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Transcription Method to Solve Optimal Control Problems 
 

Hello everybody, we will continue with the lecture number 22. Where, we will talk about 

this different idea of solving Optimal Control Problems, which is known as Transcription 

Method. And followed by generic philosophy will cover, not too much detail into that, 

and followed by will go to a very recently evolving concept called pseudo spectral 

transcription is essentially it borrows the idea from the transcription method, but it is a 

different way of putting the problem in the frame work. 

So, the solution can be very fast, and hence the play music can do in real time actually, 

so that is very recent thing. So, will see the the concept first, what is transcription method 

and then slowly migrate to that and follow up with some some problem solutions and 

things like that. 

(Refer Slide Time: 01:00) 

 

The topics are like this first, we will see some motivation and then, philosophy of 

transcription method, which is very different from well what I am talking here is is direct 



transcription actually. So, this direct transcription is slightly different from what we have 

seen before, and then followed by this this pseudo spectral transcription. 

We will demonstrate the idea pseudo spectral using a toy problem first then, we will go 

to a real application problem and see how this is useful and all that, then remember there 

are several, several, several problems, which have been solved by the different way of 

authors, recently using pseudo spectral and all that. So, we will not go too much into into 

that and I will list out a few references also for your further reading basically.  

(Refer Slide Time: 01:41) 

 

So, let us see the motivation first and in a generic view in a global view optimal control 

formulation can be thought of something like this, one is indirect approach, one is direct 

approach. An indirect approach we we studied something like variation calculus 

approach, where it leads to this two point revelry problem and all that. Whereas, in the 

direct approach, we have this this dynamic programming which we have already studied 

and then we will have this this transcription method, which are going to study today 

actually.  



(Refer Slide Time: 02:15) 

 

So, this this necessary conditions of optimality through variation calculus, if you see this 

is the idea that that is developed actually. First we have this idealization of the problem; 

that means, we have this state equation but, along with this state, now we assume another 

costae equation. Another set of equations with the same dimension like lambda dot and 

all that. So, we have this state equation along with that, is the costate equation, is optimal 

control equation, which are stationary equation actually. 

If you solve, it will get the solution of control as a function of state and costate, when 

associated there are boundary conditions and think like that actually. There is initial 

condition for the state, in the final condition, boundary condition either it is given for the 

state or it comes to this transversality conditions and think like that actually. 

Now, the question is, we have gone through this difficulties and all that actually that state 

equation develops forward, costate equation backward, it is a split boundary condition 

problem. Hence it a two point revelry problem all sought of thing actually. 



(Refer Slide Time: 03:17) 

 

Now, the shooting method is one more one more method before we talked about gradient 

method and all that. But, shooting method is something like something like this, the 

whole idea here is we have this initial condition of the costate, which is not known. 

So, we guess the costate initial condition of the costate, now if you have initial condition 

of the costate. Then state and costate equation can can be propagated forward together 

with respect to the guess costate value at in all. And then if you see when t goes to t f 

your final value of lambda is somewhere here, somewhere here whereas the the 

boundary condition will give you some something else; let us say that is here. 

So, utilizing this error, whatever error is happen now you update this initial condition 

lambda 1 to let us say lambda 0 1 to lambda 0 2. Now, repeat the procedure, now with 

the next iteration it will go little closer to that and again you can update further it will go 

further close to that, and then finally, converse here actually, that is the whole idea here 

ok. 



(Refer Slide Time: 04:13) 

 

So, if you do that then, what happens is the then I mean the difficulties, because typically 

costate equation happens to be unstable equation, and here integrated equation forwards. 

So, we have this the sensitivity issue; that means, is sensitive to the procedure and 

essentially to the initial guess value of the costate actually. And the typically the further 

difficulties, we cannot have a good guess of the costate. 

Because, costate is typically do not have physical meaning; even though there is little bit 

mathematical meaning that costate is nothing but the optimal if you have optimal cause 

already. Then dynamic programming sense lambda is del J by del x. So, gradient vector 

of optimal cause that does not help too much in guessing a number for the initial 

condition for the costate actually.  

So, typically it is usually done through kind of guess a control history, some realistic 

control non optimal stabilizing control you use. And then use that predict it (Refer Slide 

Time: 05:07) I mean use that control from the initial condition of the state, both in the 

state sense, remember these are costate trajectory what you will operate on the state. And 

finally, you will get final state and once you get a final state you can evaluate this and 

then come back come back integrate the costate equation backward. 

And hence you get some sought of a information about lambda 0, typically it is on that 

way. So, whole problem is costate equation is normally unstable and hence the long 

duration prediction is not good. If anywhere these are errors here, anywhere there is if 



you not not very close to the real optimal lambda 0. Then we will have this difficulty of 

error amplification very fast, because the dynamic equation is unstable actually. So, 

typically non long duration prediction is not good.  

(Refer Slide Time: 05:54) 

 

So, what you do? We have to do this idea of divide and rule; that means, instead of 

predicting for a very long time, how about predicting for a shorter duration. Let us, say t 

0 to t f I will divide into two parts t 0 to t intermediate p I something and then p i to t i 

something. So, this approach is called something called multiple shooting, you have split 

that duration into several segments like this and but, when you do that it brings the 

additional constraint that around this point. 

You have to make sure that this discontinuity does not come, I mean this point kind of 

falls the same point as well as the derivative smoothness should also be there. The 

derivative hour here should be equal to the derivative there at least the first you derivate 

actually ok. 

So, these are these are some of the additional constraints that will put into the problem 

actually. So, these are the additional constraint at this joining points actually, but having 

said that you put this conditions in type, and try to solve it and think like that it 

essentially leads to this this concept of transcription method is kind of a direct approach. 

