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Hello every one. We will continue our lectures in this optimal control guidance and 

estimation course. And this is a different topic, somewhat related, and we need that 

sometime, and hence I thought I will cover one lecture at least on this topic. It is called 

discrete time optimal control. So far, you have seen everything in the continuous time; I 

mean all the time we talk about x dot equal to f of x; U and lambda dot and thing like 

that. And many times discrete time formulation also has some beauty, and you can 

design algorithms in a better way and think like that way. In fact, some of our algorithms 

later that we discuss in this course, we will actually relay on this discrete time optimal 

control. 



 So, this particular lecture, I will just give you some sort of an overview of that, 

including generic theory, followed by L Q R in discrete time as well actually. So, that is 

the motivation for this particular lecture. 
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The outline happens to be something like this; first is generic formulation, and 

essentially again it will lead us to the, this necessary conditions of optimality. Then, one 

example we will follow, and then will move it to some discrete time L Q R design, and 

for your information, this matlab also has a D L Q R function; D L Q R stands for 

discrete time L Q R actually. Then on the way we will also see an idea, one of the very 

earlier ideas; how people thought of solving an L Q R formulation, using discrete L Q R 

sort of ideas in least square setting basically. So, you convert the entire formulation, take 

the discrete grid points in time, and all the state vectors are equivalently converted to 

some sort of a control vector and all that actually, then an initial condition of course, 

where initial condition happens to be just a type. I mean just a number; it does not play a 

role in terms of minimization, maximization like that and think like that.  

So, I will take you through that, when in the appropriate slide actually. Then we will also 

have some sort of a discussion on discrete time L Q tracking problem. So, far we have 

been talking about regulator all that L Q R, R stands for regulator, but if you really want 

to extend it for tracking applications, this is called something like linear quadratic 

tracking problems. Similar concepts are available in continuous time as well, and we 

have actually talked a little bit about that, I will talk more in the s d r e setting, when we 



talk about s d r e lecture as well. But here, we talk about discrete time L Q R, discrete 

time L Q tracking issues; a tracking problem, how will you formulate, and how will you 

get a solution like that actually. So, this is what is coming up in this lecture basically. 
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So, here is equivalent representation of optimal control problem in discrete time. A 

performance index happens to be something like this, and this is the terminal penalty and 

this is the path penalty sort of thing. And when we talk about discrete time, there is no 

specific advantage of having a linear time invariant or time varying system. So, 

everywhere we will consider as much as possible, these are all time varying things 

actually. So, L can be a constant function, but L can be different at different points of 

time also, that is why this L k is represented .Here k stands for k varies from i initial 

condition i+1, i+2 like that up to N-1.  

And actually it will lead to this X n in system dynamic equation. this is the system 

dynamics, so X k + 1 is a function of X k U k. most of the time we will see that L and f 

these are all static function, they are functions of X and U, but the function itself do not 

change the type, but as I told in discrete time, that has no specific advantage. So, for 

generality, for more generic results and all that, we will consider that, f can be a function 

of time as well; it means the very nature of f can differ from time to time actually. 

Similarly, L can be I mean L can have time dependence as well in that way. Anyway this 

is your performance index. This is the path constraint and all happening in terms of 



discrete time actually. And very easily if somebody wants to really see what is and how 

it can be done and all that.  

(Refer Slide Time: 04:46) 

 

This can be done something like, if you have x dot equal to f of x U .Then you can do 

this X k plus 1 minus X k by delta t. This is the approximation of x dot and the right 

hand side is x k U k. and then you can write x k plus 1 is nothing, but x k plus delta T 

times f of x k U k. So, that is nothing but, this is Euler’s integration actually. So, if you 

use Euler integration formula, then you can see that x k plus 1 is nothing but, some 

function of f k of which is nothing, but x k U k assuming delta T to be constant. This is 

how, from a continuous time representation, you will get a discrete time representation 

actually. And you can use various integration formulas to get there as well this. So, this 

is what I was talking actually, so we have a. Similarly, you can discretize any continuous 

time cost function as well, using this trapezoidal rule and all that we can do that, and 

write it an equivalent cross function or a continuous time problem as well. So, this is our 

discrete cross function, and this is our discrete straight equation. So, with respect to these 

two, the augmented performance index can be written something like this.  

J bar is nothing but, this part plus summation of all that, and this is what earlier we did 

here is, lambda T transpose times f minus x dot, if you remember that in continuous time. 

But, here in discrete time what you write here is, lambda k plus 1 transpose times; this 

one minus that one; that is f k minus x k plus 1 is nothing but zero, that part is we put 

here actually. And just to comment that multiplied associated with f k, here f k minus f k 



plus 1, this is what is getting multiplied, is lambda k plus 1, it is not lambda k; that is the 

one of the major differences really. And that is done typically to get some nice results 

later basically. So, that means, if you see in optimal control equivalence and all that 

actually that way. then x k is equivalent, I mean x of T is equivalent to x of k, U of T is 

equivalent to U of k, but lambda of T is equivalent to lambda of k plus 1, it is not k, that 

is the difference from continuous time to discrete time. Anyway, this is our augmented 

cross function.  
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And then we will follow with our necessary conditions of optimality and all that, so far. 

