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An Overview of Kalman Filter Theory 

Hello everyone, we will continue with our last lecture today; and before end of this course, I 

thought an appropriate topic is some review of Kalman Filter Theory, because without that 

probably in my view, no control theory is complete. Now obviously, I will not be able to do 

a justice with all the derivations and everything about Kalman Filter Theory, but I will be 

able to give you some sort of a summary or a little bit theory round that, so that you can 

actually take this and implement in your problems actually. So, let us do that, but before 

before doing that, let us go through a little bit on what we discussed last time. And that was 

about this LQ observer, that we discussed last time actually, so a very quick review of that. 

(Refer Slide Time: 01:06) 

 

So, this is this is what we did this, observers and all we are need, because I mean the need 

for the observer or estimator is because we typically proposed a feedback control design, 

and state information is needed for control computation. And most of the time, you may not 



have sensor rich systems. In other words either the sensor is not available expensive sensors, 

all that actually whatever we discussed last last class. 
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So, what we did did here, in an observer for linear system design, we have a system plant 

like that, we propose that observer dynamics we constructed like this, where K is an 

estimator gain. And then we did discussed about the error, error being X minus X hat, where 

hat is the estimated information, X is a true information. 
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Then what happens is like, you go through this error dynamics and think like that, and try to 

make sure that, it is not a function of the error dynamics is I mean the X tilde dot is not a 

function of state and control. So, we enforce this coefficient to be 0. 

(Refer Slide Time: 02:00) 

 

And then we derive this estimated dynamic, observer dynamics to be of this form. So, it is 

exactly falls into this this form that X plus B U, but we have an additional term K e, that is 



estimated gain times, Y that the actual output minus estimated output C X hat actually, so 

that is the innovation term (Refer Slide Time: 02:07). So, you have that filter dynamics as 

like linear system dynamics plus Kalman gain times, innovation term actually. 

(Refer Slide Time: 02:28) 

 

Then we went and saw a comparison between control design, and observer design where 

you tell the close dynamics of that, for the control system design and like that, and close 

look error dynamics for the observer, I mean turns out to be very close to that actually. 

When we discussed the objective here is like, X (()) go to 0 and that is the keeping that 

objective, we have designed an (()) controller, and objective here is also X tilde should go to 

0. So, fairly similar objectives, only problem was K e happens to be in the left hand side 

here whereas, it happens to be right hand side here. 

So, we took transpose of this matrix and while doing the transpose K e transpose turns out to 

be the right, and then we told we can we can actually treat this A transpose and C transpose 

is equivalent A and (()). And then design a K e transpose instead instead of directly 

designing K e, you will be able to design K e transpose, but the once you design that then 

taking transpose means, we have done with the design actually. 



(Refer Slide Time: 03:21) 

 

So, for that we have this system dynamic original system, and had a dual system, and 

observe that control availability for one is observablity for the other and vice versa. 
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So, if you see this close looks to system dynamics and all, so we propose that this K e 

transpose is should be designed, that is similar to what we design is Kalman Kalman gain 

actually, I mean for this, for the control design part of it (()). So, instead of R B transpose T 



we should have R inverse C times P; and this P should be a is like a solution of this matrix, 

and think like that actually. 

So, any way, we continued with that and then the observer dynamic turns out to be like this, 

with the with the way to design and observe again actually. So, this is this is all turns out to 

be like a like the L Q observer design, and then we will say, I mean we have also told that 

towards the end of the last lecture is like. 
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If you consider the system dynamics with a noise, process noise and sensor noise, then it 

then it also turns out that the filter dynamics and all remain similar, and then that is the little 

bit more retail will will see this, in this class and continue further actually. So, this this is 

about this lecture is about Kalman filter theory, so we will revisit that that towards the end 

of the lecture, what we discussed last time, and then continue further actually. 
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So, outline of this particular lecture, will be something like this, we have continued time 

Kalman filter, that we talked upon in last class, then we will extend that to discrete time 

Kalman filter. So, the system dynamics is given in discrete form now, and the measurement 

is also given in discrete time. Then we will try to combine the (()) discrete Kalman filter; in 

other words, system dynamics is continuous, because measurements comes at discrete times. 