In other word if you think think about kind of segmenting it to a large number of 

segments actually, then essentially it goes down to some sought of a discretized version 



of the problem and hence that is the approach of what is called as direct transcription 

method actually.  

 (Refer Slide Time: 07:14) 

 

So, this is philosophy of direct transcription essentially it it convert the dynamic system 

variable into a final set of set of static variables or parameters, and then pose an 

equivalent static optimization problem. And then solve this static optimization problem 

using this this static optimization methods and essentially there are methods for this, so 

called non-linear optimization or non-linear programming basically. 

So, use that then solve the problem for the static optimization frame work actually. Then 

obsessively you have to assist the accuracy and repeat the steps if necessary and then 

there are concepts like fine tanning the grid points something like that. If the the course 

grid point is not good, you to go for final grid point and mass refining and think like that 

actually. Alright, so this is the whole idea of this transcription method actually. 



(Refer Slide Time: 08:02) 

 

Now in mathematical sense what is the thing, we have this objective of minimizing this 

notations are slightly different here. But essentially conveys the same message here the 

you have to minimize this this cost functions, is a function of state in control both, which 

is the end point condition and this is the path condition. Subject to this this dynamic 

equation and with end point, this is the soft condition for end points, where as these are 

hard conditions for the end point actually ok. 

So, end point condition equal to 0 and think like that some functions of end points, 

essentially it tells that the desired value can be fixed. Initial condition can be known 

think, like that all these or everything will fall within this this functional form if you 

write it to that way. And there is also path constraints which are not discussed so, far, but 

will we will discuss around the subsequent lectures, where this problem can subject to 

the state and control inequality constraints all the way basically.  

So, these constraint is also part of the problem formulation do not do not forget that 

actually ok. So, this is how the problem objective is and the whole idea here is we select 

a set of grid points discretized the state, and control variables. Convert the problem into a 

into a non-linear programming problem and solve that problem. And it should solve in 

such preferable it should solve that in a computationally efficient manner actually, that is 

what it the whole idea, I mean of direct transcription. 



(Refer Slide Time: 09:29) 

 

So, to demonstrate the idea what we are talking here is let us say assume that time 

domain is is discretized into this several several points like that, here one here one here 

one here one like that actually (Refer Slide Time: 09:45). And if you have a continues 

function like say x of t is some continues function like this what you are telling is we 

select the value of x of t that point of this and then here and then here like that. So, then 

you will you join it linearly basically. So, this continuous function is approximated by a 

set of straight lines hope it is a continuous function you can see that way actually ok. 

So, essentially approximate that trajectory that way and discretize the state equation and 

also you can discretize the control variables as well; similar to state variable, you can do 

that way actually. Then also we need a approximation of the integration of the cost 

function and we will proceed that will I means that is easy but, there are several 

improvements on that for basically. Alright how do you mechanize this this 

discretization of the state, you can very easily do that using this Euler’s method. 

And other words, if you take t k plus 1 is t k plus delta t or t k plus x sought of thing, 

then you get something like very very easily you can you can have a pair of x naught u 

naught x 1 u 1 and think like that for the entire domain actually. Euler method is is very 

easy, because it all tells x of k plus 1 is x k plus delta delta t or h whatever it is x it t ells 

that. If you a have differential equation x dot is is an f of x let us say x of u or whatever 

then x k plus 1 is x k plus delta t times f k of x k x k u k. 



So, that is very easy to see on that actually, we can implement that and set of finite 

constraint this this is will act as constraint now on those variables actually. So, the 

system dynamics is accounted for all the grid points basically in some sense. Alright, so, 

this is how the way to discretize the state dynamics, so we got a discretized from of state 

dynamics using Euler method. 

(Refer Slide Time: 11:44) 

 

Let us say, so, this is what is written here and in the matrix form if you put it this then it 

turns out to be something like this. And the approximate the integration as something 

like this; suppose you want there is a integration that needs to be done. This l and this is 

also like you can of this small error here if you to make it comfortable you can think that 

this is not a but, this is l actually, so this is l ok. 

So, you can and all these are also like l basically anyway. So, that is way of 

implementing the trapezoidal rule really, but thinks may may be different also everybody 

does not have to use trapezoidal rule for say. But, to to visualize the concept actually you 

can see that state equation I can i can discretize using Euler method and cost function. 

I Will discretize using trapezoidal rule actually, then it becomes a easy problem sought 

of thing and the entire set of state equation, what you see in the grid points can we 

written in this form in that side actually. 
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The end point conditions also you can put except u naught is if you put a grid point at the 

initial time and final time, then directly values are known to us. Then path constraints 

also given the these are the path constraints that needs to be satisfied. Remember all this 

things, now converted in the set of discrete form actually discrete variables really. So, 

everything will happen good in a discretized sense sought of thing. 

(Refer Slide Time: 13:24) So, then you have set of set of compatible I mean optimization 

problem for the static programming sense. We have this discretized cost function to 

optimize; subject to this equality constraint and subject to this initial final condition 

constraint and subject to this path constraints. Everything’s are in the everything happens 

in the form of discretized variables actually. 

Now, we have a compatible non-linear programming and hence we can excite any of this 

this techniques which are which are available numerical techniques and all that to solve 

this problem actually. And just to recall, you can somebody can think of utilizing this 

mat lab optimization tool works and think like that actually ok. 

This this there are tool boxes, there are various other tool boxes available in the market 

as well other than mat lab, mat lab also this is happening from functions and all that, 

which I have discussed before. Those thing can be excepted to to have solution of this 

discrete variables. Remember you are not solving a continuous optimization problem, we 

are solving the discretized optimization problem really here. 
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Then there are various various ideas about that. So, the how to the better approximation 

of the state dynamics or the integration is not good, you can think of higher order finite 

difference you can use RK 4 methods RK methods RK 2, RK 4 think like that; can use 

polynomial approximation in segment the polynomial and think like that way. Coming to 

the better approximation of cost function, you can use higher order approximations or 

you can think about using quadrature approximations as well these are mathematical 

mathematically more powerful actually. You can also talk about finite element 

approaches now days and and many different variations around that.  

