
Optimal Control, Guidance and Estimation
Prof. Radhakant Padhi

Department of Aerospace Engineering
Indian Institute of Science, Bangalore

Lecture No. #21

Approximate Dynamic Programming (ADP), Adaptive Critic (AC) and.
Single Network Adaptive Critic (SNAC) Design

Hello everyone, we will continue with our lecture series. Last class, we saw this dynamic

programming and we realized, that actually it, it is a very good approach in general in

the, in the sense, that it, it gets into this close form solution or control. However, we at,

towards the end of the lecture, we also saw, that it actually results in this huge

computational difficulty and all, which we have now termed as course of dimensionality.

So, there are ideas there, which to, to kind of avoid that and then get some meaningful

solutions, at least, for limited class of problems actually. So, we will see that in this

particular lecture.

So, one approach, which is called as approximate dynamic programming and here, you

will see some sort of a fusion between these two ideas of calculus of variations and

dynamic programming actually. And followed by that we will, we will use this, those

results in this method, called adaptive critic and a variation of that in a little bit

computationally more efficient sort of ideas there, which is called single network

adaptive critic, actually. So, let us get started there.

(Refer Slide Time: 01:22)

So, this is outline of this particular lecture. First, we will see, study what is approximate

dynamic programming, and then we will try to see, what is adaptive critic design

followed by the single network adaptive critic. And we will see examples where we will

give some comparison between, I mean, performance comparison between AC and

SNAC. That, we will see in two, three example problems actually.

 (Refer Slide Time: 01:51)

Let us see the first thing first, which is approximate dynamic program actually. If

everything will happen in discrete time domain here and so, the integral will substitute

like a summation and things like that actually. So, the objective is still very, very similar

to what you have seen before and that means, to, to optimize this J is a cross function, so

find a U k, so that you can optimize this actually, remember. In other words, formally

speaking, to find an admissible control U k, which minimizes this meaningful cost

function given this way or it is also subject to the constraint of system dynamics, which

is of the form this way actually.

(()) with appropriate boundary conditions in this entire class, we will assume, that N

tends to infinity, that you were talking about infinite time problems actually. And

typically, these are, when you talk about infinite times, these are typically regulated

problems. So, even though generally cost function will be used for, for desiring result

and all, most of the examples that we will follow will have quadratic cost function

actually, getting there. So, we write this first thing as this J, we start from something like

J k. Remember, k starts from 1, then it is J. How you can define J k? Starting from k

itself actually, wherever that is, then n minus 1, actually.

(Refer Slide Time: 03:07)

So, you define this cost-to-go from time t k is something like J k, so then there will be

some other variable here. We substitute this k tilde sort of thing, which is the dynamic

variable sought of thing. But k tilde varies from k to N minus 1, so this cost function,

cost-to-go from time t k, that is, J k is written something like that.

And obviously, if you just take out the first term, that is, k tilde equal to k 1 for one term,

and then from k plus to N minus 1. So, this if you just take out it with k, then that is

nothing, but psi k and then k plus 1 to N minus 1 is nothing, but k minus 1, sorry, J k

plus 1.

So, as I told you in the previous lectures, this is something called utility function at time t

k and this is something called cost-to-go from time t k plus 1, actually. So, like the

dynamic programming we will again define this lambda k is something like, del J k by

del X k. And then, the optimal control equation will be in this form actually, that we

know, that del J k by del U k ultimately has to be 0, basically. Because J k, I mean, one

of the conditions, that needs to be satisfied is, like necessary conditions, that needs to be

satisfied is del J k by del U k has to be 0, actually.

(Refer Slide Time: 04:33)

So, what is del J k by del U k? If you go back, if you go back to this J k definition, J k is

nothing, but this psi k plus J k plus 1. So, I substitute that and then, I mean, here I will

substitute that, so J k is nothing, but psi k plus J k plus 1. So, this partial derivative del J

k by del U k is nothing, but this term plus this term, actually. This term I will keep it as it

is because psi k is something that I know from this, this cost function definition and all

that. So, that will be a direct derivative sort of thing, so I will keep it that way.

What is this J k? del J k plus 1 by del U k, the effect will be felt, that means, J k plus 1

will be plotted by U k through k plus 1, that is a system dynamics actually. In other

words, if I, if I (()) control U k, that will result in some part of (()) in k plus 1 because

our system dynamics is like this. If I apply a U k, it will result in some difference in X k

plus 1, but, but J k plus 1 is a function of X k plus 1. So, because of that there will be

some change in J k plus 1 actually, that I have to keep it actually.

So, how do I keep it? I will keep it through this chain rule of derivative actually.

Remember, these are all vector matrix algebra, so it was slightly more careful the writing

of this chain rules and all that actually. We have seen some of these partial derivative

results chain rules and all in very beginning lectures where we gave you this matrix

algebra and things like that actually; you can see some of those if you have forgotten

that. So, this del J k plus 1 by del U k, I am writing it something like partial derivative

chain rule sort of thing, write in this way.

Now, what is this? This is nothing, but by definition lambda k plus 1. Remember, lambda

k is defined as something like this, del J k by del X k, so lambda k plus 1 is nothing, but

del J k plus 1 by del X k plus 1, so that is what is lambda k plus 1. So, ultimately, what

my equation tells me, that this has to be equal to 0; that means, this expression has to be

equal to 0. Finally, this is my optimal control equation. However, how do I get this

lambda k plus 1, that is the, that is the bottom line, actually. So, for doing that we need to

go back to the other side of the story, that is, the costate equation sort of thing and as I

told, this part can be evaluated from, from system dynamics actually. This, this particular

(()) and this will be directly evaluated.