So, that that is what reality is actually most of the time, and this will give us a platform to 

talk about something called extended Kalman filter, which is used heavily in in practice. 

Most of the time when people tell I have used the kind of Kalman filter, that is what the 

mean they have actually implemented and EKF in the into this design basically. So, to up to 

that, we will discuss in this lecture and then probably that will be about summary, before we 

wind up this course alright. 

So, continuous time Kalman filter design for liner time invariant system, that is the that is 

the basic starting point and that is what we discussed last class also. So, we we have a 

system dynamics which is like X dot is A X plus B U plus G W, and then measurement 

equation turns out to be Y equal to C X plus V, where W and V are like, W is process noise 

vector and V is sensor noise vector. Remember, this these are effecting the system anyway, 

because the W is nothing but, an input which is directly effecting the system state, and if you 



really want to estimate a state into the feedback control design; that means, U becomes 

estimated for I mean function of an estimated state; then for the estimation process you will 

use Y, and Y is corrupted by sensor noise anyway. So, this two will will affect the system 

dynamic, the effect I mean it will affect the performance of the controller like that actually. 

So, if it proceed further there are some some of the assumptions involved, and what it means 

is initial condition of X is given like this, W is given like this, pair Q 0 Q and V is like 0 R, 

what it means in this parenthesis is, the first thing is mean the second is variance actually or 

there is a vector it is called covariance matrix (Refer Slide Time: 06:48). 

So, that means, X of 0 initial condition mean mean value is X tilde 0 and the covariance 

matrix is P naught similarly, W T is is a process noise has 0 mean, and Q as the covariance 

matrix for this, what is the covariance matrix by the way, this is all given here. Expected 

value of W times W transpose is actually Q, if tau is equal to T and sorry tau is 0; if tau is 

not 0 then it will happen to be 0 actually, because delta function is defined like that any way. 

So, this is Q means that expected value of W time, W transpose at the same time basically, 

that is what it means, anyway so we also assume that this W and V are uncorrelated white 

noise, that is a fundamental back bone Kalman filter theory, that this noise thing that that are 

accounted for are assume to be white. They may or may not be white, but in the entire 

theory W of they are assume to be white, and what you mean by white is like there supposed 

to be like uncorrelated that means, if I take I mean the correlation process and all are are 

defined like this. 

If I take any (()) other time like T and T plus tau, tau is a non 0 quantity, then I should be at 

0 actually, so there is nothing, if I multiply the same process noise with the same point of 

time, then I will get Q, but if any other time if I multiply then I will get 0 actually. So, these 

are like, what is what are called is white noise actually, and we also they are assume to be 0 

mean actually, W and V are assume to be 0 mean alright. 
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So, objective here what is the problem statement, they are the objective here to estimate the 

state vector X hat T using the state dynamics, as well as a sequence of measurement 

actually. We are not talking about only a single measurement, you have to have a sequence 

of measurement and using all those sequence of measurements, if observablity is there that 

means, if I mean if I keep on taking sequence of measurement as a combination actually. 

The sequence of measurements, so will have will be effected by system state actually, let us 

the meaning of observablity. 

Assuming that observablity is there, for the system output and system dynamic (()) that we 

are talking about, then what we what we really talk is, we take sequence of measurements, 

they are corrupted by noise alright, still we will be able to get a good estimate X hat of T. 

And what do you mean by good estimate, it again means that, if I take X tilde that is error 

between true and estimated values, that will become very small I mean I mean ideally X 

tilde will go to 0 X T tends to infinity. But, in a in a stochastic sense, where this noise vector 

is there and all this will not happen in this you know, even though we would like to happen 

actually. 