(Refer Slide Time: 15:10) 

 



So, in general someone can think about improving the accuracy using higher number of 

grid points. And then there is this indirect transcription method, which is always there 

with us, which is going through this this dualization of the problem through this lambda 

dot equation. And then, using some sought of numerical procedure for that and that that 

is is really indirect, so we are talking about direct transcription method here, so that is 

not that much relevant here. So, ultimately remember even if you go for indirect 

transcription, what you are getting solution is for the grid points only, so that is our I 

means restrictions let us say. 

And coming to the computational efficiency point of view, people can think of using 

sparse algebra because if you see this matrix lot of zeros are there actually (Refer Slide 

Time: 16:00). Because, of this lot of zeros are available is appear naturally why to do 

zero computations, I mean 0 into 0 is 0 all the time. So, then this this sparse algebra can 

be excited towards speed of the algorithm and then also you can excite this this mesh 

refinement ideas. 

So, this first you solve this with a course grid minimum number of number of grid points 

in less you can solve it and then the increase the number of grid points and then 

subsequently increase it further, then think like that, so that is the idea of mesh 

refinement actually. So, initially you will not waste too much of computational time and 

for working directly with some sought of a course. 

Some sought of a fine grid lot of grid points, means large dimensional optimization 

problem and you do not want run into this difficulty of large number of local minimum. 

And then issues like computational time and think like that. So, it is always advisable to 

start with a course grid and then go slowly towards more and more number of grids 

actually. So, thus called mesh refinement. 



(Refer Slide Time: 17:05) Many references are available based on this this whole idea of 

direct transcription and conceive many of this. First thing that probably comes to my 

mind is is this similar paper which come comes in 1987. And then little more better 

explanation sense and difference different problem and think like that appeared in 1992, 

1993 little more a way. And then there are I mean there are several other papers available 

and like let us say this survey papers and then the more elaborate explanation. 

And think like that available, you can see some of these. Especially the last one is also 

very good one. In fact, the author as written a book and he is he has also developed a 

commercial software for solving this this I mean industrial industry grade commercial 

software for solving optimal control problem using this indirect transcription approach 

actually. 

 So, you can see some of the concepts out there. Especially you can concentrate on this 

page numbers about well about 15 pages where you can get lot more insight into that 

actually. Anyway, lets come back to that and as I had told you in the beginning will 

concentrate on a different approach which is which is evolved recently last 10 year, I will 

say which is which is become very popular in in a industrial especially in in U S A. 

Because, of several I mean, several practical problem have applied and then, it is also 

been tried out in international space station, zero propeller an many over in several 

satellite minimum time many over and think like that actually. 

And now it has also been applied for revisable launch vehicle guidance applications and 

it is also been used in robotics that think like that actually. So, here many things that are 

that are happening recently, so I thought it is a good idea to see this this philosophy. So, 

that if some of you are interested you can develop some some affinity towards this and 

probably you can think of that is the possible research direction for yourself also 

basically.  
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Alright, so, will go back to the problem definition and then then come back with this 

objective we have to we have to minimize this this cost function with soft end point 

consideration. I mean I mean this cost function contains an end point, I mean end point 

function and a path dependant functions actually. Subject to this system dynamics with 

end point want can reserve as well as path constraints like this; the philosophy here is 

discretization the state shown as before as well as the control. Now using pseudospectral 

method. So, you do not have to put blindly grid points and try to go discretization 

directly sort of thing and what is pseudospectral I will explain in the anyway.  

So, due to discertizing, but discretize is in different way using pseudospectral method 

and so, do that you can convert the problem to a very lower dimensional non-linear 

programming problem. So, the whole idea here is how to formulate in a lower 

dimensional NLP problem actually, so that it can be solve much more faster and while 

solving you to solve in a very computational efficient manner. So, various branches of 

mathematics will come together here and essentially it will put together in such a way 

that ultimately results in fast solution basically.  



(Refer Slide Time: 24:27) 

 

So, let us see the steps involved for this particular thing first of all you have approximate 

x of t and u of t but, how do you do it something like this. You do that remember this 

pseudospectral method is largely inspired from this solutions for parcel differenatial 

equation also (Refer Slide Time: 20:49). So, the parcel one way of the solving parcel 

differential equation these two basic functions and all that. 

So, you use basic functions and one dimension and leave the other dimension for 

converting for p d is to o d is and all that probably that concept will see towards the end 

of this course in one or two lectures. Then, we will right now the borrowing the similar 

philosophy what we do here is, first we approximate the this state and control using some 

sort of basic functions phi n which is phi 0, phi 1, phi 2 and think like that and do what 

difficulty this can be polynomial basic functions. 

For example, and all that that is not very effective. So, the studies is tell us that in a the 

function approximate theory, if you go through that that side of story there are better 

function approximation basis functions like sparse polynomial, legend polynomial think 

like that, there are essentially kind of our series. But come terms taken together and think 

like that actually. 

So, more on that you can study some methodic legend polynomial, sparse polynomial 

think like that actually, if you that kind of thing then, we take bunch of those. And 



remember those polynomial have a very nice formula for recursive relationship. So, in 

the other words the programming sense also it can be very fast actually. 

So, go there and tell x at of t something like this x t and a n and v n t something like that 

actually, but these are written like that in a finite number of basic functions. This 

dimension can be different for simplicity of algebra sake, will take it something same, 

but. here can be n 1 here, it can be n 2 does not have actually. Then, you have to 

selective set of grid points anyway and I will see summaries how to this set as how to 

select a set of grid points actually. 

