try to get some solution sort 

of it. 
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So, let us see what you (( )) the program of which we were talking about. Having a 

system dynamics of this form x k plus 1 is something like this. We are all discretized at 

that node points; k, represents evolution of time was j represents with grid points in 



space. So, here by any grid point location j, this system dynamics is a function of all 

other node points’ state values and the control applied at that particular point. 

This is again whether it is all node points or a limited to one or two node points; it again 

depends on the order of the system dynamics and special derivative. If you have the 

second derivative like the example that we discuss last time then probably it is a function 

of neighboring nodes. If you have an fourth order derivative, suppose del square x by del 

sorry del forth x y del y forth like that, then it may for reporculate I mean the 

reporculation can go to little more grid points and both sides, so like that depending the 

system dynamics. 

In general, you can think that at any node point the system dynamics behavior is the 

function of states at all other node points and control applied at that particular node point 

at that particular time also. The cost function to optimize is given in this form and 

everything is in discrete domain. So, first thing is something like a summation over 

squares then next thing is a summation over time; double integral sort of thing what we 

saw in the continuous time domain. 
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Now, going to the same idea of approximated dynamic programming sort of thing, you 

can whatever is J k, k starts from here; k tilde starts k to N minus 1 that is cost to go from 

k. We can split this into two parts; first it is utility function it times k and then J k plus 1 

that is cost to go from k plus 1 is like dynamic programming sort of ideas. Then there is a 



definition lambda and the definition turns out to be like this. We define lambda at grid 

points J at time instant k and that is lambda k j and in this form; lambda k j times delta Y 

happens to be like these. This is a kind of compatible definition and the distributed 

parameter settings basically. Remember, in continuous times lambda happens to be 

lambda Del J by Del x that is we know that, but blindly you cannot put it here. We have 

to be slightly more carefully here, to tell that lambda k j is this one divide by delta Y or 

this time delta Y is equal to that. That is a definition of lambda here. 
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Then costate equation is convoluted process. We have to do really a lot of book keeping 

in getting there. But it can be done, you do not get afraid to see this algebra and all that. 

The term by term we can do, especially when you are really understood the derivation 

with respect to the lump parameter system from some one of our previous lectures. We 

can start similar thing, utility function, then cost to go, and then see what terms is what, 

what is the dependence on other things. Do not forget this summation over special 

domain and things like that. Carry out the algebra again term by term, I will not explain 

too much here, but it is there in paper and is there in this slide also here. 
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So, carry out the algebra you will finally end up these some expression like these. Then 

optimal control equation also you can do some algebra and then will be equal to zero. 

Then go back to that and tell if this expression happens to be zero, and then what is the 

simplification that I can get here, so obviously, this term what you see here happens to be 

0, the last term. So, you land up with only these terms. 
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So, this summarizes this behavior that you have optimal control equation and in general 

costate equation is given like this where as on the optimal path that this costate equation 



can be simplified to something like this. So, you essential deal with this equation as 

optimal control equation and this equation is something like costate term of optimal path. 
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And this single network adaptive critic for DPS, distributed parameter system, roughly 

remains the same; very similar structure is what you have seen before. The only 

difference is at the neural network structure is different and that structure, this one turns 

out to something like this. It is at neural network at node one, node two, node three and 

all that you see, they are not inputs are not only X k; X k is the value of state at time 

instant k, but they also take this. See, for example, this network at node two will take 

input from node one and node three as well. 

So, the neighboring node grid point values also turns out to be an input to the same 

network, otherwise the network do not converge . So, this is the proposition that we first 

proposed in the around 2000. In 99 or 2000 like that and then resulted in the 2001 paper. 

Anyway, the reference I will give you. So, this is very similar structure. The neural 

network details, what you see as neural network here, we have to really worry about 

synthesizing in this sense basically. That is the difference here. 
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Then how do you generate, let us say a profile for neural network training. That can be 

done in various ways, which is again necessary for this other approach where model 

reduction, sort of POD approach, we also need all that, because if you talk about lump 

parameter system, you know a bound from where the system dynamics state will deviate 

and all that. So, from there you collect or randomly keep on collecting a bunch of point 

values that means, you can randomly select large number of state values for training 

purpose. There is no problem.  

