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Kalman Filter Design - 1 
 

Hello everyone. We will continue our lecture series with Kalman filter. In last couple of 

lectures, we had given some overview and some implementation formulas and things like 

that. How do you use Kalman filter design and also I told in last lecture that we will 

actually derive some of these relationships to have better understanding around that way, 

ok. 

So, this is where we will start our derivation process and first thing is we will derive 

everything in the linear domain and continuous time domain actually. So, let us 

understand the theory behind that. So, first thing what we are interested in this particular 

lecture, this Kalman filter design for linear time invariant systems in continuous time 

domain, ok.  
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So, going back, I mean the problem statement that turns out to be something very precise 

like this. We got a system dynamics which is X dot AX plus BU plus GW and where we 

measured output is see something like CX plus V, where W and V are noise things and 

W is the process noise vector and V is sensor noise, I mean sensor noise vector basically. 

So, there are bunch of assumptions which will make our life much easier later and since, 

it tends out to be something like this, ok. When anytime you have the linear system 

dynamics and remember these are like time invariant system. That means, a b c d all that 

are constant matrix actually and then, anytime like dynamic equation, we also have 

initial condition associated with that, ok. 

So, the initial condition, that is X of 0 is assumed to be this way X tilde 0, P 0 that this 

notation till this. The first element is the expected value mu or mean value and this is 

nothing, but covariance matrix actually, ok. So, X of 0 has a non-zero of mu. Obviously, 

that is where you expect things to be happening in the beginning and it also has 

something like noise covariance way like this error covariance matrix P naught actually. 

What about W and V? W is w and V expected to be I mean they are characterized as 0 

mean. So, both of them are 0 mean. W h Q is something like process noise covariance. 

So, that is how it is. Q is defined and V, let the covariance is R actually, ok. What you 

mean by that? Obviously, mean something like this. That means, expected value of W. 

W transpose if you take that way, it turns out to be yet Q times the tilde function and 

similarly, expected value of e V transpose if you take, that turns out to be at A of tilde 

function multiplied by R actually, ok, but there is a very important behavior here that the 

two assumptions actually which tells us that X of 0 W t and V t are actually mutually 

orthogonal. That mean I take any common X of 0 and W r W to V or V to X 0. At any 

combination, they are mutually orthogonal, ok. 

Second thing is this W and V are non-correlated, uncorrelated and they are white noise. 

So, see the assumption. Actually many assumptions are involved, but V to zither filter 

still works actually, ok. As to summarize again, here I have got three things refers 

randomly, varying and initial condition W and V. They are characterized by something 

like the mean value and covariance matrix everywhere. Can you make sure that the X hat 

and true X goes to 0 basically? Then, we will get X hat which closely resembles X 

actually. 
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So, this is the process that we are interested in getting some exact of t and in the process, 

we will use state dynamics as well as a sequence of measurements. Then, you will have 

some estimate X hat of t in the sense that the error between X and X hat, if I define X 

tilde as hat, then it goes 0 as t goes to infinity, ok.  

Initially, they will have some error, but V whirls this error will not be there basically, 

that is mean X hat will closely weak or closely resemble X actually. What is helping us 

in doing those two things? One is as the system dynamics and the other one is the 

estimated dynamics. So, the other one is measured output, ok. All right. So, let us see 

how it is possible. First thing is I mean proportion observer dynamics or sometimes 

estimated dynamics or filter dynamics. People can say it in different names and all that 

way. 
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So, this is defined very close to what we already have here. X hat dot is the AX hat plus 

BU plus K e time innovation Y minus Y hat. Now, Y hat is an expected value of Y 

basically, ok and expected y is nothing, but CX plus V. So, you can substitute that CX 

plus V, but again expected value is a linear operator. So, you can do this linear operation 

here expected value of CX plus expected of E, but expected value of V is 0. That is 0 

mean white noise actually mean is 0. It is gone. Then, its again expected value is linear 

operator that turns to be C times AX and E of X is X hat actually. 