Now, how are these points selected in the in that we can some sought of question and 

then; obviously, it turns out that uniform grid points is a is not a very good choice. So, it 

have to oppose this called non uniform gird points for see, the whole idea is how to 

represent the same problem in a less number of grid points actually. So, is a large and 

large number of grid points is not a choice. 

So, we want to have as possible and in turns out that you can really do a good job with 

less number of grid points but, we have to compromise the idea of uniform grid points. 

Let go through this non uniform grid points gauss location points and think like that 

actually. So, this now, discretize the differential equation is pseudospectral method and 

that method turns out to something like this we have this this finite difference versa 

psuedospectral thing; that means, finite difference is typically not good. 

So, what you do is this differential equation we do this the spectral discretization sort of 

thing. So, sincerely instead of running into a large dimensional sparse matrix actually. 

What you are looking for is a small dimensional dense differential matrix. What is 

different in matrix is something, what we studied just now this this form (Refer Slide 

Time: 23:50) this is called a differentiation matrix, if you if you see that actually. 

So, this can defined as differentiation matrix, so instead of a large differentiation matrix 

lot of zeros sparse sparse matrix, what you are looking for some sought of similar matrix 

which will lose similar all. But, we want a smaller dimension we at a dense matrix, we 

do not want see zeros very actually. Now, let us now if you do this approximate the 

integral equation also that, can be done even this this quadrature rules for that quadrature 

same all that actually. 



Now, we have to use this this apply the efficient finite optimization, after that also we 

have do not done. Remember that even though if it represented is equalance smaller 

dimensional problem still that smaller dimensional problem has to be solve as fast as 

possible. So, we have to use this this algorithms, which has to be very powerful also 

remember that as, I mean whenever there is processor capability of the, I mean whenever 

there is increase of capability in the processor that also come very end actually. 

So, in other words going this computational advantage of modern day computers of 

modern day processors think like that, that also comes very ending. But it is not 

intentionally solutions lies really in the good algebras actually, you may sorry good 

algorithm actually.  

So, it too for something some some better capable algorithms to solve this N L P 

problem and always solving that a procedure which is more capable always better 

actually. So, this how the whole the idea is their actually, now will explain the steps little 

more clearly that here actually. So, how you do step one is approximation right, so how 

you do approximation. 

(Refer Slide Time: 25:33) 

. 

Now, these approximations is to be done in such way, so that residual between these two 

whatever none of that needs to be small actually. Now, how do you make sure that is 

small, so what you do this is already the approximation we have and now we defines 

some sought of test function.  



Some of the different functions the chi naught chi chi 1 chi 2 like that actually ok, right 

in such a way that it is a well this is chi 1 basically alright. So, this is we have to do it 

such way that this this residual error has to be minimum you know this is inner product. 

And this inner product of continues function in other words integral sense actually. So, 

this in inner product is define something something like this, we have two continues 

functions. 

So, if you have two continues function f 1and f 2 then inner product between them is 

some finite interval let us say 1 t then 0 to t, then f 1, f t and f 2, f t sort of thing, that is 

what the inner product definition is that was we are using here actually. 

Alright, so now the question is we have a test function series but, what test function you 

need to solve, so that algebra becomes simple, and it results in simple dynamics and all 

that actually. So, one idea turns out to mine that whenever you see the integral and all 

that why not trying out the delta function. If you try out the delta functions again, if you 

put this one of the function reference to be delta function, then the entire integral 

happens to be just function really basically, sometime people I mean define this is 

without this 1 o t is not there. 

And if you have one of that something like delta function, delta t minus t n actually. 

Then, what happens the entire integral evolution turns out to be just f 1of t n, if the only 

condition is t n is has to be strictly line between this interval actually. If it is one of the 

interval point, then it is to half of that actually. Anyway, but guessing that t n is strictly 

inside this integral 0 to t, then the evolution of the integral happens to very easy and the 

residual happens to be the residual value of that point of the time actually ok. So, this our 

idea is and then the it mention further simplicity and all that. 



(Refer Slide Time: 28:04) 

 

Now, coming to the second point, how do you select the grid points and this is very nice 

demonstration, I taken from most of the lecture I taken from this material, which this 

short course in a I a a G N C which 800 myself. Some of the material are taken from that 

side of demonstrate it actually. Anyway, this is a this is very nice thing here happening. 

So, this is to see this function here and then just put uniform grid points. 

Then what happens here is it is is not happening or other words it happens up to this grid 

point let say. In this centre, it is because, whatever the value you are getting you are 

getting it there anyway. But, the function value of the matches within that interval also 

whatever points you are not seeing within that, there also the error small actually, within 

this period I mean the time interval. But, has you go towards the boundary the function 

value is very different even though the grid point value is same. 

So, there is some sort of a illusion rather basically; that means, the the value the grid 

point value is same as the function value but, in between the grid point there is a large 

dispatcher actually. So, obviously, this is not a good function approximation actually, but 

if you take the same function, you can do this I mean do this non uniform grid point and 

think like that will have a lot better advantage actually.  



(Refer Slide Time: 30:00) 

 

So, this this grid points which are really non uniform located typically called as grid of 

collocation points, are normally grid points illusion where call that way. So, these are the 

typically done in very non uniform sense; which is something close here, something 

close here, something is sparse here, think like that actually. Depending on the several 

approach again actually.  

So, anyway this is what you study here and then what what it the the literature claims 

that you have this the several ways of selecting that, something like uniform then, there 

is gauss and point gauss grid point and the gauss radeu grid point, gauss labatto grid 

point various things available in the math literature actually. And it turns out the uniform 

grid points is not good, because whether you have p n points or 1 n points or arbitrary 

end points no where it is approximate in a good way. But, if you slowly increase these 

like go to gauss gauss radeu in gauss labatto. Then it turns out the gauss labatto points 

will do a much better that in every where actually. 