(Refer Slide Time: 06:59)

So, coming back to this, this costate equation, this, remember this is the definition of

lambda k. Lambda k is nothing, but del J k by del X k, now that is equal to this del psi k

by del X k plus this term del J k plus 1 by del X k sort of thing. Now, remember this, this

particular thing. Now, psi k is a function of X k and U k both. So, this particular thing,

first, first of all is a direct function of X k. So, in a, in a given example, I mean, typically

it is a quadratic cost function, so let me give something like psi k. psi k is nothing, but X

k transpose Q k R k plus U k transpose R k U k, that kind of thing and some people put

half actually. So, (()) however, remember that our control U k is also a function of X k,

that is what we ultimately want actually, some function phi of k, actually.

So, what is happening here? del psi k by del X k plus this term, but this particular term

del as del psi k by del X k. What you are interpreting is psi k is a function of state and

control, both. So, one thing is direct function, direct partial derivative I can take in. The

second one is because control is going to be a function of state. I will also account for

that and write this chain rule actually. So, the first term is direct, the second term is this

one. Similarly, the term, when I talk actually, this term will be first actually, J k plus 1 is

a function of X k plus 1. So, this entire thing, what you see here, what, whatever you see

here is nothing, but del X k plus 1 divided by del X k. This del x, this particular term,

this, this term what I see here, this entire term is nothing, but this del X k plus 1 by del X

k transpose, actually. So, this, this is again the chain rule. This, this term, this del X k

plus 1 by del X k. This term and this term taken together is nothing, but that actually, but

this particular term again is, one thing is, remember this x k plus 1 is just saw, that X k

plus 1, one second, X k plus 1 is nothing, but f of X k, U k, alright. So, that is again a

function of X k and U k, both actually.

So, we keep the, keep all those things in mind and write this particular term what you see

here. One term is direct because it is a directly a function of X k and the other term is

through U k, but U k is also a function of X k. So, this is what the script kept here

actually. So, just this is little bit of derivation, I understand that, but just I follow little bit

book keeping here actually. First thing is this is just one definition and this term we

clearly explain, that this one is direct, the other one is through u basically.

Here also, similarly this J k plus 1 by X k, remember that X k plus 1 will also be

perturbed the moment you perturb X k. So, because of that this there is non-zero, that

means, this one comes directly from X k plus 1 perturbation, actually. So, I, first I write

it something like this term, del X k plus 1 by del X k transpose times this one. But this

particular one you can realize, that this is a function of this X k plus 1 is a function of

both X k and U k and U k is a function of X k again actually.

So, this particular term is because of that first is directly and the second one is through U

k basically and I understand this is small little bit use of notation here, but I would think

with all partial derivative I am writing it, the similar notations sort of thing, but let us

ignore that for a second actually, that as long as you understand what you are doing is

fine, actually. So, all these partial derivatives are, are expanded this way, actually. Now,

once I do that I can, I can think about reorganizing the terms and all that here.

Remember, this is nothing, but lambda k plus 1 actually. So, what I do? I will take the

first term here and first term here and remember the transpose will be nothing, but this

transpose plus this transpose, which is something like this transpose into this transpose

actually; a b whole transpose is nothing, but b transpose, you can do that actually.

Anyway, so the first term here and a first term here and lambda k plus one from here, so

I will keep it this way. Then, the second term we can see, that del U k plus by del X k

transpose is common here and this will be, this transpose is also in the left hand side

actually, that will come after expansion. So, both of the terms will be in the left hand

side. I will take out this, this is common and I write it that way. So, my lambda k is

actually, theoretically speaking is, actually, this big expression here actually. There is a

there is a transpose here let, me probably risk out again, so let me write, this is the

transpose actually, alright. So, this is what it is.

However, if we can, we can see, that, that this, this equation on the optimal path, this

equation is also valid, this is nothing, but 0 actually. So, what you do here is if I put it

there, this entire expression becomes 0 actually. So, that means, if I am worried about

only optimal path, then my lambda k is nothing, but only the first term actually, this is

what it is. So, this is the recursive equation sort of thing. That means, if I know lambda k

plus 1, I can know lambda k.

And typically, from boundary position we know this lambda N actually and even if it is

finite time problem and all that, we know lambda n is del phi by del x and all that

actually, that way. So, you start from there and this actually tells us there is a backward

recursive equation sort of thing and also, remember in, in 2.1 (()) problem calculus

variation approaches, we actually have lambda dot equation, but lambda dot is typically

propagated by codes, actually. So, all these are comparable actually that way.

(Refer Slide Time: 13:22)

So, what is the summary? Summary of necessary conditions is something like that, state

equation is, is available to us and the costate equation is something like this. Remember,

these are all functions of state and control X k and U k and obviously, lambda k plus 1

also here. So, I can write it as lambda k is some function of X k, U k and lambda k plus 1

as well and optimal control is ultimately a function of this one, X k, lambda k plus 1.

Remember, this is the equation, this is the equation if you solve for U k from here.

Ultimately this is going to be a function of X k and lambda k plus 1 actually. Remember,

X k plus 1 will be substituted by that, f of X k, U k. So, that means, what you get here is

just a function of X k, U k only, basically. So, ultimately, this optimal control equation

can be written something like that.

So, essentially, (()) conditions are also split. So, what you see observe here is a, we

actually landed out with something similar to what we know, what you knew earlier in

calculus variation approach, actually. So, your state equation, costate equation, optimal

control and boundary condition, that is what was the calculus variation approach

actually. However, we started with something like this utility function and all that

actually in cost-to-go and things like that. These are the concerns coming from dynamic

programming actually and these are all happening in discrete domain, so obviously, these

are some approximations involved and all that, actually. So, that is why it is approximate

dynamic program actually.

(Refer Slide Time: 14:54)

Some references, if you want to see some of these derivations little more carefully and

all you can see this reference, which is a very standard nowadays. This is actually a

chapter written in, in a handbook. The handbook is written for intelligent control in 92,

about twenty years back actually. But there is nice chapter here, which talks about

approximate dynamic programming actually. And we can see our paper also where these

derivations are summarized again actually, but this paper will talk about more on what

we are going to do next in the adaptive critic and, and single network adaptive critic and

all that actually.