So, K e, what is happening here is nothing, but the gain actually. Estimated filter or 

Kalman gain and the whole point is how to regain this K e. Second you know this K e, 

we have got this initial condition at least the mean value sense and we can strictly 

propagate these dynamics. That is the whole idea here. What you have to design K e in 

such a way that this happens that may error goes to 0 as t goes to infinity. This is the 

primary objective actually. How to design that? So, we define the error X tilde is X 

minus X hat and the error.  
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Then, we talk about something like an error dynamics, how the error propagates with 

time, ok. So, X tilde dot is nothing, but X dot minus X hat dot simply from this definition 

and then, X dot is nothing. This follow AX plus BU plus GW, where X hat dot is 

nothing, but the observer dynamics and observer dynamics that you put that. Then, we 

combine terms. So, AX minus AX hat. So, that comes here, GW comes here, BU, well 

this BU VU gets cancelled out, ok. 

Then, you get minus K e times, sorry GW, GW here. Then, minus K e times Y is 

nothing, but CX plus V minus Y hat is nothing, but CX hat. We just derived actually as 

of this CX hat. So, this term is nothing, but X tilde. So, this is A times X tilde here and 

then, minus K e times, I mean this. Well, let us this term this is the GW minus K e here, 

ok. Then, you have got these two terms. You can combine X minus X hat is X tilde. So, 

that is K e times C times X minus X tilde. So, that is XX minus X, that is X tilde 

basically. 

So, here we got AX tilde coming from here, GW minus K e V goes there and whatever 

remains K e times C into X minus X hat which is X tilde comes here, ok. All right. So, 

then, we can combine these two. If X tilde is here, X tilde is here you take common 

ousted dot that becomes X tilde here and left out with that term actually, ok. This 

particular thing you can define it as something like as 0. Then, it turns out to be S tilde 

dot is nothing, but AX0 tilde plus these quantities GW minus K e of V, ok. 
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So, what happens here? The interesting observation here is the error dynamics is now 

driven by both process noise and sensor noise. The dynamics we call true dynamics is 

actually driven by process noise. What is the moment put here filter in the loop 

something like this and then, talk about error. Then, the error dynamics is nothing, but a 

function of both W and V. That means, it is a function of both process noise as well as 

sensor noise. 

Now, some useful observation here that is if you talk about expected value of X tilde dot, 

then what happens is you take this expression and then, put expected value and then, 

expected the linear operator. So, we can all do that and it turns out that this G e is a 

constant matrix; K e is a constant matrix and all that. So, if you this GA constant matrix, 

K e is a constant matrix, it will come out expected value the linear operator again and 

then, this one and that one turns out to be 0. These two expected values of W and V 0 of 

the 0 mean actually. 

So, 0 mean means expected value of them are 0. So, this turns out that the dynamics in 

the expected sense, expected value sense d by d t of expected of X tilde is nothing, but A 

naught times expected U, I mean sorry expected value of CX tilde, ok. That means e of 

X tilde. That means expected value of X tilde is a deterministic time varying quantity 

now. Remember that you find A minus K e C. So, that is deterministic respected value is 



a mean value that is the deterministic operator actually. I mean once you operate an 

expected value, the result turns out to be a mean value number, basically that value. 

So, when you talk about the expected value of the error and then, its dynamics d by d t 

that this governs something like that. So, what it tells us an expected value of X tilde is a 

deterministic time varying quantity basically. 
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Now, it turns out that this naught which is defined as a minus K e C is stable. That means 

all Eigen values are in the left half plane. Then, what happens is expected value of X 

tilde is nothing, but we take a solution of that is nothing, but to the power A naught t 

times X matrix actually. X 0 tilde and that will get to 0 basically because this matrix is 

always stable. If it happened that way, then it is this said to be the estimate is said to be 

unbiased because the expected value ultimately goes to 0.  

What if it does not happen? Now, that means, expected value of X tilde does not go to 0, 

then it is said to be biased actually, ok. So, you will ultimately result in some sort of a 

biased estimate which is not really good. This error thing should go to 0 basically. Then, 

you get what is the true valve in equations. 
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So, now, we will constitute this. Going back to this, we will construct this Kalman filter 

slowly and first thing to see that this aerodynamics is given something, given by 

something like this. Then, how you use it actually? So, we ultimately need some of these 

expressions. Later we will see that these expressions are P needed actually. So, we will 

go slowly actually that way. Then, first thing is what the solution of that is? The solution 

of for getting the solution you can think this part is nothing, but a time varying input is 

randomly varying, but this still a number basically. So, still it goes to the dynamics and 

then tries to alter it. 