So, now, the the recommendation always go towards this this gauss labatto points 

actually. The exact formulas of that is always available in the literature, you can you can 

see it very clearly basically. Alright, so gauss is slightly better but, do not stop it the 

gauss level but, go towards the gauss labatto points sought of thing alright. 



(Refer Slide Time: 30:59) 

 

Alright so, now, coming back to approximation of the differential equation, here is 

something that we need really understand actually. Let us assume that, done the we 

selected the, this one we selected the basic functions, we have approximated that way 

and we have selected the grid points also now what actually. So, what we are looking for 

is approximation of the differential equation. 

So, we have this state equation and control equation that way and then equation 

constraints will tell us these are the are the constraints what is happening here. So, I will 

put it I mean approximate value I will pit it here. whatever I am approximating I will put 

it here, the dot that dot remember this only function of time, this is constraint actually. 

So, the this dot will reflect in this dot really, and then we have this this quantity in the 

right hand side now.  

If you multiply by with with delta functions on both sides then what happens the this 

happens to be some sought of a number and then we will end of with this coefficients 

only basically ok. 

Now, let us let us see that in a little bit more elaborate sense let us take some something 

like a Chebyshev polynomial and combine ourselves to like five grid points only just to 

have this clarity of idea basically. We have this grid, I mean the nice thing about this is 

first to thinks you to write and the subsequent things you can write recursively.  



Ultimately, it happens to be like this basically, now what happens is x rate of t lets say 

we we assume expanded it this way right. And B at is also I mean a rate is also expanded 

that way. So, we I have not telling that especially here but, then x dot of t when you do 

that then it is like t dot here t 1 dot t 2 dot, because a 0, a 1, a 2 these are all constant 

quantities actually. 

Now, the good thing is this quantities once it is evaluated at a grid point it happens to be 

a number basically. So, if i if i look at this equation an at a particular grid point, let us 

say some 0 grid point whatever it is, 0 is something like this, because these these are now 

numbers actually. Similarly, x rate of t 1 happens to be all these are numbers and these 

the coefficient, which is which are typically unknown.  

So, what will happen in the left hand side you will a differentiation matrix in the form of 

these but, these are all numbers now, t 1 t 2 t 3 are all grid points now basically. And 

right hand side also a number, because ultimately here we have this this grid point value 

are available basically. 

(Refer Slide Time: 31:57) 

. 

So, once the grid points values are available those are those are become some sought of a 

numbers that are known, what are unknown is something like coefficients not not to be a 

4 and b 4. So, this essentially even though it is differential equation constraints it results 

into some sought of algebraic constraints in the form of parameters actually. So, if you 

consider the problem to be kind of a unknown function in terms of a naught a 4 and b 



naught to b 4 and it happens to be some sought of a algebraic constraint in in the form of 

coefficient, in fact everything done in form of coefficient actually.  

The last one how do you do this discretization of the integral equation, you can do that, 

trapezoidal rule but, there are much better ways of doing that which is something like (()) 

rule. And that is nothing but an approximation of the definite integral function usually 

expressed something like a weighted sum, where the w I can be computed appropriately 

depending on what kind of we are talking actually 0.  

So, ultimately it results in some sought of a discretization of the cost function also any 

way that what will need for the for the static optimation problem actually. So, we have 

got a algebraic constraint, which is converted into our is taken care of the state equation 

constraint. 

(Refer Slide Time: 33:54) 

 

And here it is something that will take care of the cost function other things are illustrate 

it direct actually. 
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So, finally, what we have is something like discretized, version of the same problem 

which which talks about minimizing this cost functions objective this set algebraic 

equation now with end point conditions and path constraints. So, this problem can be I 

mean this this optimal can control problem has been now, simplified to a lower 

dimensional non-linear non-linear programming problem. And hence we can we can talk 

about some sought of a non-linear programming problem, solution techniques and all 

that to which you can I mean use to solve this problem actually. Alright, so this is now to 

demonstrate in a small toy problem first and then will solve it at a good application 

problem and wind up this lecture actually. 



(Refer Slide Time: 35:27) 

 

First this toy problem we want to minimize this control u square from 0 to 1, subject to 

this linear dynamics that is what is x plus t basically with the boundary conditions like 

this, and the control happens to I mean control constraint is given the modulus cannot 

exceed one actually. Now this this trivial toy problem is something, which interest me in 

a different sense if you really look at the I mean this cost function is linear to study 

equation and all that you can actually go and end scalar problem also that way. 

So, we actually go back to the equation I mean whatever we know already. Assuming 

that this constraint is not there, let us you see that actually assuming that this additional 

constraint is not there you can actually go back to equation or whatever equation we have 

already known before that to solve this problem. And interestingly turns out that the 

solution is nothing but, equal to 0 throughout basically. 

So, if u equal to 0 throughout; that means, no control the homogeneous solution happens 

to be the optimal solution for this. And u is 0 obviously, cost function is 0 also basically 

that is the best thing that you can also always have I mean without applying any control 

we will be able to do this how actually. But, remember this is an unstable problem x 

what is x dot equally to x, I mean plus x is actually unstable problem the trajectory will 

evolve in unstable sense actually ok. 

This is time, this is x what we are telling is the initial condition is is 1 and the final 

condition at equal to 1, this is our final time. Initial condition is 1 and final time it has to 



go and and go to e actually, this is value e. And you can see this this solution if I take 

equal to 0, while end of this and this this particular differential equation I as has nice 

solution directly you can see that x of t nothing but, if the power x of 0 but, x of 0 is 1. 

So, this of t, so when t equal to 1, then it is nothing but, e when t equal to 1.  