But if you talk about distributed parameter system that lectures is not there. So, what we 

do is we have to be slightly more careful and then tell now initial conditions are profiles 

over spatial domain, remember that. So, because of that you we have to bringing some 

concept like L infinity norm are probably depending on the problem we can have some 

sort energy content ideas, or in general you extend the energy contain ideas and then 

propose something like L 2 norm an all that. Remember, for the state values the state 

profiles are needed and state profiles cannot be discontinuous. State value, state profile 

has to be continuous over this spatial dimension. So, that is what restricts us to choose 

that and it is also a good thing, because of infinite number profiles. The more and more 

you become realistic then that training becomes better and better. 
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 So, the very first thing if you really want to worry in L infinity norm sort of thing which 

is not really very good idea mind you, but still you can do that. You can see, you can 

decompose this state values to various component that x 1 x 2 x 3 x 4 are the components 

of the state vector, remember, in distributed parameter sense only. Then you can see this, 

then you can tell my values at all these, this x 1 k infinity norm has to be less than some 

value and this x 2 k infinity norm has to be less than equal to some value like that. And 

then you finally, tell my S i which is the domain of interest for me and is direct sum of 

these states. 

So, essentially you generate the profiles within this S i. So, the idea here is well I mean 

pictorially speaking, something like this. You tell something like degree point have these 

of some 1, 2, 3 something like are there. Now, here tell like this value is bounded here, 

this value is bounded here, that value bounded this much and this is that much. 

Independently, I will select these points within that bounce and then I will join these 

points. This is pictorially ideas of that. But, this is not really a very good idea in my view 

because see 1 2 3 4 talk about this (( )) point things and all that. So, we need better things 

than that because this piecewise signing is also not a very nice idea.  
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The next idea is something like these, something like a energy based and the let say you 

defined kinetic energy is something like integral of 0 to y f x 2 square and potential 

energy is this one, del x 1 over del y square d y sort of all thing. This is very naturally it 

will come from distributed parameter system analysis. So, if it is like that, the problem 

definition is like that and the implication is like that, then you tell at the maximum that 

total energy something, which is the nothing, but kinetic energy plus potential energy can 

deviate by only so much. In another words, my entire energy content of the system is 

bounded by that value E naught. That has to be specified as a control design specification 

sort of thing. if that is the case then satisfying this condition and this definition you can 

generate this smooth profiles in a good way.  
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How do you do that? Let us talk about something like a function. You first define like an 

envelope profile. It does not mean anything. All that it means is depending on this 

envelope profile whatever (( )) these all, whatever E naught, I will calculate using this 

formula, K not plus P not that is going to give me E naught value. So, thus the meaning 

of this envelope profile. and this was as I just selected for a different reason in a different 

problem. So, you can vary according to your wish or you can simply fix number also for 

that. This does not have to.  

Next, you define domain of interest something like these x of t y is such that x of t y 

norm has to be less than equal to some f envelope of f y. This is where the utility comes 

even more and more. Once you know this one then this numbers can be selected in a 

good way. In this particular example, you take position thing that has to be bounded by 

that kind of thing, as well as double special derivative is bounded by this double spatial 

derivative, which is come out to that and this conditions also has to be 0 basically. 
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Then here is the trick and the trick is we assume fourier series in this form and then this 

fourier series, this leads to this, I mean if I compute this inner product, it turns out to be 

this expression and by definition of our initial conditions profile generation domain, this 

value this inner product out is less than certain maximum value, which is fixed number. 

That means this constraint equation has to be satisfied. Similarly, if you compute this 

inner product, this is the expression and this has to be less than a fixed number which is 

also coming out of that. The numbers have to be compatible, remember that. You cannot 

put arbitrary numbers just for fun in all that way and that is where this envelope profiles 

help us to gain gets a compatible number set and getting that. 

What is the idea here? Now, in this particular case, we have to generate this, a naught to 

a n, from a naught, a 1, a 2, to a n, in such a way thus these two equalities have to be 

satisfied. Now, this represent, remember this value, x max square turns out to be like this 

and x dash norm x square turns out to be like these. So, satisfying these inequalities we 

have to generate numbers. Now, once you generate number satisfying the some 

conditions like this; finally remember this way to put it back in this formula, which will 

give us a smooth profile. So, that becomes much more meaningful and the algorithm 

sense, let me not took talk too much. It is available, I mean, if somebody interested can 

think a little bit and plug the algorithmic there.  
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Now, coming to the problem one, which is of non-linear and linear heat conduction and 

the reason for taking this problem is like these. This is initial stage of these developments 

of the methodology and things like that. We wanted to have confidence on the problem 

and you also wanted to have some sort of comparison study with respect to a known 

result sort of thing.  