First you define a Hamiltonian H k is nothing, but L plus lambda transpose a. So, L is 

nothing but, L k plus lambda transpose this part, actually this part. Whatever we have it 

here; that is what is represented there actually; a Hamiltonian H k, even it is a function of 

H k U k and lambda k plus 1, and define something like this. Now with respect to this 

definition J bar can be written something like this. And here it is not from i ten minus 1, 

but we take it out from I plus 1 to n minus 1, and write the i separately basically. This is 

just a multiplication, I mean manipulation sort of thing. So this one, i to i plus 1 to n 

minus 1, whatever we have here. The very last term will also turn out to be lambda n 

transpose n x n; that also is represented, that also is separately written actually here. The 

very first one is taken out, and the very last one is also taken out.  

Last one is here and first one is here, in between terms are written something like this. 

Next, we want to examine the increment of J bar, due to increments in all variables X k 



lambda k and U k. and here the assumption again is the final time, and that is in discrete 

notation, it is nothing but N, N is fixed actually, that is the definition, I mean that is the 

assumption here. So, we are talking about f x final time problems sort of thing. Anyways 

this is J bar, which is given this one. By the way, I have taken all these material from 

Frank Louis book actually. So, if somebody is interested, they can use this Frank Louis 

book, as a different version of the book and all that, but I have used it for some of his 

earlier books on optimal control actually. Anyway, this is what it is J bar is something 

like this actually. Now we are ready to apply our optimization conditions and all that. 
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So, what you are interested to see, is the first deviation of J bar is equal to zero. (()) is no 

variations now, there are discreet variables actually. So we talk about first deviation of J 

bar has to be equal to zero. Hence you are interested to see what expressively takes first 

deviation of J bar. So, d j bar if you talk about this expression happens, because of 

several partial derivations actually. partial derivation of J bar d J bar happens, because 

there can be a partial derivation of d X n, I mean X n that is d X n, there can be 

something like d lambda n. there can be something like d X I, d U y, d lambda I plus 1 or 

sort of thing actually. So, you have to see carefully this expression, what all is a function 

of, I mean J bar is function of what all variables, and then keep on doing this partial 

derivative sort of thing and then write this expression actually. So, to begin with, let me 

explain one or two example one or two expressions. If you see this expression especially, 



the perturbation of J bar can come through the perturbation of either x n or lambda n 

actually.  

So, this particular term, we write del of this term, del y del X n into d X n, plus del y del 

phi, I mean del y del lambda n into d lambda n of this square bracket sort of thing. So, if 

you take this expression, you write it. This is what we are analyzing actually. So, first I 

will write this expression something like perturbation with respect to x n, then 

perturbation with respect to lambda n, that what we are trying to do. The first term is 

nothing but this, because these entire term del y del x n of entire term is nothing, but del 

phi by del x n minus lambda n, this one, transverse time d X n, plus this del y by lambda 

n which is minus identity .For this does not contain any lambda n only this one contains 

lambda n. So, del by n lambda n into T lambda n, that will give us this term actually X n 

transpose times d lambda n. then, we will come to the next expression is a function of x I 

U i lambda i. So, it can the perturbation can come from all, I mean terms you can write 

del H i divided by X i transpose time d X i plus del H i by del U y transpose time d U i, 

plus del H i by del lambda i plus 1 transpose time d lambda i .They are simply book 

keeping actually.  

You observe that this is a function of x n and lambda n. Hence, we took the partial 

derivative that way. We observe that, this is a function, this function can be a function of 

X i U i and lambda i plus 1.So, you would do these three expressions, that is also that. 

and then coming to the last expression now remember H k can be a function of 

everything else X k U k lambda k plus 1 also basically. So, you account for that to we 

take all the partial derivatives like that, and then express in the in the form of x like this 

actually remember ,this one will give us perturbation with respect to lambda k also, this 

will give something like X k is a function of lambda k plus 1. So there part of 

perturbation come from lambda k plus 1, because of this term, and there is perturbation 

lambda k because of this term actually.  

You just nothing, but a very careful book keeping, of what all things can happen from 

first derivations actually. Once you write it carefully, then it is time to kind of put them 

together, wherever its relevance things and all at there. So, then I keep the first term as it 

is, and then this one whatever you see here as it is like that actually. Wherever possible I 

can combine that now, and I can play around with this again; there is a k equal to i plus 1 

to n n minus 1 here, it is i to n minus 1; that means, wherever you see i terms if possible I 



can include that within this term here also actually. If I separately write k equal to I 

outside, then whatever terms are there, I can bring it inside, by changing documentation 

from i plus 1 to i here. So, that careful notation you can see.  