So, what will what will happen, then the expected value of X tilde will go to 0, if I as I take 

expected value means, it is large large I mean as the average of large number of cases 



actually. So, if I keep on I mean taking this X tilde T for a large number of discrete point of 

time probably, then if I take the mean value of that, and that should go to (()) at least. So, 

expected value sense it should go to 0; that is all we are demanding actually. So, let me 

probably write it here, what we are telling here is expected value of X tilde t, so it will go to 

0, that is that is our objective actually, totally speaking alright.  

(Refer Slide Time: 10:47) 

 

So, let us let us see that, how does it happen, we will we will get motivated by this L Q 

observer, that we discussed last class and all. And take K, we will assume the same observer 

dynamics rather; it is it is not similarly, it is same actually. So, we will just take a X hat plus 

B U plus gain times estimated gain times Y minus Y hat, where Y hat is estimated output, 

and estimated output will turn out to be C X hat again actually. 

So, this derivation is fairly straight forward, because see Y I mean, X hat by definition is 

expected value of X, what you mean by X hat, here is not I mean this X hat is nothing but, 

expected value of (No audio from 11:36 to 11:46) (Refer Slide Time: 11:25) this X this X 

hat is nothing but, expected value of X actually. So, in that sense the Y, if you continue with 

Y hat, and Y hat is expected value of Y and Y is nothing but, C X plus V and I get property 

of that expectation operation is it is a linear operator. So, we will be able to split it out and 

take C out of this operation. 



So, it turns out to be expected value of V is anyway 0, because it is 0 mean white noise. So, 

this is, because of that the expected value of V turns out to be 0, and expected value of X is 

except by definition. So, Y hat turns out to be C X hat, and that is how it will operate 

actually, now the problem is how do you how do you come up with this design of K e. So, 

this is what what is required anyway, without that we will not be able to propagate the 

system dynamic actually. So, we will not go through the entire derivation, I mean it it will 

require probably a full class and all that. 
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So, what we what we what I will tell is just a summary part of it, and summary part is like 

the gain, what we are talking about here, Kalman gain can be computed like this, P C 

transpose R inverse, and then P C transpose T inverse, this (()) that after you compute this, 

then X hat dot is nothing but, A X hat plus B U plus K e times Y minus C X hat actually. So, 

what do you compute this P, P is given like you can solve this Riccati equation, it is called 

filter Riccati equation actually. 

And if you see this Riccati equation, I mean before what we discussed, so the only 

difference is probably this term actually. So, this term I mean the L Q observation same this 

this term, earlier you did not have a G in the left, G transpose in the right actually, it was 



only Q (Refer Slide Time: 13:42). So, if you assume that G is actually, like a identity matrix 

here or G W is the noise, not not W parse, then it is nothing but, an L Q observer actually. 

In other words, L Q observer is also like a Kalman filter, where you are assuming that that G 

is actually identity matrix, may not happen of course, I mean the W, may not W is like a 

control input, control input may not alter the X dot directly with V; it passes through a 

influence matrix anyway G, it is like a V matrix. So, if you assume that G is actually identity 

then it is nothing but, (()) L Q observer actually, anyway so this is this is how it operate, so 

if you really want to mechanize a Kalman filter like this, all that you have to do is initialize 

X hat 0 with the guess. Then you have to solve this Riccati matrix P for the filter algebraic 

Riccati equation, because this is in the in the framework of infinite time that means, it may 

take a little longer time to stabilize actually, if your T F is infinity, then this is 0 otherwise, it 

will not be actually 0. 

Anyway assuming that it is, if this algebraic equation, Riccati equation is solved this is 

called filter Riccati equation, and then this after we solve for P, we compute the Kalman 

gain that something like this, and once you are there then you can propagate the system 

dynamic. Because, you have already have an initial condition there, and that it will also lead 

to this good stability behaviour, and think like that means, the error that we are talking about 

X tilde, which is expected value of X tilde and all that what we discussed here, it is all 

guaranteed to happen actually, because, it is a linear time invariance system. 