Alright, so this, this adaptive critic design for infinite time regulatory problems, let us see

that one first, then we will talk about SNAC as in some sort of an extension in that

actually.

(Refer Slide Time: 15:49)

So, now, here I assume, that you have some little bit idea of neural network and if you do

not have much of ideas, then nothing to worry so much. There are tool boxes available in

MATLAB and other softwares and all that where neural network training algorithms are

available to experiment actually. And again, what is neural network training? You can

think about neural network is something like a function approximation block work sort

of thing where you, if you given some sort of an input you get some sort of output, but if

your weights are selected properly, then you will get proper output given a set of input

actually. And how do you get this weights adjusted properly? That require some sort of a

training and then, that is, that is a different ball game altogether. There are various kinds

of training available and all that, what you are interested here is very standard weight

propagation supervised learning basically, supervised training.

It essentially tells us, that it may, why, I mean the whole idea here is I can explain little

bit here, let me ask, let me talk about something, like a some function of x and a bunch

of weights, actually. Let us say, then x is known to me because that is input, but w is

something not known to me, actually. Now, what I, what I think here, what the problem,

problem is, this is the actual output, that I am getting from here. After selecting a set of ((

)) and all that, little more, little more explanation I can think about w, I mean, y equal to

something like w 3, let us say (()) reason for that, w 3 transpose, something like phi 3 of

x if I write it, where phi 3 is a set of basic functions, which, which I select. So, I know

about that actually. Then, I will do something like, I will take phi 2, then I will multiply

with w 2 transpose and then I will take entire thing, something like phi 1 and then, then

what I do is I write something like w 1 transpose and this it can continue actually.

Let me stop here because it is sufficient to do actually this much only, so this is my y

actually. So, what I am getting here is all this phi 3, phi 2 and phi 1. These are defined

functions actually, predefined functions, typically taken as sigmoid function, tangent

sigmoid things like that, whereas w 1, w 2, w 3 are unknown parameters to be fixed and

it needs to be fixed in such a way, that given my set of x, whatever my input variable, my

output variable should match that actually. So, for that we, we, let us say we required

some sort of a training data, that means, sorry, that means, what I am telling here is let us

say this y, what I am telling y is should be y star like that, actually. That means, if it is

not, y is not y star to begin with, but if my weights are selected properly, then y will be a

y (()) star actually. So obviously, there is an error delta y, which is y minus y star and

what I am doing here is I want to fill it, I mean, kind of minimize a cost function, error

cost function, let us say something like half of delta y transpose delta y actually. So, this

is actually a function of all this weights, the weights w 1, w 2, w 3.

So, what is done here typically is del e by delta w 1 equal to 0 del e by del w 2 equal to

0. This is, this is also del e by del w 3 equal to 0, like that. So, if you put it in and then go

through this chain rule of derivatives and all that you will be able to come up in some

sort of necessary conditions and typically, this optimization is carried out in some sort of

a numerical optimization sense actually. That means, this close form solutions are

typically difficult to get. So, this, this equations, even though we know, we do not put it,

we try to directly start with some sort of initial guess values and then try to update the

sequential update sort of thing, which will lead to this, this error minimization actually.

That means your y, actual y will, will converge to y star. It will (()) in the like a desired

output in the trained domain wherever in the domain, that is selected for training within

that domain it is. So, going to (()) like that actually, that is the whole idea of neural

network synthesis training and all that, actually. If interested, you can see many, many

books available for, for neural networks, actually.

Now, coming back what it tells us, that if presented with proper input-output data when

that proper is again, you have to really do a careful job to provide a proper training that

are basically, then what it tells is, that there are training algorithms essentially, error

minimization algorithms that exist, so that after training the network and capture the

underlining functional relationship. These are not number fitting; these are function

fitting, actually. That means, once the function is fit actually, then given a different

attacks, remember, x of bunch of numbers.

Now, actually, if you have a bunch of numbers and you got some y star and you have to

train the network in such a way, that delta y is minimum actually, that means, this y star

selected in such a way, that delta y is minimum, so that means, the functional

relationship is captured. So, in other words if I present a different set of input state x

actually, whatever that is, then I will again get some sort of a similar output, that I would

have otherwise got, actually, using all this optimality, I mean, all these ideal conditions,

what I mean actually. So, this is the idea of a neural network.

So, and then there is a theorem, which also tells us, that three layer network with

sufficient number of hidden layer can approximate any continuous function within

arbitrarily small error bound in compact set, obviously. So, set has to be kind of closed

and bounded and all that actually, that is how let me quiet, let me complete that in

compact set. Alright, so this is, this is what the basic knowledge, that we will want, that

is all, actually. There is a neural network, which can approximate some underlining

function. There are training algorithms, that exists, which, which can do the job for us

and it. There are also powerful theorems, which tell us, that only three layer network,

something like this can approximate any continuous function that is more important,

actually. So, that means, there is some degree of theoretical guarantee thing, that, that

comes along, actually.

But still, there is also, remember the way of selecting this w, the weight, weighting

matrix dimensions and the function selections and all that are still art, actually. That

means, there is no clear cut theory, which will tell you what kind of functions, that you

need to select for phi 1, phi 2 and phi 3 and it will not also tell you what is the dimension

of that. That means, what is the, what is the number of functions, basis functions from ((

)), that you want to select in each layer. They are still subject to, kind of, open question

basically, but normally it turns out, that actually not a very large network, it is about

four, five the hidden layer neural that have, actually.

(Refer Slide Time: 23:31)

Now, with this background, what is, what is adaptive critic methodology? Let us say this

is the methodology, which tells, that let me now assume a neural network, which I call it

is as X n network, for the all the detailed is given set of state of k, it will predict my U k,

that is my ultimate objective, remember. Now, y is my U k, here y is U, then I have got a

close form solution for control basically. Just imagine, that is, this y is essentially, this y

is essentially my U function, this is my U. So, what I got? What I, what I got is actually a

control, which is a state feedback from actually, this is what, what I can do actually.