This known results that are typically available from operational theory, I mean infinite 

dimensional operation operator theory, but they are available only for linear system. So, 

when we went to this one, I mean this international journal of control and things like that 

and I mean you are getting some sort of inspiration from there and we want to 

experiment on that. Also there are infinite dimensional distributed parameter system and 

control theory books available and from that book some results can be obtained from 

there for at least for comparisons. 
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Now, the system dynamics is something like this; very close to what we seen before, but 

the fact that if you ignore this minus x cube term, it turns out to be the same problem, 

what we started with this in the previous lecture in the very beginning slide if you see 

that. So, this particular minus x cube introducing in this term makes this system dynamic 

non-linear. Cost function is very similar to what we started again, the quadratic cost 

function. Boundary conditions are also similar, now both Neumann boundary condition. 

So, if you ignore this term, we have some way of comparing this thing with respect to the 

previous results that you already have using LQR theory essentially. If you ignore this 

term, we know how to kind of formulate an LQR theory in grid point. So, somewhere the 

results should lead as to same value sort of thing. 
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So, going back to that and this is what it is, the result tends out to be like that. You start 

with initial random numbers and all; finally it will bulge on to kind of same value 

everywhere. Essentially, this is a deviation problem, so everywhere thing has to go to 0. 

Remember, this line represents the 0 line. So, every profile has to boil down to this 

particular line which is 0. That is what happens and that is what happening and 

associated control values also you can see depending on the deviation it takes about the 

kind of an opposite value of control and thing like that. They are all with respect to the 

non-linear problem; remember that so we cannot have a real comparison sort of thing 

basically. 
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So, again little more validation sort of things from a sinusoidal profile and even if it is 

continuous profile, we are doing experiment with respect to the grid points values only. 

So, we do not have any idea about what is happening in between it. No matter, if even if 

its initial condition which is sinusoidal finally, everything goes down to I mean 

everything decreases and it merge down to be 0. Now, somebody can argue that is a 

dissipating system anyway. In this system dynamics, this is a stable term is stabilizing 

term and this is also a dissipater term; that means, this is stable dynamics anyway. So, 

what is the big deal? Now, if you really stimulate this part of the system dynamics well it 

will take you to 0, but it will take you in a different way, I mean it takes some more time 

to take there.  
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More on that I think this particular idea was not pursued too much heavily because there 

is no modal reduction concept inside it. Hence, it is not very elegant really because 

infinite dimensional theory has to as some sort of modal reduction to make the system 

dynamics or synthesis procedure more elegant. But, in fact, somebody is interested in 

looking more in that you can read some of these journal papers. As I told the very first 

paper happen to be into 2012 in Automatica. The next one is in 2003 in Asian Journal of 

Control. So, if you want to see some of these details you can see that. This is a 

conceptual paper and this is little bit paper realistic paper with some process control 

problem. 
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Now, coming to the next idea, this is where the modal reduction concept is coming 

awake and here it is what you called as proper orthogonal decomposition and that will 

nothing to do with control design. This will essentially gives us some sort of basis 

function, which on using should be able to do a better job. If you do not use that you can 

still use a Galerkin projection method and then use this generic basic function, but that 

will again result in large number of states variables, which we do not typically want it. 

But, on other hand, this POD is not a miracle technique either. Now, if you ask me this 

POD, the proper orthogonal decomposition ideas appear heavily in homogenous system 

dynamic solution and that is very much valid, very much justified, because that solution 

nature is not changing anything.  

I mean there is no control input. So, there is nothing like the solution behavior depends 

on the control input, so there is no feed back there; that means, every time you solve it 

from different initial conditions, the solution is resulted is unique and depends on the 

system dynamics. Those problems are ok. But, when you talk about control in the loop 

then we all know that the open loop behavior and close loop behavior are two different 

ball game altogether. That means, openly behavior can be stable and close loop behavior 

can be unstable. Sorry, open loop behavior can be unstable, close loop behavior can be 

stable and much more beyond that. 



So, utilizing the… how do you generate the POD bases function? Because, essentially 

you need some sort of a random representative solution profile to begin with. But, 

solution profile itself serves as a function of control and hence it is not available, before 

synthesizing the control. And that becomes a kind of loop and hence people have kind of 

proposed something called Re-POD and then online adaptive POD; all sort of things. 