So, it is a time varying input. If you see that way and once you know this is the time 

varying input, the solution turns out to be like that from linear systems theory. So, this 

part is e to A naught times X tilde naught or homogenous part plus cost C function part 

which is given something like a convolution integrated basically e to the power A naught 

times t minus tour multiplied by all these actually and d tour, all right. 

So, this is the solution of that considering this as something like a time varying input. So, 

what if you simplify this? Obviously, these two can be separated out first. It means this 

GW and K e V part of it and then, we are interested in this RWX tilde basically and here, 

we will use this property that these guys are mutually orthogonal. All the signals are 

mutually orthogonal. So, when you compute, when you attempt to compute RWX tilde, 



then this is nothing, but expected value of this follow and extend by you just it and that is 

the reason why you want it actually, why you want it by the way ok. 

So, you put this X tilde expressions, all right. So, you put that because remember if I, 

even if I take this below, then using this linear properties of expected value and because 

this is orthogonal to each other and all that will be cancelled. 

(Refer Slide Time: 14:32) 

 

So, what will remain is only the integral part coming out of here and then, we will keep, I 

mean only that part actually really W because when you operate it with W, only W part 

will remain. Remember, W and V are also mutually orthogonal. That part will also go. 

So, this will go because of mutual orthogonal. This will also go because of mutual 

orthogonality. What will remain is only that part actually. 

You put it this, that only that part and then, you can tell expected value of this is nothing, 

but transpose thing I can take inside now, but the sequence will be reversed and this I can 

attempt to put it inside because this is my integral 0 to t. So, W of t is not a function of 

tour really. So, this is like a constant s with respect to this integral. So, I can keep it 

inside. So, that is what is done here. W of t is taken inside. Then, expected value is a 

linear operate integral is also a linear operator. So, these will be coming out. 

So, expected value can be taken inside and remember, these things are actually not 

random variable. They are deterministic. So, they do not have to be a part of expected 



value. So, expected value turns out to be this, but this by definition is nothing, but this Q 

times tilde delta function actually, right and if this is an integral evaluation with a 

derived delta function, there is interesting property actually with of any integral 

evaluated with derived delta functions. If you have A f of t and evaluated of delta, sorry 

T minus tour a sort of thing actually f of t derived delta of t minus tour.  

Well, let me not do that way fine, thus then d tour sort of thing. If you well let me not do 

that, this is just tour. Let say will it say tour d tour and integral is there actually. So, what 

happens here is like this. This is also tour by the way. Well, in general, we can do this 

one. This is let talk about got confused here. In general, we can talk something like this, f 

of X. Then, delta of X this this direct derived function the x yet to be lets say this will 

turn over to be simply f of A or f of B. Let us say it is half of A. If X is equal to A e X 

equal to A. This is something like half of B if X equal to B, ok. 

Well, I know it does not work and this will turn out to be simply f of I mean any value f 

of whatever that C sort of thing. If x is any value between X equal to C, where C belongs 

to AB, strictly AB not included. In other words, if the value turns out to be naught of the 

boundary value, then the integral value is just half of that half of the value at that 

particular point, half of the function value at that particular point and if it is strictly inside 

the interval, then it is just the function value basically, but what happens here, 

interestingly if you observe it, what happens here is the integral value that we are talking 

about is actually, where are we, here. So, here we landed up with and then, if we notice 

that when tour equal to t that kind of thing, then that happens to be a boundary value. 

So, the entire function whatever it is, we are having we can simply evaluate it t, but we 

have to make sure that is a half terms X into that. So, the half QG transpose e to the 

power A 0 transpose and this is 0 basically. So, evaluate it tau equal to t basically. So, 

when we talk about this one, this is e to the power 0 and e to the power is identity. So, 

that means, we land up with some value like this. 

I hope it is clear because this is one of the understandings that we need to have. So, we 

derive the solution like this and then, tell we are interested in this operator or WX tilde. 