How about to get that? There is a necessity of knowing lambdas and all that, the

information, that we have is only X k, so there is a necessity of another network, which

we call as critic network, which will nothing, which will do nothing, but predicting

lambda k actually. That means, this networks job has to predict an optimal lambda k

knowing k and this network’s job is to predict an optimal control U k knowing k. So,

ultimately, this is the network, that you are interested in, but on the way we need this

also and there is an interaction that will go on actually. That means, while training, X n

network will assume, that critic network is optimal and while training critic network we

will assume, that action network is optimal and that has to be some sort of cycle training

and all that.

And ultimately if everything converges, then, then we will tell, that this network, that has

converged here is nothing, but my optimal control in the solution actually, U k, this is

what it tells you. Finally, this X n network leads to this optimal control solution, but that

will happen only after mutually consistent training of both the networks.

(Refer Slide Time: 25: 18)

What are the advantages of this method? Before you see the little steps and all that is

applicable to, for non-linear problems in general without any linear or quasi-linear

approximations of the system dynamics, you can directly take the system dynamics as it

is, actually. It is also solutions for a, for a large number of initial conditions (()), what

you are looking for is some sort of a semi-global solution and all that. Wherever the

network is trained in that domain, it will, it will operate something like an optimal

control actually.

We are getting a close form solution, remember that this expression what you saw here

actually close form solution in a way, but this, this will happen to be a close form

solution only within the domain of training. Wherever you have trained the network,

within that domain is, this relationship is valid actually. So, because of that it is a, we can

interpret, that the some sort of a semi-global solution and all that because the domain can

be expanded as we like actually, at least theoretically. So, we are getting something like

feedback optimal control in the domain of interest, that is, that is the advantage actually.

There is something like a feasible computational load, even the problem dimension

increases and your control application duration increases and all that actually, still it is

not like infeasible computational load, like dynamic programming.

It still need sometime couple of hours probably to train the network depending on the

computer first and then software, that you are using and all that still needs computational

thing of the order of minutes and hours probably, but not like infinite infeasible

computational load. For example, if you really use this classical technique for dynamic

programming for a particular response guidance problem, it takes about some twenty,

twenty-two years altogether, actually. So, that is not we are not talking like that, still

minutes and hours, but still it is feasible actually.

Then, it is a self-contained methodology; it does not talk about some other method,

solves it and then just ends the network. So, it does not talk about, that it is a

methodology by itself actually, ultimately leads to real time control because what you are

getting is controlled as a close form solution, finally. So, it is given as a, after the training

process is over you have got the optimize guides already. So, what you are doing here is

just simply evaluating this, this function U is a function of state actually.

(Refer Slide Time: 27:42)

Now, the question is how do you do that? So, first thing is let us see how to synthesize

the X n network by a synthesis. What i mean is, how do you come up with the, the

desired values of the output actually. Remember, X n network takes X k as an input and

gives U k as output, but this training process demands, that you have a corresponding U

k star, which is the desired value of U k actually.

So, how do you get that there? So, let us take it through, and the results that we have is

state equation, optimal control, and, and costate equation, you know that actually. So, we

give some, assume certain network, which (()) and all that, actually. So, we get some

sort of a U k and by the way, this initialization does matter. And I will talk about a

process of good installation also actually, but anyways, there is, after initialization is X k,

if I feed it to the network, I will get U k and now, that I have got X k and U k I have got,

I can feed that into state equation and hence, I will get X k plus 1 and if I get X k plus 1,

remember I am assuming, that critic network is optimal here, so this, using this

optimized critic network I will get lambda k plus 1. Now, that I have got lambda k plus 1

and X k also available with me, I can feed it both, X lambda k plus 1 and X k and

optimal control equation and I will get U k star, actually.

Now, given this input this should be my output, this is my actual output. So, there is an

error between the two. So, using this error minimization algorithm and all I can, I can

adjust the weights, that is, that is my training actually. So, this training process continues

like this and remember, this is, even though it is can be a single point, but ideally

speaking we have to, we typically do this, I mean this batch processing sort of thing.

That means, you take a, a set of, I mean, state vectors, that means, let us say hundred

states together, hundred states means is, let us say the system has X 1, X 2, X 3, then the

value for X 1, X 2, X 3 selected hundred times actually from the domain. We have

hundred things like that and hundred outputs like that. So, we have this (()) algorithm,

but the cost function accounts for error in the each components of actually. So, the idea

here is if you do that batch processing, the, the local minimum trapping possibility is

minimum actually. So, that is why you do that.

But having come here for each other state, that you take you will get corresponding U k

star actually that way. So, we have this error and then try to optimize this weights based

on that information, actually. So, that is X n network training.

(Refer Slide Time: 30:15)

What about critic network training? This critic network training will talk about

something like this. We have this X k, I mean, gives you lambda k, but you need to get a

lambda k star actually, these are desired lambda k. So, how to do that? This is like, this

we got X k, we can also feed that in the X n network, which we assume is already

optimized. Then, you get some sort of optimal control U k. Now, X k and U k is

available, so you got X k plus 1. And remember, this, there are two assumptions here,

one is, X n network is optimal and critic network, that you are going to train for t k is

also assumed to be optimally t k plus 1. The reason being, finally, my boundary

condition is known for lambda n is actually a function of X n. So, that means, I know a

final condition actually from the boundary conditions, actually.

So, I can, I can assume, that my future time, my, my critic network is already optimal

actually and in, in fact, it, that entire observation gives you some sort of a training

approach for critic network, actually. In other words, for finite time problems we will

like to train the network first by using this, this boundary condition and then proceed

backwards actually for infinite time (()), I mean, final value of lambda happens to be 0.

So, we train it in the, in the domain of very close to 0 and all that actually and then, try to

enlarge the boundary all that way.