Anyway, will not talk too much on that, we will assume that the close loop system 

dynamics behavior can somewhat be captured in the representative solutions set and 

hence utilizing the solution set, we can generate POD basis function set also.  
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Let us continue and get started with that. The motivation for that is first of all continuous 

nature of the state is accounted for, unlike the earlier design where only we bothered 

about discrete point behavior. The second one is it is a powerful model reduction 

technique; it leads to some sort of very low dimensional system. Why this become low 

dimension is because we do not deal with generic basis function, but we rather deal with 

problem oriented basic function for control design. That is the key reason why it 

becomes, I mean why it result low dimensional representation really. Then it also is 

experimented with both continuous actuators as well as discrete actuators. So, we will 

not talk too much on discrete actuators in this class, but continuous actuators sense we 

will talk about and then more and that you can read out to find out. 
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The very first thing as I told is to starting with some representative solution, which is 

called as snapshot solutions. So, this is fundamental, I mean key things to design a good 

set of basis vector and once you come up with this basis vector set properly, everything 

else turns out to be very good. If that itself is not good then everything else will turn out 

to be not so good. So, be carefully about that, when we talk about generating snapshot 

solutions. So, how do you do that? First you generate the state profile and then generate a 

random control profile. Now, when you talk about profiles here, remember this are 

distributed above space basically. So, generate some sort of a state profile as an initial 

condition and then generates some sort of random control profile also as some sort of a 

control history. But, remember, you cannot generate very randomly. 

Because, if you really put random control then the system dynamic behavior can be very 

bad; it can go to instability behavior and we do not want that. With application of 

control, whatever dynamic it results in the close loop, we want to mimic that, in some 

sense. So, for that reason may be use some sort of stabilizing controller or we can also 

use some sort of logic to generate the state profile and just hold it for some time. You do 

not allow it go to or keep on implementing for a long time and all that. That means just 

to include a little bit of control excitation, you want to see that, even if it is unstable little 

bit, it may be still ok in some times.  



Then utilizing this control similar to the system dynamics, possibly using some finite 

difference or finite element, whatever it is, and then you can randomly sample it out of 

that. That means, this behavior, which evolves with time that also is a lot of profiles. So, 

you do not want on keep on collecting everything, but randomly you select some profile 

at different instants of time. Then you will have some sort of snapshot solutions and 

using which you can designs this basis function.  
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Now, a small outline, again the math details I will not touch it, but the small outline is 

like this. Once, you have a set of snapshot solutions then you come here and ask these 

question. Can I find the basis vector, sorry basis function phi in this way, where U i is 

nothing but, the snapshot solution. Can I find phi as a linear communication of these 

snapshot solution, such that this function what you see here, the integral value that 

means, this summation over this U i inner product phi and then absolute value square and 

then normalized that.  

Now, that represents the spread of this basis function really. So, if I talk about, I got the 

basis function then how well it can represent my solution set and that is captured by 

maximizing this cross function; again maximizing this, not minimizing it. So, if you go 

through the algebra, which is readily available in number of test paper and it turns out 

that it leads to some sort of standard matrix Eigen  value problem and this Eigen  value 

problem is nothing but the CW equal to lambda W. 



If you have that kind of thing; obviously, this is N number of Eigen values and all that, 

so find Eigen values and Eigen vectors accordingly. Then that N will turn out to be 

number of snapshot solutions; this N, the same N, but obviously, you do not want that. If 

you want to retain everything then there is no model reduction. So, it turns out that the 

very first Eigen values after ordering and all, I mean, if you finding the Eigen values and 

then order them, because this happens to be a symmetric matrix, it will all happened to 

be kind of real Eigen values and all that. 

So, you can order them and it turns out that very quickly these Eigen value set will 

converge in this sense; that means, if you start summing of lambda 1 plus lambda 2 

lambda 3 lambda 4; then probably even if you some for up to 100, then it does not 

matter, it will be still approximately the same and it is very quickly will converge to that 

summation. In other words, their total spread of the basis function set contains within 

some first couple of basis function.  
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And pictorially you can see that way in this particular problem, if you take just five basis 

functions, the first one will contain 65 percent. First two will contain about 92 percent, 

first three will contain about 98 percent like that; 97 percent 97.5 like that and then it is 

just takes about five basis function, we are done. Even if you collect some 200 basis 200 

snapshot solutions to begin with, we will ultimately land up with these five basis 

function vector and hence five dimensional representations of long parameter systems. It 



is that powerful. It again depends on the solution, I mean, depends on the representation 

of the solution through snapshot and that is again the key. What it tells you is capturing 

the behavior that is captured in the snapshot solution.  