Remember, W is in deep, I mean the W is mutually orthogonal with respect to X 0 tilde 

and R t. So, here is X to the power tilde and here is V tour and all that. So, these will 

ultimately go to 0. 



So, we are interested in that what will not go to 0 is only this part. So, we keep that part 

only. Then, we use the idea that K expected value is a kind of a linear operator and this 

part is constant with respect to this integral because t happens to be one of the limits. 

This can go inside and then, subsequent expected value can go inside the integral. Then 

only, this expected value will turn out to be and that is nothing, but a derived tilde 

function times Q and this direct because this derived delta is there as integral actually 

and this integral goes to 0 at tour equal to t which is actually A. I mean it is getting 

evaluated at tour equal to t sort of thing. So, that is some, I mean this is the limit of the 

interval and this is because of that the half term will come and this is what it is and 

because it has to be evaluated at tour equal to t which is 0. That means, e to the power 0 

is identity. So, we will land up with something like this actually, ok. 

So, this is something that or if you are still not very compatible or something, it suggest 

that you see this derived delta function, integral evaluation and all that. It is available in 

any text books actually. So, on mathematics rest out of that actually. All right. So, this is 

our t actually.  
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Similarly, now this is one term that we got. What about the other term? RVX tilde. So, 

this VX tilde is again the similar procedure. Now, we have to keep the V part of it 

because these two will go to 0. So, once you have V part of it and then, there is A 

transpose this or take the transpose inside side and then, reverse sequence will happen 



and again expected value and integral of a linear operator. So, one can go inside. You 

will have this W, w transpose again which is nothing, but Q. Again, there is an integral 

evaluation and that is going to this, goes to 0 at one of the boundary values because its 

half term will come. 

So, again this turns out to be this below and sorry, the RV of X tilde will be very similar. 

You remember this is a negative term here. So, this negative term will be there. Here, 

that part again if we take V t inside and then, this transpose inside, it is a reverse 

sequence. So, then whatever its expected value will go inside the integral, then this part 

is nothing, but R times derived delta basically and then, again this is evaluated at one of 

the limit points. So, half of that and then, evaluate it tour equal to t as its identity here. 

So, it is left out to be that actually.  

So, you are interested in so much of this analysis of these two things and all because we 

will soon need it in the error, I mean the covariance matrix propagation and things like 

that. You need it actually.  
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So, what is error covariance matrix? As I told, it is defined as an outward product 

between the errors. This variable X tilde, X tilde and X tilde transpose expected value, 

ok. So, what about the error dynamics? I mean this propagation of this covariance matrix 

what happens actually. So, then, that is P dot and remember derivative and expected 

value, both are optimal linear operator. 



So, derivative can go inside the expected operator and I have two variables like this. So, 

it operates that way and remember, these are vector matrix things. So, make sure that the 

order is maintained and then, this part I will keep it as it is, but what about this. This is 

nothing, but I mean if I alter these two then, the whole transpose actually and I take 

respected value inside. That turns out that it is nothing, but a expected value of this plus 

expected value of this plus expected value of the same thing whole transpose actually, 

ok. 

So, if I get expected value of this, I do not re-compute it because this is nothing, but this 

same thing with the transpose thing. Now, what about this below? So, expected value of 

X tilde dot X tilde transpose, what is that actually? So, now X tilde dot is nothing, but 

this one, right, we derived before. So, you just take this one a lot of simple book if in 

actually. So, then you multiply, expand the bracket, multiply A anywhere, then take an 

expected value and remember, this is what is expected value. What you are seeing here is 

nothing, but at WX tilde and this expected value to see nothing, but RVX. That is why 

we are interested in these. 

Then, this by definition is simply P. So, what it turns out to be this one is nothing, but A 

naught P plus this quantity which we derived to be G G times this quantity and this 

quantity is derived like this. Why not K e times RVX tilde? In RVX tilde G I something 

like this, ok. 
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So, then if you expand that it turns out to be A naught B plus half GQG transpose plus 

this minus. Minus become half of A K e R K e transpose basically, ok. Then, what is P 

dot? Remember P dot is expected value of this plus same thing whole transpose. So, you 

got expected value of this. So, then, P dot is expected this one plus the entire thing, 

whole transpose actually, ok. 