Here it is i plus 1 and here it is J basically, that will observe two terms actually. similarly, 

you can have a book keeping and then tell this will be like this form, and that will be that 

form, where I strongly suggest that all of you, actually at least do one time this algebra, it 

is fun to do and it is good to do and it will give you lot of confidence also, what you are 

doing actually. So, for the sake of time I will not explain term by term, this algebra is 

correct actually. So, this is to be equal to 0, with respect to all possible deviations 

actually; that means, as before all the coefficient have to go to zero. Now, if you notice 

that, then all the coefficient happens to 0.So, what about this. this will give us nothing, 

but the state equation, del x k plus 1 is nothing, but del x k by del lambda k plus 1, and 

what is del lambda del x k by dell lambda k plus 1, this is only term, so that is f k. what 

you are talking is x k plus 1 is equal to f k, that is nothing, but the state equation, that is 

how you get it there.  
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Similarly, for the costate equation you see this expression actually, lambda k is nothing 

but, del x by del lambda del x k basically. So, that is what we will get costate one. Now, 

optimal control you will get from here, del x k by del U k equal to 0, and then boundary 

condition happens to be from this expression actually, here lambda n del phi by del x n 

this happens to be there anyway. So, there are the set of equations that we will have to 



note. You can carefully note that, what you what you heard earlier, is lambda dot is 

minus del H by del x, and here it is lambda k equal to del H by del x. So, that means, to 

retain this, that lambda k plus 1 taking, I mean taking lambda k plus 1 here, help such an 

error there actually.  

If you take lambda k, then it the expression will be something different, that is the beauty 

that some people agree, that there is systematic representation of that actually that way; 

that is one thing. Second thing is lambda dot happen to be minus del H by del x, here it is 

plus, this is not minus actually. All other things are similar, but these observations of this 

costate equation should be noted very carefully. this state equation very similar to what 

we had; optimal control, what to very similar to what we had, and boundary condition 

also very similar to what we had actually .But, the costate equation happens to be slightly 

different, that is what it should noted careful actually. And again, I emphasize lambda of 

T equivalent meaning, comes through lambda of k plus 1 not lambda k, that we should 

never forget actually. 
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Alright, so this is how the necessary conditions, and let us have seven examples to 

demonstrate, how to use in necessary condition and all that actually. 
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So we start with, we will take a linear system with a quadratic cost function, essentially; 

it is a L Q R problem you can think about that, but it is a, kind of a hard constraint 

problem. in other words even though it is a scalar problem and what you are demanding 

in that, that k equal to n final time, x n should be equal to r n actually. So, this is the 

system dynamic, I mean this is the problem. We have a linear system dynamic, and we 

have kind of coefficient. Objective is to minimize the control energy, subject to this final 

condition; x n has to go to r n. There is no choice for other things; on the way it is to 

minimize the control list actually. 
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So, with that formulation you will proceed to the definition of Hamiltonian, H k is 

nothing but, L k plus lambda k plus 1 transpose times f k, where L k you can substitute 

,what is that half of r times U k square. So, half of r times U k square, plus lambda k plus 

1. There is no transpose, because it is only single equation anyway here. So, lambda k 

plus 1 into a x k plus b U k; that is from the system dynamics, that is definition part of it. 

So, from optimality condition, we have this state costate in optimal control equations. So, 

state equation is given like x k plus 1 is a x k plus b U k, same states equation that we 

started with, actually same thing. And the second equation is lambda; I mean costate 

equation lambda k is nothing but, del H k by del x k, which is equal to a times lambda k 

plus 1. And let us give del U k happens to be something like this actually, del H k you 

know, H k right H k is like that. So, del H k by del U k we will see one term will come 

from here, which is r times U k plus 1 term will come from here, which is nothing, but b 

times lambda k plus 1. So, essentially is very close to what we know in continuous time, 

but the variables are slightly different and things like that actually. So, if we equate this, 

if we solve this equation 0, equal to r U k plus b lambda k plus 1, then U k happens to be 

something like minus b by r into lambda k plus 1 actually. 
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So, very close to what we know before, this kind of problems we have seen examples 

also, but the only difference is it is not lambda t, but its replace is lambda k plus 1 

actually. So, as long as we know lambda k plus 1, we have got the controller actually U 

k. The question is how do you know lambda k plus 1, and also the boundary conditions, 



since what you are having; you have a initial boundary condition, initial condition which 

is fixed, fixed is a number sort of things d x not a 0. And final condition is also fixed x n 

as to be equal to r n. So, there is no deviation on that; that d x n is to be 0. So, these two 

happens to be the boundary condition, that of x on this problem actually. So, what is u, 

why to go ahead and solve it. So, what we do first is you find lambda k from 5 and 8 .So, 

I mean whatever this equation are there, now we try to solve it actually. So, what you are 

having is U k is there. So, this U k expression, you substitute here, so write the state 

equation like this basically; just for a sake of simplicity that b square by r you define 

gamma and then write into that way, just for the sake of simplicity sort of thing.  

Now, that is fine that is the state equation, but we cannot really go ahead and solve it this 

equation, because the x k is left x k plus 1 is left hand side and right hand side lambda k 

plus 1 and thing like that. But what happens here, this particular problem, this equation 

happens to be independent of state actually, this itself contain sort of thing, lambda k is 

nothing, but a times lambda k plus 1.So, we can solve it, because it is a, I mean 

difference equation, involving only lambda basically. So, you can solve this difference 

equation; remember it is difference equation, not differential equation actually. If this 

difference has a solution like that, it is very easy to derive also. in other words, if you 

know this recursive relation sort of thing, you have lambda k is given something like 

this; that means, if I just start from there, which is nothing, but lambda let us say n minus 

1 is nothing but, a times lambda n using this relationship what I am talking here.  