But anyway, coming back, what it means? The critic network is a, is already optimal t k

plus 1. So, that means, if I put it will get a lambda k plus 1 also. Now, I got X k and

lambda k plus 1, so using costate equation I will get it a desired lambda and again, I can

train this based on this error value between that way, actually. Alright, so this is the

procedure. If I train action network, receiving critic network is optimal and the way and

the vice versa, but also remember these are on, on the way, we are using state equation,

optimal control equation, as well as, costate equations. So, all the three equations are

getting used and hence, after mutually consistent training we will get this optimal control

basically.

(Refer Slide Time: 32:20)

How do you initialize the network? As I told that is also important and for initialization

this is what standard method that you propose, that you keep linearism the problem first

and formulate something like a problem in a linear domain actually. That means, you

have this, formulate, what this is a small error here, formulate rather, not lumped per se.

It is LQR problem, linear quadratic regulator problem, because the cost for the state

equation becomes linear and cost function is quadratic is LQR problem and obtain the

LQR solution for that. This solution will tell us, this is, this is our standard result coming

from (()) equation and things like that as the discreet optimal solution and in that, that is

also one lecture I have already covered actually, can see that if want. So, lambda k is S d

into X k and U k is minus K d into X k where X T and K t are available from this LQR

solution. So, I solve in the Ricard equation and all that actually. So, now, because these

relationships are available, you can actually train the network using these relationships

that is called, pre training actually.

So, we start with very arbitrary set of ways, but then first you train the network, so that

the networks can mimic this relationship at least. That means, they are actually

mimicking this, they are actually predicting this optimal control relationships for

linearized version of the problem actually. So, that actually gives some sort of (())

initialization, so that the non-linear problem training can happen quickly, actually.

(Refer Slide Time: 33:59)

One of the alternative idea also exists, that you can also obtain some sort of a control

solution from other techniques, let us say, of using dynamic conversion. Then, for a non

state assume, that the solution is already optimal even though it is really not optimal and

there you can complete the associated costate. But this is the trick, trick, you think here

because you know, the control is actually a lesser dimension, but the costate is actually a

dimension, actually. So, you will know some sort of a studio inverse and all that where I

personally sometimes do not like actually.

If the dimensional discrepancy is high you have one control and let us say, in eight, nine

states, then obviously, this is not the good approach, actually. But if it is something, you,

compatible dimension, it is are three, three stage, three control or probably something

like three, state two control like that, then you can use this actually. The advantage here

is we are not using this linearization technique, we are not linearizing the problem

actually. (()), so if you do that, then you can train the (()), this control and costate

solutions, which you can use it actually for (()).

So, this was the idea of adaptive critic, but on the way, as I told, we also have this idea of

single network adaptive critic. So, what happens here is if you go back to this approach,

this idea here, there are actually two networks. So, essentially, it is something like, I

forgot to tell you, that this, this training procedure, that you are talking action critic, we

first train the action assuming critic network is optimal, then you go to train the critic

network assuming the action is optimal.

Now, what you are doing here? You are assuming critic is optimal and you are, you are

saving this actually. So, what you are telling here is this action network is not yet fully

trained, we partially trained it. But using this I am actually training the costate equation,

but once I change the critic network I have actually changed this network already here.

So, there is necessity of retraining the action network again and once I do that whatever

action network I assumed in the critic network training, here is already trained. So, I

again have to come back to critic network and train actually.

So, this process what you are seeing here, action network training and critic network

training, this needs to be mutually consistent. That means, you come, once you train

critic network go back to action network, train that again. Then, once you are done that

come back to the critic network and train it again. Once you have done go back to that

and then train it again taking like that actually and after a while you will find, that no

further training is necessary in either of the cycle and that is where you call, that the

mutually consistent training has happened actually. So, that is called cycle training sort

of thing.

So, the observation here is the cycle training is necessary because this two network

structures, basically can you get rid of that because cycle net to cycle training is

typically, first of all, it is computational intensive. Second thing, there is a possibility of

misguiding actually. In other words, if one network goes to the other one, (()), actually.

(Refer Slide Time: 36: 44)

So, here the idea comes something like this. It can be done provided the critic network is

actually remodified, I mean, a kind of, instead of assuming lambda k is output what

about assuming lambda k plus 1 as output rather than let us interpret what is going on

and see what is going on, actually. And the assumption here is, most of the time as we

have seen in, like derivations and then other approximate dynamic programming and all

the U k is going to be a function of X k and lambda k plus 1. So, all that I need is U k is

some, something like an explicit close form solution in the form of X k and lambda k

plus 1, which is typically true from most of cases, actually. Now, once that is there, then

what it tells us is if I, if I just use a network, one single network, which will give me X k

as a function, I mean, lambda k plus 1 is a function of X k, then if I know X k, I know

lambda k plus 1 and I know the optimal control solution as some sort of, like an explicit

solution symbolically available as the function of these two variable and (()) actually.

So, this is what it is.

Once as I, the advantages are like this, it retains all the advantage of integrity, that

eliminates the action network and hence, it also eliminates the (()) training between

action and critic networks, actually. These are the advantages, which, which sets us lot of

training time actually in a way, also eliminate some of these approximations in all from

critic network anytime. You have a network as the function approximation, that

approximation already has also gone by eliminating that actually and it also leads us

these, this consistency the quick training sort of ideas and all that way. So, that is a kind

network adaptive critic.

(Refer Slide Time: 38:20)

So, how do, how do (()), let us go back to the structure again. So, we have X k, we have

a critic network to train. So, we have got lambda k plus 1, all that you are assuming here

is critic network is optimal at t k plus 1 while we are training for t k. So, and x k, I will

get lambda k plus 1. Once I use this k, lambda k plus one in optimal control will get U k

now and that k and U k is available, will use it in state equation and get X k plus 1. And

because I am, my X k plus 1 is available I can use it in critic network to get lambda k

plus 2 rather and because X k plus 1 and lambda k plus 2 is available, I can put it in a

costate equation and get lambda k plus 1 actually.