So, P dot terms out to be like this. So, very close to what we know in LQR theory 

actually, ok. All right. Now, we need to find the solutions of P and the theorem tells us to 

somewhat result is there which tells us that if K e is designed in such a way that A 0 or A 

naught which is defined as A minus K e. So, if this A minus K e is stable, K e is 

designed in such a way that A minus K e is stable. Then, even in an initial conditions of 

P which is P of 0 is P naught, then a positive, semi-positive, semi-definite solution can 

always be obtained. That is what the P times actually is, ok. 
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There is also naught theorem which tells us that the error covariance matrix P t actually 

approaches a steady state-value P as long as this is asymptotically stable actually. Not 

only there is a positive definite solution, but it actually goes to some sort of a steady state 

valuation actually. If a steady state solution and we want that particular steady state 

solution, only then P dot has to e 0 basically, ok. 

So, this entire expression, this one is nothing, but P dot, but P dot is 0. So, hence the 

entire expression equal to 0 basically, all right. So, in steady state, the differential 



equation reduces to something like this, ok. The need to not I mean some comment here 

that P of t by definition is something like this and hence, what you mean a smaller P f t 

implies, but I estimate basically, ok. 

The error covariance matrix is smaller once the estimate is better basically, ok and there 

are also some definitions like this which tells us that if P1, P2 or both positive semi-

definite and P 2 minus P 1 is, I mean 1, then P 1 is less than equal to P 2, provided P 2 

minus P 1is a positive definite matrix. Remember why this is this definition sort of 

thing? It is because we are not talking about the matrix algebra basically. So, you cannot 

compare these two. Whenever you have this P 1and P 2 matrix, how do you compare 

them and by definition, it tells out that if P 1 is less than equal to P 2, if P 2 minus P 1is a 

positive semi-definite matrix basically. 
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Now, here is a point where you can actually go ahead and try to derive Kalman filter. So, 

what it tells us now so far. So, actually if you see all this, our aim was to get something 

like AP dot and P dot. If you see a reverse sequence sort of thing, our actually aim was to 

get some sort of a error covariance matrix propagation dynamics actually. So, we wanted 

to get AP dot and P dot turns out to be something like this and the same value to whole 

transpose actually, ok. 

So, then this value we are interested in, so we had to do some system only like that, but 

here is a client where you get this R double X tilde and RVX tilde. So, we wanted that 



expression actually and that is why, we derive this RVX tilde and RWX tilde that way, 

ok. So, now, if people like this P dot T actually, so we got this P naught and some 

theorems which tell out the system solution. If A naught is stable, then there are always 

existed P positive semi definite P and in general, I mean it increases the steady state 

value. Once it is as a steady state value, the equation is something like that actually. 

Now, what you are interested to obtain a constant observer Kalman gain. We are not 

interested in time varying K e and all that. We are interested in something like a constant 

K e basically. 

So, if you do that, then the idea here is to minimize the steady state error covariance 

matrix. If you look at this one, the linear solution which is positive definite and positive 

semi-definite at least and on that, ok, so that is what we are telling here were interested in 

a steady state value which is smaller actually, ok. That means we are interested in 

minimizing the steady state covariance matrix P basically. What is steady state 

covariance matrix P? It is the solution that comes out of this basic equation actually, ok. 

So, here is an optimization formulation which tells that we have two kind of minimize 

this P. What? Remember P is a matrix now, but rest turns out to be a kind of a non-

basically. So, we are interested in minimizing the trace of P known that is, ok. So, what 

is P? By definition limit, it tends out to be infinity. This term actually, right just the trace 

of P. What it means? Then, limit t tends to infinity that is what we want in this. 

So, when t goes to infinity, this error quantities are there, X 1tilde square XN tilde square 

like that actually and expected value of all that. If you put it in some term in that is what 

you want to minimize actually, ok but this has to be minimized to subject to this 

constraint equation. This is what the constraint equation we got, ok. 