So, we already suggest for the other one condition also x equal 1 is nothing but t. So, we 

are sought of arguments actually ok. So, what finally, what you are looking for is we try 

to solve this optimal control in a discretized manner using factorial but, ultimately you 

know the solution and the question is whether you are approaching towards that solution 

actually. So, here if you take chebyshev polynomial of first kind, second kind and think 

like what you have taken first kind, and you see the these are also kind of polynomial 

expressions.  

But, in a different sense actually each of the basis function are different sought of 

polynomial consults, basically essentially if if we put them together. Essentially it is 

nothing but a basically in a way. 

 (Refer Slide Time: 38:20)  

 

Anyway you can you can use this and then try to go head and then see this this one is 

chebyshev polynomial first kind, other one is shifted chebyshev polynomial for the 

interval this that and all; so, details you can see that in in typically book actually. And the 

collocation grid points have been defined something like that, remember all these things 

whatever we are talking I forget to tell, one point probably that let me summarize it again 



if I here (Refer Slide Time: 38:50) you talk about 0 to t 0 to t f but, the the entire grid 

points and all that will talk about something like minus 1 to plus 1. 

So, this scaling is necessary to make it compactable actually, so that is why this scaling 

is is put here this plus b by 2 plus a minus b by 2 sought of thing. So, this is this is those 

are the grid points grid point 1, 2, 3, 4 see, we see how those things are spars those are 

slightly closer to each other these are farer than each other actually. 

(Refer Slide Time: 39:22) 

 

So, like that, then you have this this state in control approximated like this polynomial 

thing. And if you see that you have d by d t of these it turns out to be something like this 

actually. You find out the differentiation matrix and equate the state equation at the grid 

points sought of things. 

So, like that, then you have this this state in control approximated like this polynomial 

thing. And if you see that you have d by d t of these it turns out to be something like this 

actually. You find out the differentiation matrix and equate the state equation at the grid 

points sought of things. 

So, like that, then you have this this state in control approximated like this polynomial 

thing. And if you see that you have d by d t of these it turns out to be something like this 

actually. You find out the differentiation matrix and equate the state equation at the grid 

points sought of things. 
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And then, compute the T n matrix something like this t I and equate the state equation 

and also things we have as an inverse of that actually t into d and put it there. This 

constraint, what you see here can be approximated something something like this 

actually, sorry this this dot equation and all that actually. So, again I do not want to go 

step by step here but, I think you can knowing the concept you can you can easily derive 

all those actually I suggest that you do it yourself also basically. So, that is ultimately the 

constraint equation turns out to be something like this actually. 

(Refer Slide Time: 40:16) 

 



Now, apply the boundary condition, so we we apply all this grid point condition 

boundary condition all that whatever we know here. So, ultimately this gives us this this 

constraint equation that this to constraints has to be satisfied actually, initial condition, 

and final condition.  

(Refer Slide Time: 40:34) 

 

Now, this this discretization of the cost function; so discretized that way, where w was 

are selected something like this all these numbers are are given here and then, it results in 

a discretized cost function actually ok. 

(Refer Slide Time: 40:49) 

 



So, finally, we have this this cost function to optimized subject to these conditions what 

you have here and define the augmented cost function and think like that. And then we 

can apply this KKT condition integral condition or any other static optimization 

technique numerical optimization technique and think like that to solve this optimal 

control problem actually.  

Now, (Refer Slide Time: 41:16) the solution turns out to be very very close to what we 

expect it starts with 1 and then 1 here, 1 here like that but, once you put that the solution 

form. Remember there is a solution is a polynomial actually ultimate ultimately the 

solution is a polynomial, what you are solving for is the coefficient a n and b n what you 

already know is the basis function T n actually. 

So, once you know the coefficients actually, we know the solution all over actually. Now 

one idea is, we know the solution for control you know the initial condition for the state. 

So, you can integrate it using RK4 and then, you get a different sequence of numbers and 

that sequence of numbers have to fall on this, these polynomial what you know actually. 

So, that is the validational technique, so let us assume that exercise is done actually in a 

good way ok. 

So, anyway, so, coming back to that this is what it is the numbers that we are getting is 

for the grid points but, associated with that we also have polynomial solution for this, 

and it happens to be very closely there with respect to the exact solution actually. One is 

interpolated solution; one is collocation point; and one is exact solution. So, the all the 

things are together actually, so that gives us lot of good continuous there, what about 

control remember these are numerical technique. So, 0 is not really exactly 0, but the 

turns out to be something like turns upon minus 3 which is which is very small very 

close to 0 actually. And that is why it is not disturbing this this solution chebyshev 

basically. 

Alright, so, that is some sought of confidence for for going further and then what you do 

is we going to elaborate more realistic problem or something called front to back turning 

back an air launch missile using pseudo-spectro method. So, let us say how do you do 

that inverse the problem and think like that for rest of the time that I that I have actually. 

So, this reference (Refer Slide Time: 43:04) actually we have recently kind of this 

presented these in the IFAC workshop which has done in in Bangalore right in a actually. 
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Anyway this this is the problem where you have a carrier aircraft I mean taking a missile 

now typically what happens is aircraft and the whatever missiles they carry they are all 

front looking; that means, any target that that appears within the front side. They can be 

launched and they can be engaged actually. But what happens some some target appears 

in the back, then the whole idea of that means, this angular I mean this aircraft can 

increase it is angle of attack. 

So, it let us say and then it also has more drag, so the speed comes down it goes up with 

a lesser speed by that time this goes front and then, it it drag the reverse maneuver and; 

that means, angle of attack is reduces it comes down again. And so, roughly it it kind of 

becomes behind the target. And the maneuver that we are talking about, first going up 

and then coming down and think like that this is nothing but, a cobra maneuver. So, I 

mean this real typical terms use in the air actually.  