So similarly, if I tell lambda n minus two is nothing, but a into lambda n minus 1, which 

is nothing, but a square times lambda n minus x 1. similarly, I can write lambda n minus 

three is nothing, but a q times lambda n minus 1 lambda, where is that, a q times lambda 

n basically. Sorry this is another mistake also there, minus one should not be there; 

alright, so this is what it is actually. We start with this expression then you can write 

lambda n minus 1 nothing, but lambda n and lambda n minus two is a times lambda n 

minus 1 but, n minus 1 is again that I can substitute, it happens to be a square lambda n. 

similarly, lambda n minus 3 happens to be a q lambda n things like that. So, as in 

general, I can write a solution lambda k plus 1 is nothing, but that kind of thing actually.  

But, this solution is ok, but the problem here is lambda n is unknown, and hence the 

difficult actually. Lambda, remember lambda n is not known to us actually, otherwise 

you could have got it and solve it actually. Anyway, so now what you do is, you have 



this expression, now we substituted back here, this expression is available. So, lambda k 

plus 1 is here, we substituted back; we get it something like this actually. Now, what 

happens, now lambda n, we do not know correct does not a problem, but lambda n is not 

a dynamic variable, it is a number sort of thing actually. It is some sort of number, even 

though we do not know, it is not a changing number sort of thing; it is a fixed number. 

So, we can interpret these difference equations; state equation, as some sort of a 

difference equation with a forcing function sort of thing. 
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So, this is right. So, with the forcing function being this one. So, it is a difference 

equation with a forcing function coming from this actually. So, this equation we can 

have a solution if you interested you can derive it yourself or you can see some sort of a 

difference equations math books and all that, we will tell you very clearly, that if you 

have a forcing function like this in a difference equation, then the solution turns out to be 

like that actually; remember lambda is still unknown, the solution form we know now 

basically. So, this turns out to be, you can write is something like this. And then you 

have this coefficient geometric series sort of thing. once, you have this kind of a 

submission term is nothing, but one plus 1 by a square plus 1 by a fourth like that 

actually. So, this term as a geometric formula, so using that; this series formula I can 

write it this way. So, I got some sort of a solution for the state, the only problem still here 

is lambda n is not known. So x n, if we get a x k like that, I can also write x n equal to 

something. 
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And this expression I can define some terms and all that. So, that I can write in a 

simplified terms actually. So, x n is nothing, but some coefficient times x not minus 

some other coefficient time lambda n actually. And here is the case, now what we know 

in the problem definition; x n as to equal to r n. So now, we have a formulation, have a 

solution, which talks about something into x not which we know, and something into 

lambda n which you do not know. However, x n has to be equal to r n, that the constraint. 

So, if we have to put r n here, then you can actually solve for lambda n, that is what it is 

for here. If I substitute x n is r n here, and then solve for lambda n from this equation, 

then that is what I get actually; now we got a solution for lambda n. Once we get a 

solution your costate equation is well defined now, your costate equation happens to be 

this expression.  



(Refer Slide Time: 24:47) 

 

Now lambda n is available, you can substitute that and hence you get lambda k, and 

finally the optimal control happens to be a function of lambda k, U k .Let me see that, 

this one. Once you get lambda k solution, you can lambda k plus 1 is equivalent to that, 

you can put it back here actually. So, all that is done and you can write it as U k is 

nothing, but something like that actually. Now, what can you observe here, the couple of 

nice observations first, I mean the first observation is in this problem both the final state 

as well as the optimal control; that means x n which is r n, it is a fix number sort of thing, 

as well as the optimal control expression, what you see are actually independent of the 

weighting function r, weighting matrix r.  

This is r n, r n is the reference signal at then with the cost function r; we started with a 

cost function r actually here. So, this cost this r does not play any role actually. and this 

is also logical, because ultimately your drive is to take x to some final desired value, and 

on the way you are not kind of comparing with state minimization and control 

minimization, your objective is only to do control minimization. So, whether you 

minimize some sort of a U k square, or some factor of U k square we does not matter 

actually, some fraction of U k square, whatever that actually. So, essentially the control 

is independent of that, which is logically make sense as well.  

Another observation is, the control is actually an open loop control, because what you 

see here, that actually depends on x knot, nothing else actually, and r n which is of 

course that is where you want to go, is a function of x knot and r n, anything else is a 



system parameter a and b, but it is a nothing to do with state some sort of solution 

basically. In other words U k we did not get as a something like minus k times x k some 

sort of thing. We did not get that actually, but essentially it can be done, we will see that 

in a while that discrete L Q R setting, it can be done actually. But this particular way of 

getting it, we need not get a state feedback solution; we got a open loop solution actually. 

Now, the optimal state trajectory somebody can ask like that, then you can go back to 

this expression, what you had for x k, x k solution is available.  
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You can substitute lambda n and you can get this x k, after optimal state equation also 

basically. Optimal state trajectory can be dictated by this. This is nothing, but state 

equation by the way. What you have is x k plus 1 is nothing, but a x k plus b U k, and b 

times U k happens to be something, even U k you know and b times U k we will cancel 

here, whatever you have is nothing, but that actually, that is all. So, this and this is I 

mean we want to do not need a solution for x k, because and this is a sequential equation 

sort of thing, if the recursive equation sort of thing. The moment you start with the x knot 

and this just put some formula here, where is from 0 to 1anyway. So, if you just put 

varying that, you keep on getting numbers here basically. If you want a solution in an x q 

that is that expression that you need to use directly, otherwise this is going of actually. 