So, what I am getting here is, this is the desired lambda k plus 1 and this may actual

lambda k plus 1. So, the difference between that is error based from, that I will minimize,

that to train this network actually. So, remember this optimal control state equation and

costate equation, all the tree equations are used in the single structure basically here, that

results in simplified algorithm programming becomes simple, the training time sets and

also things actually.

(Refer Slide Time: 39:28)

How do you realize? Remember, the LQR solution can give us only this, lambda k is

some k, it is not lambda k plus 1 is not available. So, how do you do that? But you know,

that this is also available, some hands you can construct it, that means, lambda k plus 1 is

nothing, but this is a constant matrix, just being to the k plus 1, but X k plus 1. We can

substitute the state equation, linearised state equation, U k can substitute by function of

X k and hence, we will get something like lambda k plus 1 as a function of X k. So,

using this relationship you can pertain the networks and then go for the training, actually.

So, now for the rest of the time we will talk about some two, three example problems and

give you some sort of a comparison study to see where performance improvement

happens. Remember, the result-wise it will not vary much if you do consistent training

actually, but, but other things will matter also. Remember, this, this because of this

assumption, that are this lambda k plus 1 critic network is already optimally t k plus 1,

that you are repeatedly using and for that there is a necessity of the cycle training, I

mean, this telescopic training and all that actually.

So, what it means is, let me, let me (()) that suppose you talk about a domain of training,

that means, we know that our state, let us say, some sort of a scalar example. This is my

time and this is my X actually. My X is going to vary, but it is going to vary within that

actually, no matter what. Wherever the initial condition it will vary, but it will vary

within that actually. So, this, this is the assumption actually, whatever that. So, then I do

not have to worry about outside this bound and all that. However, what I need to do is, I

mean, this is my total training (()). What I need to do here is something like this, even

though I know, that this is my X max and this is my X min, then what I do is I just slice

this thing with the small domain first actually.

We will train this network in that domain because close to the 0 line my (()) thing,

which is a linearised expression and all are valid actually. So, we will train this. Once it

is done I will expand this little bit more, once it is done I will expand this little more and

once it is done will expand this little more actually. So, this is initially starting with this

domain, then starting with that, then going to that and that and things like that. This is

called telescopic training actually and while you enlarge the domain, that this in for not

forgetting also, that means, even if you talk about some sort of a full domain, let us say,

this you are generating something like thousand data points from there, then about ten

percent I will still recommend, that you keep on generating from here explicitly

basically. That means, this larger bound should be nine hundred, then this smaller bound

should be hundred actually. The reason for that is the error of larger values should not

put away the error between the smaller values actually. So, it means, as you should not

forget the relationship close to 0 basically, that is the whole idea about this, this (())

called telescopic training actually, which is invariably helpful. So, all that is this.

(Refer Slide Time: 42:42)

So, there is a comparison (()) set of thing. You know, the adaptive critic operates in this

kind of idea, you have action training, critic training, there is cycle training involved and

things like that, whereas single network adaptive critic does not talk about, that is a

strains in one single activation sort of thing, actually There is no cycle training involved,

there is no action network per se actually, there is only one set of (()) there.

 (Refer Slide Time: 43:02)

So, we will talk about three problems here. One is a standard scalar, sub-scalar problem

that we discussed in the previous lecture. The other one is the two-dimensional thing, in

case two state, actually, this (()) equation. This is (()) equation, again a very standard

benchmark problem, Van-der Pol’s oscillator. There are reasons for that, this actually

goes for limit cycle oscillations and hence, the control. If the control is not good you will

not be able to regulate the system, it will not be able to drive the stage towards (()),

basically. Then, I will extend that little more practical problem, which talks about (())

system, (()) system, which is the (()) problem at micro electro-mechanical system, is

electrostatic sort of thing, alright.

(Refer Slide Time: 43:52)

So, first problem first. This is a tie for all these things, what you have done is a little bit

older computer and all, that used to be same for all exercise for fair comparison. We used

something like a Pentium-three processor with a little more, little less I mean, 930

megahertz speed sort of thing, RAM was less, 320 only, software used was MATLAB

version 5.2. Now, versions are quite advanced, it is almost like MATLAB 2012 is

available actually, but anyway, that is, that is not the point. Neural network toolbox is

also improving, but the, the exercise is carried out with the toolbox version 3.0 basically

and training algorithm uses something called Ellen algorithm, which is very standard in

neural network techniques. So, the kind of the most powerful algorithm, that exists in the

network training domain actually and the number of runs for averaging is 10. So, also

remember, that when you run this algorithm there are other processing things also goes

on there. So, what you are doing here is kind of taking around ten times and then trying,

kind of averaging all that, actually. So, we will smooth out some other relationship here

actually. It will smooth out some of the noisiest relationship very less fluctuation, but it

will actually smooth out that part also, basically.

So, this is the scalar problem, we have the standard equation, we have a standard cost

function also, q and r equal to 1, 1. Then, this is the, cost, this is the solution that we have

derived in the previous lecture also. This is the (()) because of the availability of the

closed form solution and hence, you can compare your results with that actually. So, we

have, first thing is discretize the state equation using all the integration formula,

discretize the cost equation as well, discrete the cost function as well and the costate

equation can be derived using this approximate dynamic programming results like this

and optimal control equation turns out to be like that. Remember, q and r are both 1 here,

actually.

(Refer Slide Time: 45:37)

So, the network structure is 1, 4, 1, 1, 4, 1 for here adaptive critic, here it is 1, 4, 1. The

convergence criteria selected is something like 1 percent, but here I have to select for

two networks and the cycle convergence also we need to select, that was selected very

small actually. Remember, this is 0.02 percent and things like that actually. It is not

percentage per se, it is an absolute value here. So, these are percentage errors, but this is

absolute values actually. So, select something like this, but this is actually not needed

here because I know, cycle training here wherever things are needed, these are

comparative, actually.