So, this cannot be ignored actually. This has to be subject to that. So, in other words, we 

want to find some appropriate selection of P and K e in such a way that it minimizes the 

steady state P steady trace of P 2 very exact subject to this Ricotta equation basically. 
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Now, here is error. Some facts from A from matrix calculus and this matrix, I mean some 

facts are evolving by it. We actually will not go through the little of this derivation and 

all. These are all matrices actually and remember, sigma is a matrix and we are all some 

matrices and somewhat. These result are available will simply that we use it. So, what it 

tells us that you have got this. This optimization problem here, where you have to 

minimize this cost function subject to this equation which is equal to 0. 

So, the theory tells us that you can have an augmented cost function which is the original 

cost function plus this half of trace of G times S, where S is a Lagrange multiplier matrix 

actually. Then, the necessary conditions turn out to that all these derivative. Now, these 

are function PK e and S. 
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So, the partial derivative of J bar with respect to P has to be 0, I with respect to K e has 

to be 0 and with respect to S has to be 0. Now, this partial derivative can be derived 

using some of these results here. So, it turns out to be something like this. However, to 

solve these three equations to gather basically and that is not the typical c. So, from 

equation 1, you can actually do this. When this equation can be written something like 

this and this is nothing, but a kind of Lyapunov equation actually, ok. 
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So, hence, as long as A naught is stable, S is guaranteed to positive definite, S naught is a 

system dynamics matrix for that particular Lyapunov equation and all that. So, as long as 

A naught is stable, this will be a positive definite matrices which satisfied this equation. 

Remember, what is G? It is the equation. S is nothing, but the Lagrange multiply actually 

Lagrange multiplier matrix and to be like that.  

Now, what is you have that let us go to this equation 2. What does the equation 2 tells? It 

tells something like this. That means K e R minus P c transpose is 0 because S is a 

positive definite matrix. It cannot be 0 actually, ok. So, K e if you see this equation and 

this K e is nothing, but P c transpose R inverse. Interestingly, it is exactly similar to what 

you have actually derived in LQ observer theory. If you can see that of the lecture notes, 

I mean slides for that lecture, you will see that actually. 

(Refer Slide Time: 36:04) 

 

So, K e is nothing, but P c transpose R inverse. So, we have to use equation 1 to what 

equation three. Some from three you can put some; you can put it that way. Now, you 

expand A naught is A minus K e c sort of things. So, that you expand all that is equal to 

0 and then, it turns out to be something like that AP minus this P c transpose R inverse c 

P and all that actually is equal to 0. That means, if I mean you can see that AP is here, 

then PA transpose is coming from this term K e K e r K e transpose and K e is nothing, 

but this one P c transpose R inverse.  



So, you can substitute that wherever K e appears and get that, then it turns out that two 

terms will be cancelled out actually. This R inverse is identity. Once this is identity, 

these two terms are equivalent opposite. So, that two is, they will go. So, you are left out 

with something like this actually, ok, but this turns out to be the filter algebraic Ricotta 

equation or instead it is called Filter ARE actually. So, once you solve this, you get the 

Ricotta matrix P and finally, K e is nothing, but P c transpose R inverse. That is how it is. 
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So, summary is something like this. You have got system model which is X dot is AX 

plus BU plus GW and we have got a measured output which is Y equal to CX plus V and 

the initial condition you have got process noise, you have got sensor noise. These are 

characterized by their mean value and covariance matrix. Initial condition mean value is 

X tilde dot P naught and W is 0, Q and V is 0, R ok. 

The assumptions here are these two noises are white noise and the WV and also X 

naught except t naught are actually mutually orthogonal. You define that error in the 

state is something X of t minus X hat of t, where X hat is estimate of X and our observer 

interest is to find the X hat of t such that P in the limit tends. That means steady state P 

limit t tends to infinity expected value of XX tilde X tilde transpose. That is what it is. 

So, steady state P has to be minimum actually. 