But also remember this one; the state trajectory is again independent of both r and v and 

all sort of thing actually. The x knot star is nothing but, x knot, x n star is sometimes 

when you see books star notation, these are all optimal trajectory sort of thing.  



So, whenever you get an optimal trajectory, sometimes people puts star there, just to 

differentiate between non optimal to optimal trajectory sort of thing. An optimal cost can 

also be given as something like this. Now, again it turns out, that this is nothing, but this 

0 input response and a thing like that actually, what you call actually that way about. I 

will not talk too much on that. The whole idea here is, because the cost function is like 

this. The moment this is different from this is nothing, but 0 input response, this is not 

difficult I can also told you about that. So, you have this x k plus 1, is nothing but a x k 

plus b U k. So, when U k turns out to be 0, all of the U k’s turns out to be 0. Then what 

happens a x k plus 1 is nothing, but a x k. So, what will your trajectory will be, we start 

with k equal to 0 then, it is x 1 equal to x knot and then x 2 equal to x 1, I mean a x knot.  

And similarly, x 2 equal to a x 1 which is nothing but, a square x not like that actually. 

you proceed like that, what you discuss something very close to what we discuss before, 

and ultimately we will turn then if I land up with x n, where it should be a n minus a n 

times x knot, using this formula sort of thing, what you have here . So, that is your 0 

input responses basically. If you do not have any control; that is what the trajectory will 

evolve actually. Now with control something, this is the cost function; that means, if this 

is one what you see here is very different from this; then obviously your cost is going to 

be more, which is very natural also. Suppose, I mean this picture really speaking, 

suppose your 0 input response takes you there, what your target is somewhere here, then 

you’ll get some something like a deviation like that. If your target is somewhere here, 

then you require more control to come here, like that actually. So, whatever; this 

difference place a role, whatever different you see here actually, that is the message here, 

so it makes lot of sense also. 
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Anyway, so now, there is a different concept, what you got is generic frame work. Now 

is there any equivalent of discrete time L Q R also. 
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The problem is something like this, we have in general; we have something like this x k 

plus 1 is a k x k plus b k U k, and performance index is very close to what you have seen 

in continuous time. Alright, so this i may not be needed actually, start with initial 

condition, then this i is needed, whether this is. So, J is something like that, and this is 

like this actually. So, your Hamiltonian definition is nothing s k is nothing, but L k plus 



lambda k plus 1 transpose times f k. So, L k is nothing, but this coming from here, and 

lambda k plus 1 times coming to, I mean f k f k is nothing, but this is what your s k 

Hamiltonian k. 
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Now, what is that necessary conditions, necessary conditions will tell, that state equation 

costate equation, optimal control and boundary conditions sort of things, we know that. 

So, the state equation is like this, which is already given to us. the costate equation 

lambda k equal to del H k by del x k. So, this expression, now H k is 0 levels from here. 

So, del H k by del x k is nothing but, U k x k from here, and a k transpose times lambda 

k plus 1 from here. So, that is what it is. There is no minus sign remember that. Lambda 

k is nothing but, q k x k plus a k transpose times lambda k plus 1 sort of thing. Then, 

optimal control equation; del H k by del U k equal to 0. If you apply that H k is again 

here. So, del H k by del U k is one term is r k U k; other term will be v k transpose 

lambda k plus 1.So, this happens to be something like this actually. So, in boundary 

condition happens to be lambda n equal to s f x n actually. Anyway, this expression del 

H k by del U k, whatever is talking is something r k U k plus b k transpose times lambda 

k plus 1; that is equal to 0.So obviously, let me write it otherwise; r k U k plus b k 

transpose times lambda k plus 1 is equal to 0. So, if you solve this for U k, this is what 

you get actually; very close to what we know before in continuous time, only difference 

is not lambda t, but lambda k plus 1, which is any way lambda T is equal into lambda k 



plus 1, so that is how it is. Boundary condition happens to be something like this 

actually. 
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Now you have to use all these, to derive some sort of a riccati equation, equivalent in 

discrete time actually. So, again we assume that lambda k is to be like p k times x k. then 

what happens you can go ahead and tell x k plus 1, what you get state equation here 

nothing but, a k x k plus b k U k, but b k times U k is nothing but this, this is what it is, 

and lambda k plus 1, is nothing but p k plus 1 x k plus 1, so all this is substituted here. 

We start with a x k plus b U k, U k is like that, minus r inverse b transpose lambda k plus 

1. And then lambda k plus 1 from this expression, is nothing but p k plus 1 times x k plus 

1. So, that is also substituted here. Now, what you can do is, you see some x k plus 1 

here, x k plus 1 here. So, you take it to one side, then write x k plus 1, is something times 

x k plus 1 is this equal to a k x k and hence x k plus 1, can be given some sort of, some 

expression like that which is nothing but, a forward recursion actually. 