And there are also nice property such as, in the sense of this is of something called 

separation principle and all, so that means, you can design a controller and of the estimator 

separately each other. So, it it will not have the stability behaviour, each of the thing even 

though, you want to operate it based on the feedback system, I mean if you want to operate 

U based on a feedback of estimated state, then all nothing is going to happen drastically 

wrong, basically. 

Because, the close loops Eigen values, will be Eigen values of this system I mean and the 

Eigen values of error dynamics and all that. So, those theorems are, there I will not discuss 

too much on that actually. So, this is the summary of how do you mechanize a continuous 

time Kalman filter. But, that is not the problem here is it, this this entire formulation, 



assumes a continuous availability of measurement Y is C X plus V; that means, 

continuously the measurement is is coming to us actually. 

And suddenly, that is not reality; measurements are taken only a discrete point of time 

actually. So, if if that is the case then it also makes sense to probably discretise, this system 

equation, system dynamic equation; and we have several methods, any way we can use 0 

order either integration also the thing. I mean what about (()) method. So, once you (()) the 

system dynamic, and the measurement is anyway coming in in discrete manner; then 

probably we will have a compatible system to talk about actually. So, that is what this 

discrete time Kalman filter theory talks about. 
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So, let us let us talk about that, so what we are assuming here is as a discrete time system 

model, again linear time linear system, and when you talk about discrete time system 

normally, there is no difference rather you take like time varying system or time invariant 

system, so we will just take time varying system actually. So, X k plus 1 is A k X k plus B k 

U k plus G k times W k Y k C k X k plus B k, so remember A k, B k, C k, G k all that they 

are then is not necessarily be constant, they can be also the time getting actually. 



Again we assume that, W k and V k are 0 mean uncorrelated Gaussian white noises, this is a 

these are like little bit strong assumption, but then these are standard assumption for Kalman 

filter theory. So, this they they are corrupted by noise alright, but the noise that is this 

property, both of the noise have 0 mean, they are uncorrelated and the Gaussian process is 

also (()), Gaussian makes it probability the assumption of Gaussian (()) I mean done to both 

address realistic situation. That most of the time, then as happens to be Gaussian, and once 

you assume Gaussian noise there there is lot of nice properties actually, for which thus the 

theory becomes complete. 

For example, if you if you have a Gaussian distribution then mean and variance gives us the 

entire meaning, I mean more than that there is nothing actually. So, if once you know the 

noise is actually Gaussian, and once you know the meaning and it is variance, then we are 

probability done actually, theory we complete easily. But, for entire derivation remember, I 

mean in my view all that is required is that it has 0 mean non correlated thing, so 0 mean 

white noise that is all we need actually for the derivation part. So, let us proceed with that, 

then because of this assumptions, these are these are all good and what it means is if I take 

expected value of W times W transpose, if they are not taken at the same instant of time that 

is 0, nothing happens there. 

If they are taken at the same instant of time, then this and this Q k matrix and this Q k is 

called process noise covariance matrix, actually. Similarly, if you take sensor noise 

covariance matrix, that is the relationship between (()), so if they are not taken at the same 

time that is 0, if they are taken at the same time then this and these are connected, is R k 

matrix. And if you take even at the same time, what about different time between V and W, 

then it is 0, so they are totally uncorrelated to each other actually. 

It is either auto correlated autocorrelation sense self correlation sense that that happens, that 

way, but if you take cross correlation sense V k, W k like two different things, I can together 

on that no matter, what about time we are talking about they are all 0 actually. So, these are 

like, if you think that is slightly strong essences rather, there are also tricks and techniques to 

is not really a white noise, how do you how do you make use of it there are ideas like say 



filter design like, you can situate some sort of a small system, sub system rather, where 

where you take white noise input. 