So, filter operation I we initialize it first as something like X hat of 0. Then, we need to 

solve this Ricotta matrix or Filter ARE that equation which you need to solve. Then, you 



can compute the Kalman gain and then, you can propagate the filter dynamics. So, the X 

hat 0 is known and this filter dynamics structure is known with a deterministic value of 

K e, ok. 
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So, they you know nothing unknown now here. So, you can propagate this filter 

dynamics and because of the nature of the solution and things like that, it is guaranteed to 

give stable tracking, I mean stable error dynamics. That means error value that X tilde X 

minus X hat will ultimately go to 0 as t goes to infinity actually, ok. So far so good. It 

turns out to be very lacerative actually, but there are certain issues or called successful 

operation of Kalman gain and the certain mathematical comments also basically. So, let 

us see those one or two actually. 
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So, first thing is this Y minus Y hat. How about that is you can think about that is Y tilde 

and Y minus Y hat is something like well, I should have that yeah Y minus Y hat. So, Y 

is actual measurement and Y hat is CX hat actually ok. So, estimated output, predictor 

output whatever you can say actually. So, if you take actual output minus this predictor 

output, this is called the residual or innovation actually which is also a 0 mean white 

noise and that actually leads to this whiteness test actually.  

In other words, if you implement a filter and then, tell filter is working and you also need 

to do some sort of few tests to validate your result that it is actually working and we are 

not misled actually. So, what is the first result tells us that if you think about residual or 

this one, so it also needs to be some sort of a 0 mean white noise, all right. So, this is 

what you can do now is you generate this residual for a large number of signals and try 

to find out the mean value of that and that should go to 0 actually, ok. So, that is called 

whiteness test and all that.  

However, this particular Y tilde has to behave like a white noise actually and Y tilde is 

something like this, CX tilde VCX tilde plus V and then, expected value of YY tilde Y 

tilde transpose should turn out to be R actually. So, that is actually kind of whiteness test 

basically. Also remember, in the estimation process, the state equation actually helps in 

eliminating the out layers. That means, you propagate the state equation or filter 



dynamics and things like that. You expect some sort of a value for Y hat. You know 

what Y hat is actually, ok. 

Now, if Y turns out to be pretty close to Y hat, then maybe you are wrong or the sensor 

is good. So, we can operate that. I mean you can update the values and all that for X hat, 

but if for some reason, some Y happens to be much larger than Y hat, then something is 

going wrong there. You tell that data particularly turns to be something like a out layer. 

So, we do not have to use it actually. So, then it tells out that the state equation because 

you have to propagate to see what is CX hat. So, the idea is here that the state equation 

actually helps us in eliminating outliers also. That means, if there is some outliers 

somewhere, then we do not have to operate it actually, ok whereas, the measurements or 

rather innovations help us in correcting the modeling errors inaccuracy actually. That 

means it does both the thing. It actually helps us in declaring some third data is outlier 

and hence, not using it or it actually kind of if you use it because you are relying more on 

the sensor output and less on the system process modeling actually. So, it actually helps 

us correcting the modeling errors or modeling inaccuracies as well actually. 

So, as the third point, third point is if C, A is observable and this pair A, G square root of 

Q is reachable, then the filter ARE has a unique pdf solution for the Ricotta matrix P and 

moreover this solution leads to Kalman gain that derives the error dynamics 

asymptotically stable. So, the two conditions. One is it has the problem to be observable, 

otherwise nothing will work. Your Kalman filter is also not good work actually. So, for 

the Kalman filter to work, this pair C, A has to be observable first and this pair A, G 

times square root of Q needs to be reachable actually. 

If this condition observe, its observality is not that. You can do anything. You have done 

top of observality. This has to be there for unique solution of this filter. If it is there, then 

we can get something like a unique p d f solution or positive definite solution from 

algebraic Ricotta equation or filter ARE equation, ok and moreover, this solution will 

ultimately lead to Kalman gain. Remember, K e is nothing, but Pc transpose R inverse. 

So, ultimately it will lead to Kalman gain that derives the error dynamics asymptotically 

to 0 basically, ok. 
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Now, the fourth observation. The assumption this one, A, G times square root of Q is 

reachable requires that the process noise should excite all states actually. Process noise 

keeps on coming and ultimately should excite all states and if we does not tell properly 

something, somewhere something goes on and you will not be able, you will never be 

able to observe it properly actually, ok. So, because there is a requirement that you 

should excite all states sometimes, there is a necessity now to inject artificial process 

noise to the plant. For example, if you talk about kinematic label and dynamic label 

variables, typically system dynamics contains two label variables, something like 

kinematics which is something like X dot is V and dynamics, where V, where V dot is 

not A, but A plus W. We can say that way, ok. 