(Refer Slide Time: 34:39) 

 

Then what about costate equation. Costate equation turns out to be like this, q k lambda k 

is nothing but, q k x k plus a k transpose times lambda k plus 1. Lambda k plus 1 again p 

k plus 1 times x k plus 1, and then this lambda k is p k x k. So, you substitute all that. 

Now x k plus 1 we just substituted, we just derived this expression. So, this instead of 

wherever k plus 1 is there I can write is that way; and then everything happens p k x k is 

nothing but, something big matrix actually, multiplied with x k. and since x k is not 0 in 

general, and this equation holds good for all state equation for any x i; that means, it is 

valid for x 1 x 2 x 3 everywhere actually; for all of those x will not be 0, because you are 

not talking about a equilibrium condition sort of thing, I mean, because this is not 0, if I 

take everything into one side then right it equal to 0 where x k is non 0; then obviously, 

using our standard philosophy that coefficient as to be 0, and that it equivalently touch 

starting that it is nothing, but p k, what you get here is equivalent to that actually, 

whatever you get here. Essentially, if you see this expression equation is nothing, but 

riccati equation. it is a backward recursion sort of thing; if you know p k plus 1 you can 

calculate p k .So, this is what it is actually. So, essentially what we got, is some sort of a 

discrete time riccati equation; some sort of a backward recursion, which is make lot of 

sense comfortable to what we know earlier, this is what it is actually. 
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Now, you can stop here, but you can also use this matrix inverse lemma sort of thing, 

which is available, many people use it for variety of reasons. and then using; if you use 

this lemma then this expression what you have here, can be express it something like 

this; just substitute, just indentify, what is a b d c in this expression, and then a is nothing 

but identity, for example. So, like that actually put it there and then substitute x 1 and 

you will get it something like this actually. This is popularly known is this riccati 

equation discrete time sort of thing.  
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Now what about boundary condition actually. So, p n is nothing but, I mean lambda n is 

nothing but p n x n which is equal to s f times x n from boundary condition. So, p n is s f 

actually. So, what you are getting here; the same riccati equation sort of ideas with same 

boundary condition basically. So, we start with the boundary condition and do this 

backward riccati some sort of thing. Now what about, finally the control, control is 

nothing but, this minus r inverse b transpose lambda k plus 1 sort of thing. So, k U k is 

this expression and lambda k plus 1, what you got here, lambda k plus 1 is nothing, but p 

k plus 1 times x k x k plus 1 sort of thing, that lambda k plus 1 is nothing, but p k plus 1 

times x k plus 1 actually.  

Anyway, so this is what I mean here is, U k is equal to like this and then you substitute 

lambda k plus 1 is p k plus 1 plus into x k plus 1; x k plus 1 you can substitute using this 

state equation and all, and then you can see that you have this U k, appearing both sides 

you take everything to one side, and then keep the x k in the right hand side. Ultimately 

you can right U k is nothing, but this inverse whatever you see, this inverse times this 

matrix, times x k. So, whatever you get all the things here, if you do that,that is nothing 

but a gain matrix. Essentially kalman gain sort of thing, so essentially we can again write 

U k is nothing, but minus k k times x k, where k k comes from this expression actually. 

So, very close to what we know earlier, but not exactly one to one sort of thing actually. 
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Now, it interestingly turns out that in discrete formulation, this continuous, I mean this 

discrete time riccati equation, need not be very well behaved as continuous time riccati 



equation really. In other words, the sequence can have several types of behaviors. the 

possibilities include something like this, we will start with p n, it can actually converts 

towards 0, it can go up; I mean go to infinity sort of thing, or it can I mean converse to 

some p, some p infinity which is actually non 0. And it can have no convergence at all 

also basically. There can be four possibilities; it can converge to some 0 value, it can 

converge to a non 0 value, it can converge to a strictly positive value, or it can, they can 

no convergence also basically. Anyway, that is another point; point here is, every time 

you apply this you may not get nice solution sort of thing basically. 
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If p k converge is, then for large negative k evidently, if p k converges, converges means 

what it converges some value basically. If it converges is then; obviously, it will get a 

constant value actually. So, in that case the algebraic riccati equation; is this spelling 

mistake actually, riccati equation. The algebraic riccati equation becomes this expression 

actually, and also this algebraic riccati equation can have non positive semi definite, non 

symmetric and even complex solutions. So, this kind of things not very good to see, but 

its effect actually and live with that, and in the limiting solution we have, if the limiting 

solution to A R E; that is this constant p matrix exists, and then ultimately we can write 

again something like this, which is nothing but a constant gain; in that case U k is 

nothing but minus k s k. So, in other words, just because your formula; it does not mean 

that it is a very good nice (()) formula basically. So, all these conditions are met; then 



you can write it actually. Anyway, so this is heart of these, this L Q R theory basically, I 

mean L Q R using discrete time actually.  
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Now, anyway as I told in the beginning, that there are some primitive ideas of L Q R 

design through least of square formulation sort of thing. Let us see a glimpse of that 

before moving further actually. 
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So, this is idea is very appealing and very simple actually rather. So, we have a system 

dynamics. the whole difficulty started, because we had to deal with state in addition to 



control actually, but how about representing all state vectors in terms of control vector, 

then everything we can substitute in the cost function also, as function of states a 

different grid point., and then talk about some sort of a static optimization, which will 

optimize which will minimize these cost function, because it will all be now function of 

control only. 
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How do you do that; this is something like this; x k plus 1, is nothing but this one we 

know that. So, let us say we start with x 1 which is nothing but initial condition. So, x 1 

is equal to all zeros and all u’s, at this are control set variation grid point actually. 