(Refer Slide Time: 46:12)

So, result-wise you see, both the results are, this is adaptive critic results compared with

close form solution, which is very close to each other. So, the adaptive critic is working.

SNAC, which is also working, this is also very close to the close form solution. So, the

point here is both are working, it is not the, I mean, but the control solution is also, you

can see both are happening to be fairly close to the close form solution actually.

So, both are happening, that is not a problem, but what, what is the advantage? The

advantage is in SNAC style actually.

(Refer Slide Time: 46:45)

So, let us see what happens here. See, the computational time sense, you can see, that

number of iteration; that means, the cycle training sort of things and all. It talks about

some time of computation and all that, wherever SNAC talks about only iterations like

that. What you see here? One, two, three, four, five, six, seven, eight, nine, ten, ten

iterations, this algorithm is supposed to converge actually. Then, you go to the 2nd

iteration, 3rd iteration like that actually, here is not needed. So, what is ten here is simply

one, eight iterations here we have done, actually.

So, essentially, if you see all this, ultimately the time to train is what matters actually.

And finally, if you see the total time taken for all these, you add up all that, you will get

it something, the total time here and even the total time is something like this. So,

essentially, it turns out, that time of training is essentially 43 percent of adaptive critic in

SNAC. So, that is roughly the kind of 40 percent we can say, which is the lot of

advantage for problems, actually.

(Refer Slide Time: 47:44)

Now, cost functions for each of the initial condition, we can actually evaluate the cost

function and plot it in the, the claim here is again cost functions are fairly similar to each

other, actually. So, what is your claim here? Both will, both will work, but SNAC will

work slightly better in the sense of computational advantage actually, primarily and it

will also eliminate your other programming difficulties and small approach (()) and

things like that, actually.

(Refer Slide Time: 48:14)

(Refer Slide Time: 48:23)

Coming to the second equation, second problem, this is a wonderful oscillator, again we

will talk about a quadratic cost function and things like that. Cost function is discretized;

state equation, remember, is the two state, two state problem now. So, this is also

discretized and written in the form of Euler integration. Costate equation can be derived

from the standard costate equation that you discussed about; optimal control is like this.

So, using this thing we will we will formulate this problem and then selection criterion

has to be selected properly. So, critic network, action network and then there is 5 percent

error here. And then, absolute values, error in the cycle training is something like this

and wherever these things are comparative, I mean, wherever things possible we need to

be comparative.

So, the critic network here is 2, 6, 2 structure, is also 2, 6, 2 structure and convergence

criteria here is 5 percent, here is also five percent actually. And also, there is one point to

note here, that nice own experience, I will recommend something like a breakup network

actually. In another word, even though the critic network can be actually, theoretically

solved in, in terms of single network really, but because there are two outputs involved I

will rather prefer, I have two sub networks, which is one network is 2, 6, 1 and the 2, 6, 1

also. And then, I will consider, that the entire structure is something like a single network

actually, but that is my own preference, need not be like that always, actually. So, this is

like this and then it, once you do the comparison study, q and r are selected that way.

(Refer Slide Time: 49:46)

And here, there is the cycle training idea there, sorry, telescopic training ideas. First, you

train with the smaller domain, then enlarge area and things like that. So, this first is 5

percent of the total domain and then, subsequently it is increased by 5 percent is a

normal, actually.

(Refer Slide Time: 50:01)

So, again you can see if there is no (()) solution we cannot, we cannot compare

individually, but comparison with respect to (()), I mean, adaptive critic and SNAC is

always possible. So, you train both those things, both, which we solve and then plotted

together for the different initial conditions and all, actually. So, you can see, that the

position and velocity both are given to 0 and remember, this is a limit cycle problem and

otherwise if control is not zero for any non-zero initial condition, you will never be able

to go towards zero conditions. You will not, you will never be able to drive this state

towards 0, it will go towards the limit cycle.

And what is the limit cycle (()), that if you do not know you can see this, if I plot the

face plot, that means, x versus x dot, what I am looking for is starting from something I

will go to 0 actually. That is not happening, this, this is something like a close form,

close look function sort of thing, even this is supposed to be stable limit cycle. That

means, if I start with anything, anything, I will merge into the limit cycle and then

continue oscillating in the limit cycle actually. But ideally speaking, if I start somewhere,

I will, I want to go to zero actually. That is not going to happen unless my control is

good actually. So, that is the problem here, alright. So, this is what it is, they both are

working.

(Refer Slide Time: 51:19)

(Refer Slide Time: 51:35)

However, comparison, since performance comparison, since you can see, that the time

taken is invariably half actually and picture really it is, is put in a bar (()) sort of thing,

so telescopic training time, if you see that, then training time turns out to be half actually

and total training time if you see, it is believe it or not, it is exactly 43 percent it turns out

to be. So, the claim here, which is going to be slightly lesser than above 50 percent, are

roughly about 50 percent of the time we will be done, actually.

(Refer Slide Time: 51:50)

Cost function comparison, again, both has to be similar, so that is not much of a concern,

but to make adaptive critic work you really need to be lot more careful in your

programming and all that compared to SNAC. So, that is another big advantage looking

from simplicity of the structure point of view, actually.

(Refer Slide Time: 52:09)

(Refer Slide Time: 52:28)

So, finally, this is the electrostatic problem. This is the system dynamics is something

like this, there is a mechanical part, which oscillates and there, there is a charged part,

which is electrical, actually. So, what is the objective here is actually to maintain some

sort of gap, g stands for gap actually, there are two as in, I think I have a picture

somewhere, and g stands for this. So, this gate has to be maintained at a particular value

of g naught actually. So, this is in control, input is control voltage actually, v in is your

control input. So, this v input k has to manipulated in such a way, that g has to be

maintained at a particular separation, g naught actually, the system and this is your

spring mass dumper. This is a spring and this is your dumper, this is the mass, which

oscillates actually. There is a fixed plate, and this, this gate is controlled by, by driving

this, this voltage input actually and there is a resistor in here, which (()) current flow and

things like that actually, alright. So, this is what it is, is the system dynamics.