Alright so, but that takes lot of time first, we have to go up, and then increase the angle 

go up reduce come back and then align yourself. So, that you look at the target in front of 

you actually. So, by that time target is not passive, it is also looking at you here. Your 

remember that for the target, if it is also happens to be in aircraft and all that in a in a 

earlier your already in front of him; that means, this target has an advantage of hiring 

towards towards the aircraft then, you you I mean we getting in advantage to fight 

towards the target actually. 



So, there is a problem happens then that can I can I really not launch a missile here, after 

all that is also an aerospace vehicle, with larger capability aircraft turning is much lesser 

capability compared to the missile turning basically. So, this is larger turning capability, 

so I will launch it and then quickly turn it backwards. So, that now I can the missile 

target and hence it is it is equalent to like a attack basically.  

So, the problem here is how to term this, from I mean turn this vehicle from front side 

front ward going to the backward sought of things. In other words the problem is to 

reverse the flight path angle from around 0 degree to something like minus 180 degree 

and minimum time, cannot take too much of time to do the job also. Because, I mean in a 

real come back scenario time is everything actually. So, we turn it very quickly and then 

the problem how about the turning problem.  

Hence here after that it can be guided it is in a different sense actually. And also 

remember by the time it turns, it cannot take too much of in this drag, I mean turning 

also excides this drag conception and all that. And you want to turning as this penalty of 

in this drag. So, it is not a too much of that. So, ultimately what the constraint is 1 

gamma goes to minus 180 degree which should also have some some desired final mach 

number basically. So, that you can still continue to move towards that actually. 

(Refer Slide Time: 46:19) 

 

Now the problem is something like that minimize this 0 to t f different. So, minimize this 

cost function subject to the constraint that initial gamma is around 0 final gamma is 



minus 180 initial mach number is known, when final mach number let us say equal to 0.8 

hard constraint actually. The problem is to reverse the flight path angle from 0 to minus 

180 maintaining the final mach number or 0.1, 0.8 in and it has to be done in minimum 

time actually ok. 
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So, the system dynamics is first and we see that vehicle once it is launched it has to go 

this this kind of a thing. So, we have this this dynamics in this scenario, we have some 

gamma coming here and some alpha and think like that. So, and also there is a thrust 

defluxion angle that we are assuming, the thrust is not happening in the direction it has to 

happen some sought of a different angle sought of thing that can be done typically 

through various mechanism of defluxion. Can be some side v t side injection susceptive 

control or may be some some fin reflection at the end something like that actually; or 

that there can be jet veins or whatever it is actually. 

Some mechanism adjusts, so that the thrust can be reflected. So, that actually arguments 

to the angle of attack turning basically, thrust vector is much more powerful vector if it 

turns then, the vehicle turns very quickly also basically in a way. And typically these are 

not restricted to very very low degrees also I mean thrust reflection angle that we are 

talking here can be little bit higher, than the than the alpha and actually that way. 



Anyway so, here this this point mass equation v dot gamma and s dot n x dot. So, these 

two represent dynamic level equation, then these two remain kinematic equations like 

that it happens in two descents here. 
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Then following this this reference the idea here, is to non dymensionalize the entire 

problem, so that the problem can be more and more actually. So, you take care of that 

first, we normalize I mean define this non dimensional quantities and starting from this 

we actually, write this equation now m dos m prime means del m by delta basically but, 

how we define something like this. 

So, we write it the same system dynamics in an non dimensional quantities something 

like this. And then remember there is a difficult problem, because we do not want to 

excide this control and think like that actually this control actually that way. So, we have 

to I then again going by this idea which applied here in this this literature, (Refer Slide 

Time: 49:00) the idea here is to convert this free final time problem to some sought of a 

state constraint problem with with bounds on control.  

And then equation of motion are formulated using flight path angle as independent 

variable basically. What you are assuming here is the turning happens in one direction 

only; that means, the flight path angle is monotonic actually. 



So, if you assume that then you can take the flight path angle as independent variable 

And this leads to this this fixed final condition, where the initial condition of gamma I 

know and final condition is minus 180 degree. So, it happens to be fixed final condition 

now actually; for fixed final time sought of thing now actually that way. So, that 

becomes solutions (()) using this final time optimal control theory basically. So, the 

entire assumptions for do that flight path angle is monotonic and continuous function 

with respect to time. 

So, that is the inner and assumptions based on which can attempt to solve this problem 

(Refer Slide Time: 50:05). So, now, when gamma is independent but, it is you have this 

this first define this d m by d gamma something by something m prime by gamma prime 

d t by d gamma 1 by gamma prime like that actually. And then we this modified cost 

function is something given like this 0 to t f is equalently written something like d 

gamma integration of d gamma. But, d gamma it is something like d t has to be 

converted as d gamma. So, d t by d gamma, then this is 1 over d gamma by d t and think 

like that. So, d gamma by d t is available from here supported here. 

So, j is available essential of a complex function, but ultimately it is it is time minimizing 

cost function actually. And then the, this is hard constraint, so m of gamma of is to 0.8 

actually. 
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And then go through this this long algebra of discretization discretized mathematics and 

minimize this cost function rule. Subject to this, this derivative approximation; subject to 

this equality constraint equation; subject to this path constraint also that alpha cannot be 

more than 20 degree and delta cannot be more than 72 degree, that is what I told delta 

can be much more than the alpha basically ok. 

So, and essentially I mean this end point conditions are direct and 0 can be 0.3 to 0.3; 

however, m f has to be 0.8 that is the problem actually (Refer Slide Time: 51:26). So, 

these are some of the experiments, we tried out with various different phases and all that. 

So, remember no matter whatever is initial condition of Mach number, the final Mach 

number turns out to be 0.8 actually. 