everything zero plus identity terms x 1, so that means first row, is nothing but x 1 equal 

to x 1 sort of thing. Now, x 2 when I put k equal to one, this is x 2 equal to a times x 1 

plus b times; I mean a times x 1 plus b times U 1 actually. Forget this k k and all that, let 

us see this is the time invariant sort of thing, or either way or I consider the entries of this 

actually, as time is (()) thing also basically either way. So, let us be comfortable, just take 

some sort of time invariant and b basically. If you do that then it is x 1 is nothing but x 1, 

and x 2 is nothing else but, b times U 1 plus a times x 1. So, b times U 1 nothing else, 

plus a times x 1 here.  

Similarly, if you continue, finally we get x n is nothing, but this expression actually. The 

start with something like a n minus 1 times b, recursively and again and again, again and 

again replying that, ultimately we will come up with this actually. Now, the question 

here is, what happens here is, all these variables can be substituted as all the variables in 



U n, you want U n, I mean U n minus 1 really and x 1. So, wherever this value appears 

that x 1 x 2 x 3 x 4 up to x n, I can always substitute through this equivalent and 

expression of the right hand side; and then what we interpret it is, this optimization 

problem is a optimization problem of this variables only basically. So, now we can 

accept the idea of static optimization and talk about solution of a static optimization 

problem actually. 
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This is what is listed here, so what you do is, to substitute the state variables in terms of 

the control variables and initial condition, and initial condition happens to be a fixed 

number, fixed sort of thing. So, that does not play role and optimize, nothing that you 

can vary for a x 1 actually, but anyways then you can do, I can substitute this expression 

wake into, I mean optimization formulation, and interpret everything; this cost function 

and interpret that cost function now, has function of only U actually. This constraint is 

already we are taken care while formulating this way. But, the problem here is, actually 

it results to a large dimensional parameter optimization, and what is parameter is, a 

control vector actually. The control values at grid point one, two, three, and four. These 

are nothing, but the parameter. So, if you really want inaccurate good solution it requires 

a very huge dimensional static optimization problem, depends on the number of grids, 

into the number of control, into the dimension of the control vector.  

Actually, if you see three controls and something like thousand grid points, and it will 

have a three thousand variables for optimization sort of thing actually. And typically the 



numbers of grid points are not thousand points; they are lot more than thousand. So, we 

will have that many variables, and it is not very good to see that r handle that kind of 

optimization problem actually. So, that is what the problem. It is also large dimensional 

optimization problem, which is actually not very good to see. So, that is why it is not 

very popular also basically. but, this is essentially the idea of this transcription method, 

what you have, what you can see, I mean if you can correlate very quickly and then it is 

nothing, but the whole idea of having the grid point and then constructing a large 

dimensional of optimization problem, static optimization problem, is nothing but direct 

transcription ideas actually. Anyway the problem is like this, and it is not that kind of 

that popular actually. 
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Now, the final thing before we stop this lecture is what I promised, is how do you use the 

discrete L Q R setting for command tracking problems as well actually. 
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See; here the problem setting is like this, you have this static equation and we have a 

output equation also and objective is, that output your y k is it track some reference 

output z k; that case available and y k should be able to track z k actually. So, what is our 

performance index. Performance index can be, see remember what is y n, is nothing but 

c n x n, and that should be k is close to z n possible, that is how we formulated cos 

function, outside the summation sign is like this, c n x n, minus z n transpose x n times 

basically. On the way, this deviation has to be minimum (()) basically. So, if you take c x 

k, y k minus z k, that has to be minimum, and what is y k c k x k. So, y k minus z k, is 

nothing but c k minus c k x k minus z k. So, that has to be minimum actually, and also 

we want control minimum, so this is how it is possible.  
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Now, we will follow this Hamiltonian conception, and also we have this H of k, which 

we can write U k plus lambda k plus 1 transpose times f. So, this is nothing but U k plus 

lambda k plus 1 times k plus 1 transpose times k plus 1 transpose times x k plus 1; that is 

a nothing but a x k plus b k U k basically, now transpose f basically. 
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Now what you do is state equation and costate equation, optimal control, boundary 

condition, all that we apply, and remember the difference here, the basically fundamental 

difference here is the cost function actually. You have instead of a standard x transverse 



q x, you had something like this, and outside instead of arbitrary, I mean quadratic 

expression we have that actually, that is the only difference. To apply all that, now we 

will see lambda k, is nothing but I mean this expression basically, where it is lambda k 

function of x k is function of z k as well, and it is also function of lambda k plus 1 

actually. This is the state forward algebra, from basic principle sort of thing. Then 

optimal control del x k by del U k is equal to 0. So, that explain that, you again land of 

with the same expression their actually. Boundary condition of course, you know del phi 

by del x n, is actually equal to all this expression, because phi expression is something 

like this actually.  