So, because this is a physical quantity normal escalation, right, I mean escalation applied 

to the system basically. That is directly influenced by noise W, ok. Now, the question is 

because it needs to excite all states, now W is suppose it does not excite explicit, give 

some exciting V dot V only through this V dot equation, then it makes to a kind of inject 

artificial noise on that. Remember, X dot is V simply by definition is no one wise and 

nothing that actually, but still by putting an artificial noise, the W1 things, the filter can 

work beautifully actually, ok. 

So, that is what it is. Then, another starts. The other point is the requirement to complete 

R inverse demands that R is first definite and hence, it is necessity that B, the 



measurements that all we put all the measurements. So, with that measurements, that R 

inverse has to happen because we cannot define some sort of measurement till that 

particular component I do not know what is going on actually, I will tell that. So, what it 

happens is the requirement to complete R inverse demands that R needs to be positive 

definite N. Hence, it is necessary that the measurement of noise corrupts all 

measurements and because of this, there is usually some preference. I mean there is some 

performance degradation and if there are some noise free measurements typically either 

that way. That means, you artificially inject the noise and make everything obey there. 

So, they will leave it like that or there are some noise free measurements or some little 

bit more practical complicated filters should be used. They are typically there in the 

literature. One thing comes from the deist filter. Deist filter for example, actually. 

So, there are bunch of issues here for successful operation of Kalman filter. We will see 

more on that when we finish external Kalman filter and later actually, all right. So, only 

then, if you make sure that these things are not forget and these are kept in mind, then 

you can get nice behavior of Kalman filter actually. The other one which is another 

statistical important statistical property that expected value of X tilde X tilde transpose 

should be 0. That means, the state vector state and error vector, this is this estimated state 

is estimated error. 
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 So, the state vector is orthogonal to the estimate of the state vector actually. We can see, 

understand more common details and lastly, this comparison sort of things. Suppose, we 

have observer design and filter design, that means, you have this X dot is AX plus B 

here, but there is a process noise plus W and you have got Y is CX and you got Y of CX 

plus V here and testing the solution to both problems turns out to design that is, I mean K 

e equal to P c transpose R inverse and where P is the solution of this Ricotta equation 

actually. 
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Here, if you talk about other one, it is Ricotta equation contents G also GG transverse. 

This side also actually from then this part I have already told before Kalman filter 

derivation assumes white noise and some many real life problems are typically not 

detected by white noise. Rather color noise are very frequent, where say for example at 

all wind gust noise and all that actually. 

So, in that situation, one can form a sub-system whose input is a white noise and output 

is a colored noise and explain all that little bit before and the sub-system is then 

augmented with the original system to be form. An augmented system whose input is 

white noise actually. So, this is what it is. Initially, this I showed an example already 

before actually. Usually what happens is, you have got a transfer function or you have 

got some sort of a small time state space model for which you take input as white noise 

and output as the actual colored noise that you are expecting actually. So, then what 



happen is you tend to kind of augment these two together and then, you will get whatever 

you want actually. 

So, this example I have just given little while before actually or may be in the previous 

lecture you can see basically. So, this is a need concept because many times, it is actually 

colored noise, but colored noise can be actually a dynamic model or static model, either 

way actually. You can think about putting that some sort of AAA system dynamic 

associated with that colored noise is something like this. So, you have got AXW dot is 

something like this, RN is a white noise where W is a colored noise and that is a function 

XW and white noise both. 

So, you can put that in the state space form and then, carry out all that basically. Now, if 

you do that, the Kalman filter theory now can be applied to the entire augmented system 

basically. So, then it can be addressed and this is typically called stuffy filter ideas and 

all that each other actually. If you see that there are bunch of these comments are here 

issues, observations, comments and all just be aware of that. There are many more 

comments and many suggestions in the iteration as well actually and will slowly go that 

is discrete time derivation. Then, how do you put continuous time discrete times 

together. That means, system dynamic can be continuous, but measurements are discrete.  

So, how do you do that? Finally, we will extend the same concept in the same discrete, 

time discrete continuous setting for an external Kalman filter which is very heavily used 

and with lot of applications. Then, there also we will talk some of these issues and 

recommendations, something like that actually, all right. That is what I wanted to talk 

here. Thank you. Bye. 