Now, the question is whether the snapshot solution really behave, I mean close to the 

close loop behavior of the system dynamics or not and that is up to us to decide or guess 

of things like that. If it is close to that, this truncation will happen even very quickly and 

that means we are done. But, this picture tells everything; even though we started with 

200 snapshot solution ultimately five basis function it results into, because of this 

behavior; this lambda convergence behavior. Hence, the number of s is, I mean the 

dimension of the lump parameter system happens to be just five. 
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Then after you get the basis function, finally, you have to go through them for some 

order reduction procedure. In other words, from PDE to ODE, you have to get it using 

this basis function and all that. So, generication it is becomes mathematically complex 

anal I will write or I mean I will kind of demonstrate that using a simple a example. 
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We will go back to the same equation with linear heat equation with Neumann boundary 

condition. We started with this first example problem of the previous lecture. So, this is 

where the fundamental understanding happens. So, we start with this symbol linear PDE 

with Neumann boundary condition. And when we talk about inner product, the inner 

product definition in everything, what we talk here is in continuous time, I mean in 

continuous space it is something like this. When inner product of phi tends to psi, just by 

and sign multiplication integrates over domain and that is the definition of inner product. 

Then here we assume continuous controls; that mean, this state and this control we 

expand in this form. This is a model for representation. Now, this phi’s are basis function 

that is available through this analysis and all that, whatever this solution set that will give 

you something there. Anyway, we will get to that. Once, you have the set of basis 

functions, this phi is from 1 to N and this case it is one to phi. So, x is the state vector or 

state vector is expanded as purely a function of time, times purely a function of space. 

This is separation of variable sort of ideas.  

 Similarly, control is a purely function of time and purely function of space. Now, the 

function of space is already computed, because of this orthogonal basis functions and all. 

What remains to be computed is something line u hat of and x hat; that means, x given 

and x of t y, we should be able to find out what is x i hat of t at every i. Then based on 



that we should to be able compute this u i hat and based on that we have to get 

continuous controller. That is the overall idea there.  
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How do we do that? First of all, we have this system dynamics. In this expansion, this 

expansion you can put back here and then this will result in that sort of representation. 

Now, we talk about inner product with respect to phi j. So, if we do inner product with 

respect to phi j, remember these are all orthogonal basis function; that means, unless i 

equal to j, the inner product is 0. If i equal to j, I mean this is normalized sort of thing, 

but typically this is sometimes one if it is normalized are already or other otherwise 

particular value. So, this represents inner product. Let say it is, let me talk about that. 

These are orthonormal basis functions, not necessarily orthogonal, so that the 

orthonormal means if inner product phi i and phi j happens to be 0 unless i equal to j and 

it i equal to j this is one.  

So, utilizing that behavior here and noting that summation, this partial derivative 

everything happen, is an inner product also. These are all linear operator, you can carry 

out the algebra and ultimately it results in some sort of equations like this. And these are 

numbers, remember that. This is not, see thee basis functions themselves are orthogonal, 

but once you take special derivatives and then take inner product, they are not 

orthogonal. So, you have to really compute it numerically using trapezoidal rule and 

thing like that. So, this cannot be represented through delta function and all that. So, this 



has to be evaluated explicitly. Similarly, this also you have to be evaluated explicitly. 

But, none the less, if you think about doing that, this one either these are that, it can be 

actually evaluated explicitly. That is not much of a big deal. 
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Now, it will ultimately result in a finite dimensional system and then final dimensional 

system will tell us that this is the form where X hat of dot is AX hat plus BU hat; where 

A matrix, the component of a i j can be computed that way. B happens to be identity. So, 

ultimately we got representations in the finite dimensional space, lump parameter 

representation really. But, this X hat does not represent any grid point solution. This 

components of X hat which is x 1 hat to x 2 hat and things like that, they will go and sit 

here. 