(Refer Slide Time: 48:23) 

 

Alright, so now, what happens here; the fundamental difference is, lambda k equal to p k 

x k will not do the job, we will need also, me sort of time varying additional term, which 

will locally do the job actually; that will try to track that command, that help tracking the 

command and that z k, which is coming externally remember the problem is not to track 

the 0 signal, is to track some sort of a non 0 signal actually. Now, the state equation turns 

out to be something very similarly, what we have done before we will proceeds the same 

steps. the only were wherever lambda k or lambda k plus 1 is there you to slightly careful 

to use this expression, with this bias term this minus g k some sort of thing; that is what 

is done here, you can sort with state equation and you land up with lambda k plus 1 

substitute is a lambda k plus 1 and this expression what you get here.  



And then again and again k plus 1 is expression k plus 1 here and try to sort it out, take it 

one side and then solve it, and then tell k plus 1 has to be inverse of this matrix, times 

whatever is left out; that is a k x k, plus this term actually, which is coming from this 

term. So, essentially we land up with x k plus 1 is something like this, again forward 

recursion formula actually; a k x k plus e k, e k is define something like this basically. 

So, what you have here is i plus e k, p k plus 1 whole inverse times a k e k plus e k g k 

plus 1 actually, is again exactly the similar sort of ideas, similar steps and all that, but we 

have taken, we have to resort slightly careful to substitute lambda k s and lambda k plus 

1 is properly basically. 
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So, with that, the costate equation turns out to be something like this, and we are defining 

some terms and all there actually. So, lambda k is a function of x k and z k and lambda k 

plus 1. So, that is what we see here, this is what v k x k minus w k, plus tracking 

transport times lambda k plus 1; that is substitute here, that is put it here, and lambda k 

plus 1 is now substitute, whatever that is, and then you know that actually, this x k plus 1 

here actually we just solve it. So, this x k plus 1 you can substitute here. And then 

lambda k is nothing but p k x k minus g k; that is your costate equation; this one, x k plus 

1 is something like this, lambda k is something like this, and p k and x k plus 1 is 

substituted, I get something like that. Now if you substitute the co state equation, then 

this lambda k nothing but that, because that is the definition right we started like this. So, 

you substitute like that, the left hand side and right hand side like that actually.  



So, rearranging the terms out to be something into x k plus all this terms is should be 

equal to 0, and again I strongly suggest all of you to, kind of derive all this, for your 

clarity and think like that, you can pause this whenever you see this lecture, you can 

pause it here and then try to derive it this expression yourself actually probably. 

Anyways, so do that, and then this is what it is, get some expression like this, and 

since it holds good for all x, which is non 0 think like that, all sort of variation possible. 

Then what we can see is, the coefficient is has to be 0; that that will us the expression for 

p k, happens to be something like this, and g k happens to be something like this. 

Remember g k can we know only with the available information about g k plus 1. This is 

a backward riccati formula again actually. 
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So, boundary condition, again go their lambda n turns out to be p n x n minus g n. So, 

and then lambda s n, we can substitute all the variables whatever you know there, and 

then this leads to this; if you consider this I mean require this coefficient something like 

that, and then p n happens to be like this, and g n happens to be this expression actually, 

that is what written here. So, what are getting, in some sort of a backward riccative 

relationship for p k and g k, because p k is function of p k plus 1; g k is function of g k 

plus 1 actually. This two backward riccati relationship also remains to boundary 

condition actually. So, starting from this boundary condition we can compute, keep on 

computing this p k’s and g k’s basically. 
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Now, the control solution finally, that is what our main aim; U k equal to minus r inverse 

r k inverse b k transverse lambda k plus 1, and this actually can, that lambda k plus 1. 

You can substitute it like this, and then x k plus 1, we can substitute like this, x k plus 1 

is nothing but the state equation. So, that is a x k plus b k sort of thing, we can substitute 

here and then we expand the terms x k term and U k term and g k plus 1 terms like that. 

Now you have a U k in left hand side and U k in the right hand side. So, you combined 

together and then solve for U k actually, and U k will turn out be something like this, 

which is. and this part of the solution can be define some sort of gain matrix, and this 

gain matrix some sort to be, all this expression and then there is a bias gain matrix sort of 

thing basically, this a reference signal remember g. this bias, g starts from something like 

this actually the g k somewhere here, so this bias term coefficient.  

So, essentially we will line up with formula which will tell you that, U k is not only 

minus k into x k, minus k into x k, but we have a additional term which tells U L k time 

g k plus 1 actually, which make sense, which you want to track some sort of signal 

reference, signal actually. That is it is a, I mean in this particular lecture, I wanted to give 

some sort of overview of discrete optimal control followed by discrete L Q R and there 

are many things around that, but now with the advancement of this digital computational 

all that, you can actually implement any continuous time control formulas with a very 

small grid size also, and then the discrete of optimal control will a very close meaning, is 

what is continuous optimal control as well actually. So, with that knowledge will stop 



this lecture and also remember that this discrete L Q R formulation, and discrete of 

optimal control formulation all that. We will use it some part of time later, in a slightly 

different starting actually, to come up with numerical algorithms for non-linear optimal 

control also basically. So, with that motivation I will stop here; thank you for your 

attention. 