And then, the cost function is something like this, it needs to be minimized. But what is x

that used to be thought about? Actually, x is your state, but that state I will derive it, I

mean, I will tell you now what this state actually. State has to be deviation state actually.

So, that means, g, g is not the state, even though, even though the dynamics is given in

terms of g, but what you are considering is the different g minus g naught happens to be

the state, one, one state actually, that we will see that (()). Cost function is also in the

discretized form, something like this. So, ultimately what you need is your state

equation, we write it in a, in a state phase form.

So, we define this z 1, z 2, z 3 sort of thing. These are the states Q g and g dot and then

we direct the control v as something like v input and write this equation. This state

equation should be given in the form of this z 1 dot, z 2 dot, and z 3 dot function of z 1, z

2, z 3, as well as, control input, actually here. So, this is what we want to see in any

given control, control synthesis problem. We want to see it in the form of state phase

equation, actually. So, we wrote that in a state phase equation.

(Refer Slide Time: 54:29)

(Refer Slide Time: 54:51)

But now, remember there will be a necessity of finding out the equilibrium state actually.

So, for that you need this problem has all these parameter values, given something like

this. And then, at equilibrium point what will happen? You consider this, remember z 2

is the g and g is the desired value given to us actually. So, that is what you put it as and

then, make sure, that the equilibrium conditions z dot is 0. That means, all the derivatives

should be 0 actually. And v two is, I mean, this where z 2 is 0.5, that is, that is a desired

value, that, that we have. So, we put 0.5 here, whatever is active, the three equations.

Now, in terms of three unknown variables and what are the unknown variables? z 1, z 3

and v. So, z 3 0, so that is 0, z 2 is already there and z 1 can be solved from this

equations, so that is already available actually. And once you have z 1, then you put it

back here and, and try to solve, no, no, sorry, the z 1 has to be solved from these

equation and this turns out to be something like that, and once you have z 1, you put that

equation in the first equation and solve for v, actually. So, that will give you

corresponding v naught. So, this is the desired value of state at the operating point or

equilibrium point and this is the associated control value at that particular point, actually.

(Refer Slide Time: 54:54)

So, now, that the desired states and control, both are available. We can formulate the

derivation dynamics and for that we defined x is the deviation state is z minus z naught

and u is the deviation control, which is v minus v naught, actually. So, with the definition

we can derive the system dynamics is something like this, actually. These are all

happening in the form of deviation state and deviation control now, basically.

(Refer Slide Time: 56:14)

So, it is a standard regulatory problem now. So, and hence, you can select this cost

function, quadratic and things like that actually. That way, actually, you know the cost

function was given in the form of, I mean x actually, not in the form of z and this x is

deviation state and this u is deviation control itself, alright. So, this is what it is and this

is deviation state.

So, now, you are ready. So, the cost function is a state equation discretized and

corresponding costate equation is derived, optimal control is also derived.

(Refer Slide Time: 56:44)

(Refer Slide Time: 56:51)

(Refer Slide Time: 57:29)

Then, again the two structures need to be compatible. So, the compatibility is

maintained, actually. Your (()) are taken, 1, 1, and again the comparison results in (())

stimulation. Both happen to be similar and hence, I mean, both are kind of, both work

actually. So, I do not claim, that one works better than the other. In fact, it, theoretically

speaking if training is consistent AC is nothing, but SNAC and (()) actually, so both ((

)). Similarly, if you see these are the two states, I mean, this is the charge and Q and then

the position it is, I mean v 2, this position is Z 2 basically. So, what you are getting is R,

Q and position z 2 and then z 3 and then control, actually. Remember this after you solve

this you can, you can actually recompute your original state because the definitions are

already here. So, once I get x and u, I can recompute my z and v. Actually, z is nothing,

but z naught plus x and v is nothing, but u plus v, so u plus v now. So, I compute this v

rather and the corresponding z will be available actually from there, but you can also

think about doing other way round, just simply compute v, u equal to, I mean, this v

equal to u plus v naught, then you have z naught initial condition.

 So, you have original system dynamics. These original system dynamics can be

simulated directly, actually. The system dynamics, once you have control and initial

condition you can simulate the system dynamics and validate equation from the non-

linear system point of view, actually. So, that is what is done here. So, this is what is

done and it is all happening, it is working and it is working together.

(Refer Slide Time: 58:30)

(Refer Slide Time: 58:33)

And computational thing point of view, it is happening in a, it is happening in a, it is very

close to same 43 percent, now it is 44 percent, actually. So, little less than half of the

time will be done and simplicity will be maintained, that is more important actually

(Refer Slide Time: 58:43)

A cost function evaluation, since both are again equivalent actually, (()) actually.

(Refer Slide Time: 58:48)

So, conclusions about SNAC, SNAC retains all good features of adaptive critic,

eliminates the action network and hence, it eliminates the approximation error due to

action network and also there are no necessary iterative training loops between action

and critic networks. Computationally, it is simpler and hence program, writing the

program and all that also becomes simpler and it, it leads to a significant amount of

computational savings actually, little more than half actually.

But all that happening with the assumption of the, that SNAC is applicable whenever the

optimal control equation is explicitly or rather, symbolically solvable for control in terms

of state and costate, that you should not forget actually. And if you have quadratic cost,

cost function and control defined system dynamics, then this condition is always valid

actually, you just remember that.

(Refer Slide Time: 59:38)

The references, again, that these two references are the backbone of this particular

lecture. Actually, one is chapter from that particular handbook, the other one is our own

paper, actually. We see more on that, alright.

Thanks for attention, actually.