And once everything is known, once you put it back in this formula, then u will get x of t 

y, similarly, for the control. But, individually it represents the magnitude that will go 

along with that basis vector, basis function really. That is the meaning of this time 

varying numbers. This is the meaning and if you really want to extract these x i hat, 

which is a function of time then again utilizing this ortho-normality behavior and all, it 

turns out that inner product of this and that is nothing but the inner product of u and phi j 

which is u hat j basically. So, given an x, you first compute through this inner product, 

this follow. Now, our job is to somehow connect this two. These are time domain 



behavior. Once you know this, we have to find out this and once you know that we go 

back and tell that I got my control throughout. That is the whole idea there. 
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So, given a non-linear problem, again it will result to a similar sort of things, but there 

will be an extract term here. This extract term will be something like this, because of this 

minus x cube will have an additional non-linear term and that non-linear term turns out 

be something like these. By the way, this problem has also been solved using this theta d 

method and all that. Those of you interested, you can see that in one of our publications 

in optimal control applications and methods. So, that is a different approach all together, 

but here we are talking about solving it using a SNAC; single network adaptive critic. 
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For the cost function, again it is like this. But, we have to have a representative cost 

function in the time domain. So, again this one is nothing but the inner product of x and 

x, inner product of u and u. Again, substitute the expansion; x is nothing but the 

expanded way like these and again same thing. Then u will be something like that. You 

expand it; this summation and that summation and put it together, ((   )) again and it turns 

out that it is not difficult at all; j turns out to be something like this, where Q is nothing q 

times I and R is r times I. 

So, this J what we see here and this system dynamics what we see here, they represent 

some sort of a regulator problem, but it is a non-linear regulator problem. Also, because 

this is a control affine to begin with, the PDE also results in some sort of a control affine 

non-linear system dynamics. Obviously, when we have a control affine non-linear 

system dynamics and then we have quadratic cost function. You can exceed this idea of 

adaptive critic or signal network adaptive critic like that and get a better solution.  
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Now, how do you get this sort of results like these? How to the results look like or 

something like these. You have sinusoidal initial conditions. I am not talking too much 

details of after this, because we know this compatible set of cost function in lump 

parameter and this is a system dynamics that goes along with that. We have also talked 

about how do you generate random initial conditions and all that, little before using two 

three different ideas. After you generate, how do you come up with this coefficient 

values, time varying coefficient values that also we discuss. So, (( )) components you 

discussed already and (( )) we know how to synthesis it. So, I am not talking that 

particular architecture in detail again. How does the result look like? The results are 

something like this. You have a sinusoidal initial profile, everything turns out to be 0 

very quickly and control also goes to 0 simultaneously. 
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Now, what about this state and control of non-linear problem? From different initial 

condition including constant it again goes to 0 and here control also goes 0.  
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What about this? Some sort of a random profile and you tested for various number of, 

many number of times. Initial profile is very arbitrary here, but what smooth. So, that 

one if it is there then something like these, which all happens nicely.  
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Now, again we come back to the linear problem and then you want to have some sort of 

comparison with results. These results are taken from a text book of infinite dimensional 

operator theory based quadratic regulator design and all that. So, this problem has been 

solved there and using that solution, whatever is proposed there in the particular book we 

talk about utilizing this. So, this is the (( )) solution and this is the close form solution. 

Visually you can see very close, but error also you can plot and see error values are very 

small and it ultimately goes to 0. 
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Similarly, you can see this from a different initial profile. Again, visually they are same. 

Error sense also they go to same, very small values, to 0 ultimately. 
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These are comparison results, which will guarantee that things are happening in a good 

way. Again, from a different initial conditions, sinusoidal profile where it looks very 

similar, error also 10 to the power minus 3 here, remember that. (( )) and all that. In that 

sense, but finally, it is very close to 0. This line is 0 line; you can see that it almost 

closing that. 
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These are confidence building exercises. Then another one, comparison of control linear 

problems, sinusoidal initial profile, you have a control comparison here and then even 

though, it because of this control; this control is not same as that control. Obviously, it 

not expected to be. This control is very good, because the (( )) see some sort of a 

constant profile, the close form formula that will automatically do lot of good things 

there, because it does not approximate anything to begin with.  

But, here we always work with an approximate system dynamics. So, there will be some 

small derivation initially. Ultimately, an asymptotic seems very quickly, they all go 

nicely and then that way it is not bad. Even if there is a variation, the variation is not 

really very bad. This variation what you see is 0.2 here, is always 0.2 with a little bit 

plus, I mean more than little bit lesser than minus 0.2. Sometimes, it will be smaller 

things like that. But on an around minus 0.2, the average value will turn out to be very 

close to minus 0.2 only. Error sense, this is what it is. Error things are happening, but 

very quickly around that time, very quickly the errors are converging to 0. Above two 

seconds of operation; it turns out to be two or three seconds of operation, errors are gone.  
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Now, this idea, both these ideas have been also experimentally validated, not just only 

with math actually. So, this experimental validation settings also gives us a little more 

confidence of the ideas that have been proposed.  