So, this is very nice observation first thing to see and if you see the kind of height verses 

down range sought of thing this is the trajectory that you see. So, this is last function 

somewhere here and it turns out I mean it nicely turns, where you want actually the 

turning happens nicely basically ok. 

Then, we have this this angle of attack constraint, which is also more than twenty is not 

allowed something like that, this this constraint is coming in the picture, so that is 

enforced here. And and this all within the bound actually, whereas, delta b which is also 

this thrust control mechanism sought of thing this is actually helping that to to remain 

within the bound actually. So, delta b turns out to be like this all are smooth trajectives 

that also, and then the point here is the final mach number is 0.8 no matter where you 

start; so velocity drop is not not there actually. 

Then the math number verses angle of attack something like mach number verses flight 

path and angle of attack verses flight path. All the things you can plot in different 

different variable sense and adds lot of more meaning actually. And remember this has to 

be seen from the right to left actually. No matter what you start you all end at the 0.8 

flight path angle evolves from 0 to minus 180 degree. 

So, this plot have to be seen in the reverse right to left sense actually, this also has to be 

seen right to left sense angle of attack how it evolves as the trajectory flight path angle 

per time how it evolves actually then this always has this 0 to minus 180. But, depending 

on different cases different things are then how do you generate this plot by the way. 



Because, once flight path angle becomes independent quantity ok, then time becomes 

some sought of a state equation. 

So, d t d y gamma equation is also put into the problem formulation, so corresponding to 

particular gamma you have the corresponding value of time actually, so both are both 

cannot be independent quantities only one has to be independent quantity. So, according 

to the according to that the other one varies actually. So, that is how the time is generated 

and it is plotted something like this here. So, now you can think effect of reducing angle 

of attack and think like that. So, this this depends on the angle again this this is more that 

can be less and and think like that actually ok. 

Now, (Refer Slide Time: 54:26) this what is here shear angle and angle I some of these 

things are aerodynamic concepts you can see these are this is with respect to the body is 

this is the body angle delta b and with respect to the velocity vector. This is a different 

angle that is shear angle actually velocity vector and thrust vector, that can be even 

higher than the actually according to that. I alright, so this is what it is actually, then 

effect of the reducing angle of attack along with the flight path, I mean the all details are 

there in the paper you can read some of the information there also.  

So, let not too much elaborate here, it is all happening in a in a good sense you can plot 

flight path verses time, how it evolves for math number verses time. How it goes from 

0.5 to 0.8 depending on different cases actually. That means, we put various bounds and 

all for we have this initial bound is some 20 degree, now we put various bounds on that 

and depending on that the other things gets actually.  

Now now the question is how it is a function of a grid points now. So, initial start with 

the course grid points only not good, you can see some of these things are to quite 

looking sought of things. So, but then this history implies, when use that as a guess 

history and then go for five in grid and all that actually. So, 5 to 10, 10 to 12, 12 to 20, 30 

like that, now you can observe that beyond 20 is not much of an issue. So, going beyond 

20 is no point actually.  So, we convert we take that 20 grid points are of this solution 

and we leave it the 20 grid point solution basically. 
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So, you can see the number of grid point verses computational time. And all that if your 

five; obviously, your computational time is very small, there are all evaluated in this 

hardware settings which is which is a regular with mat lab 7.4 and all that. Not a 

dedicated procedure the whole idea is if you have a real real time normal processor with 

a dedicated processor all that this and your program is written terms of missile level 

language then it can be much faster than that actually.  

Alright so, but even this setting we have number of grid point think five this is the 

computational time and 10, 12, 20 it starts increasing. But, beyond a point is not beyond 

20, we do not recommend, so we we reject here actually. So, the real time 

implementation is c or assembly language is expected to be much faster and hence it is 

thing that can implemented in real time actually ok. 

Now, what was the idea of chebyshev and legendre it turns out that it takes a chebyshev 

polynomial or legendre polynomial both happens to be like giving us the same result 

actually. So, the one way or other there is no advantages for say basically that that 

exercise tells us. So, another consistency check also you can think about that actually.  

So, (Refer Slide Time: 57:18) conclusions for the missile turning problem is are like this 

the hemisphere engagement if feasible. So, physically speaking in the no need of dog 

fight provided of course, you can you can implement these these high shear angle values 



and all that, this this values, what you are seeing here what is delta b or c angle. So, 

thrust control augmentation that has to be implemented. 

Now, that has to be seen subject to that condition it is possible to see have this 

conclusion basically. Minimum time fight path angle reversal is feasible with with 

realistic control force that is what we think and then promising numerical results; that 

means, computationally they are efficient and viable tool for optimal guidance for say 

and chebyshev and legendre polynomial lead to the identical results actually.  

So, this gives some some degree if confidence that pseudo spectral method can be used 

in various application. As I told before there are various other things that Michael Ross 

and I M Ross and this group actually demonstrated. There are other groups also working 

on the pseudo spectral method but, this team has actually demonstrated variety of 

problems and including hardware implementation and implementation in in international 

space station also. So, some of these references you can you can see for more details and 

my recommendation will be probably the first one, which appeared very recently 2012 

with some sought of a very good overview of the method itself and from to flight and all 

that actually. 

So, if you can read some of these papers it is also written in a way that is not too much 

mathematically involved. Whereas, other papers can be little bit mach math over 

whelming also basically now this is very written where relatively long paper and 

summarizes the when the concept in necessary mathematic sense and all that actually. 

So, my strong, I mean strong recommendation is that you should read this paper and 

understand more actually. Alright so, this is what I wanted to talk in this particular 

lecture further more and at what we have developed on these ideas and all that calling 

this M P S P method and M P S C subsequent things and think like that, we will discuss 

in the in the next next lecture actually, alright, thanks a lot. 

 