(Refer Slide Time: 42:26) 

 

 So, for little details on that you can look at this conference paper if you are interested in.  

(Refer Slide Time: 42:33) 

 

I mean the first problem in any experimental validation turns out to be the modeling 

accuracy. What we conveniently assumed is alpha equal to 1, beta equal to 1; in our all 

math analysis is not true. In general, it turns out that alpha is not alpha, beta is not even 

constant; they are function of y. So, this system identification is first thing to do and that 

itself is a procedure. We have to do several experiments and things like that. One of my 

colleague Prasanth Prabhat was a master student. He did lot of these experiments and 



sense and then made this collaboration. This alpha and beta, those have to be identified 

from this experiment first and that was carried out first thing. 
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That I will not talk too much detail on that, of course, and this was the experimental 

setup. We have this because experimentally we cannot talk about continuous sensors and 

things like that. So, we have this layers of sensor actuators, sensor actuators two like that 

and layers of the aluminum slabs, which are, I mean which are setup like this. Also, 

remember our boundary condition tells that they have to be insulated at both the ends. 

So, both the ends have to be insulated in some degree of precaution was taken for that 

also at both ends. 

And then if they have to be skewed away; that means, some sensor and actuator cannot 

be on the same rows sort of thing. Then it may peak of some wrong values and all that. 

Sometimes, you skew it away from that, so that is ok for some degree of reliability and 

things like that of the numbers. But, truly I mean this one dimensional representation that 

we are talking about does not hold good really. This is a cylindrical problem and hence 

there is a radial dissipation of energy also, not only axial. This is the whole problem 

actually. I mean, here you are assuming that all slots will attain a equal temperature 

throughout immediately, which is not really true, but except that the results are very 

encouraging. So, this is what you see there. 
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This is schematic of this. You have this eleven thermocouples, you have the aluminum 

slab; you have taken one dimensional heat conduction modeling sort of thing and they 

were ten heaters like that. 
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There are some hardware settings and this conceptually is like this. You have kind of 

experimental setup where you have to measure the temperature and there has to be some 

sort of I mean external multiplex sort of thing. Then you are pass it through this 



implementation through LabVIEW and that time it was Pentium PC. Then some digital 

IO and the control input were given to the experimental setup.  
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So, the implementation issues several things: first thing is closed loops state feedback 

control. So, how to relate training range of neuro control to physical temperatures 

readings? So, that was an issue. So, use normalized data as input to neuro controller and 

that was some sort of a solution that was proposed. Use normalized delta as input to 

neuro control and that solves it. The neuro control needs understanding of all the weight 

connections in a network. Each node has one controller. So, total something like 648 

weights and biases has to be handled using LabVIEW and that time it was manual coding 

in LabVIEW.  

 So, LabVIEW take, you manually code this numbers, 648 numbers and each of the 

number will have some large number of digits after point also. If faithfully you have to 

code it manually basically at that point of time. Now, it may not be done, because there 

is some automatic procedure available. Now, the question is how to get temperature 

values at heater locations? Because, we are assuming also that something is called 

collocated or non-allocated. When you have collocated, I mean all throughout you have 

been assuming collocated exsum; that means, where you are applying control, exactly 

there itself your measuring the input, I mean measuring the output. Typically, that is not 



feasible. So, non collocated implementation is typically available in distributed 

parameter system because it is the exactly same point you cannot take measurement. 
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So, then how to get the temperature values at heater locations? Those are like practical 

implementation issues. There are also issues in a control implementation sense, because 

you can always give heat input, you can heat it out, but when necessary, you cannot cool 

it down. There is no cooling mechanism and also there is something like, if you want 50 

percent of the flux load. That mean total something of some maximum excitation is 

there. Let say you want 50 percent, then how do you implement? It may not be feasible 

also in that sense. So, in a way, in a different way it was done.  

It was some cycle time is there and then if you really want 50 percent, then only up to 50 

percent it was made on then rest of the time it was left free. Obviously, all this 

approximation that you do is part of the experiment also degrades the system dynamics 

behavior, the assumption that we rely on the theory. So, you do not except two much of 

heat results in that sense, but despite all that the results will be encouraging.  
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So, this is in summary, this is the experimental setup. There were some set of data 

communication and thing like that. Ultimately, there was a multiplexer through which 

this set, I mean this was connected to the PC like that and there is a power supply which 

is connected. I mean this is very standard thing. And then this is a system where 

ultimately the experiments still keep on going. Again, that was a Pentium PC through 

which commands were given and sense of value were read and all that.  
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This is final result. I mean, ultimately we want to uniform temperature and all that. So, 

very end, at the boundary, it was not able do a very good job; obviously, there is a 

insulation problem and implementation issue and all that. But, nonetheless, it was able to 

control in a very good way. It was coming to all constant values and irrespective of 

various starts, actually. So, if you really want a constant profile then roughly it is doing 

the job. 
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If you really want a sinusoidal condition, then this is not constant thing. This is a slight 

part of, I mean slight sinusoidal behavior. So, look at the start things and try to connect. 

This is actually a kind of sinusoidal thing. Even if you want that it was happening. So, all 

that things, these are nice things, which gives us lot of confidence that experimental 

validation also it can happen. 
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So, summary of these entire control design approach using this POD and Galerkin 

representation thing like that. First of all, it results in a very low dimensional system of 

ODEs. It is again this entire way of mechanizing are handling this PDE system is 

somehow you have to have some representation of ODE and then excite this ODE 

control design philosophy is something like that. One way is to do not bother about 

model reduction and then simply go ahead and implement in finite deference. Also, let 

me put a comment here that even if you do that the finite difference once implemented, 

and then utilizing that last dimensional system, there are some model reductions 

techniques available also.  

So, that way also you can reduce the model. First, you will generate the large 

dimensional representation. Then you excide this Eigen vector comes out all that and 

then finally, you will reduce system dynamics there itself. That is also a possibility to 

look at or to look into. Another representation is the people have also thought about why 

final difference all the time, I can talk about finite element, finite volume. So, if you 

incorporate those things, then not only have to, not only I am getting some grid points 

values, but I also get some numbers in between the grid points. So, those things are also 

possible, once you use this finite element, the finite volume approaches like that.  

So, this opens of lot of different dimensions and depending on your comfort zone, you 

can explore what you want. Also these are very relevant to these chemical industry 



problems. So, process control people, if you are, I mean, happen through goes through 

these lecture may be find it very useful. Coming back, the lesser number neural networks 

it will result because these low dimensional representation and will also result in lesser 

number of neural networks. Hence, in a way, it will result is structural and computational 

simplicity. And it is possible to synthesize both for continuous actuator as well as for 

discrete actuators. Discrete actuators things, I have not talked about it here, but if 

somewhat interested you can read it one of our publications, when we got lot of 

promising results and then successful demonstration through experiment also.  

Then various other problems are solved. For example, it has some ecology problems, 

some newer management issues in the jungle and all that you have done it. It is just for 

fun and then this is not one dimensional PDE, but it has two dimensional PDE; that 

means, two special variables y 1 and y 2. The animals will be spread in different 

direction in jungle. So, one direction, well it is not sufficient to handle that, but 

essentially the idea remains the same and the tricks and techniques remain same. 

No matter, whether one dimensional ODE or their one dimensional PDE, here one 

dimensional means one special dimension, essentially. So, whether it is one special 

dimensional PDE or 2 or 3 or 4, it does not matter, because the basis function state the 

load and once you introduce this separation of variable concepts sort of thing, the time 

domain, the time evolution behavior is captured through the coefficient. So, because of 

that the generality is maintained here and hence you do many things there. 

But, obviously, the math complexity and computational complexity, it tries to pile up, 

because in one sense you talk about single integration of two special variables for 

evaluating the inner product. For evaluating you will have double integral sort of things 

or two dimensional integral sort of thing, so then the math and computational complexity 

will creep in rarely. But, in general, in my view, POD happens to be good thing, a good 

approach; however, as I told in the beginning that POD all relies on the snapshot 

solution. So, that is bottom line.  

Now, going back and thinking a little bit about snapshot, the solution is good and the 

procedure is good as long as the snapshot solution as good. Now, how do generate good 

set of snapshot solution? That again depends on intuition, depends on the prior 

experience, and depends on several procedures. Then as I told before the people propose 



different way of doing things something like adaptive POD and then dynamically re-

optimization of POD and things like that; that means, we do not generate the basis 

functions once and keep on working on that. You can have a procedure where basis 

function themselves get refined and as you go along, because you will have better snap 

shot solutions as you go along. So, that kind of ideas are available in the literature, you 

are most welcome and encouraged to read all of that and then get well further. This is 

fascinating area of research in my view and lot of practical significance in general as 

well. So, with that I will stop this lecture thank you. 