And output of that artificial sub system should be really the colour noise that we are talking 

about actually; then you can argument the original system dynamic with that artificial 

system, which will like in filter design and all. Then then you can talk about estimating the 

entire state vector actually, so those (()) summary is interested they are encouraged to study 

details of those anyway, filter theory is a fascinating subject it is a complete theory by itself 

and all that actually. So, there are many tricks and techniques available on the various 

actually. 
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Anyway, so going back this is what you what is assumed, now what is our I mean what is 

the way to proceed further, so we need some sort of a filter dynamics anyway. And the filter 

dynamics is an artificial system dynamics, which simply needs to be propagated, with some 

initial condition and some then computation actually. So, there are two ways of doing this 

here, and the discrete time, one is like I will assume it is a it is a predictor corrector form, 

which is actually very popular. 



There are several reasons for that of course, and then there is a observer form what you have 

this what you have seen in the, this continuous time framework, so observer form or 

recursive form can be derived from this. So, for I mean this from the predictor corrector 

form easily actually rather, anyway what you are doing here first of all you predict for the 

next time state; let us talk about this, let us assume that I know some state information 

already, at k the instant of time and I also know the controller at k the instant of time. 

So, I will be able to I will be able to take advantage of this system dynamics, without the 

noise of course, and then I will be able to predict what is going on actually that means, if the 

noise does not happen to be there, then I should have a better prediction here. Whatever I am 

predicting here, but remember this prediction part assume any any sensor information 

actually, and once the sensor information is there that means, sensor has given me some 

value; I will be able to update this value from from that k plus 1 time (()). And same thing 

happens in T the instant of time also, if I start with k minus 1, then I this I will get k actually 

here, and then k will be updated here. So, first prediction, then update, prediction update 

like, that it will happen actually. Now, if you the reason it is written here (()) k plus 1, but k 

is easy to see, that if I put substitute this this expression here, then I will be able to derive 

this actually; this is this is observer form or or recursive form actually. So, prediction 

correction form is more popular since, it is more logical structured way, and easy to 

implement also actually, we will see that actually. 

They also leads to a logical logical extension, extended Kalman theory, which is which is 

primary requirement (()); if (()) once have definitions remember, we are talking about plus 

minus plus minus all sort of things here. So, we will be able to do some of these actually 

anyway, so before we proceed further, this in this let me explain a little bit here it is ok. 
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So, what we are telling here is something like, we have this time sequence of k this is 1, this 

2, this is 3 like that, well we have this picture one more time alter anyway. So, I start with 

some information here, and then I will be able to predict using the system dynamic that I 

know, from step one to step two this is that time exist actually. Then when I when I have this 

measurement information coming then, I will update this here, then I will again predict it 

here from two to three, I will get some value, then I will be able to update using using some 

sort of sensor information, then I will continue that. 

So, this is that the prediction part and then there is a correction part actually involved, so this 

is this is the correction part sorry this is, this is this way. So, predict correct, predict correct 

like that it will happen actually, so this that is the meaning of that aright, so let us continue 

this. 
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So, before before proceeding further let us talk about certain certain error values, and all 

that, so remember I have so, the prediction part is is written normally like minus, and the 

correction part is written as plus actually. So, when you see minus that means, it is actually 

coming from the prediction, when you see plus, it is actually corrected taking the output 

information actually, so prediction part and then correction part like that. 

So, I mean we will define this this error quantities, this error covariance matrices and think 

like that before proceeding further. So, this X tilde minus X tilde k minus is nothing, but X k 

minus X k hat minus similarly, X tilde k plus is X k minus X hat k plus and similarly, k plus 

1 and think like that. Now, error covariance matrix, it we also needs to define, I mean we 

need to define at this way P k minus that is the error covariance matrix at time step k, in the 

prediction part of it, is given like this, expected value of X tilde k minus times X tilde k 

minus transpose like that. 

They are all outer product anyway, because it so each of that is (()) vector, so if I get an 

outer product, it becomes like (()) matrix basically. So, this error this error values are error 

states are defined like that, and error covariance matrices are defined like that, they are 

simply definition to (()). And obviously, objective here is to derive expressions for this 

actually, we ultimately need to derive expressions for Kalman gain, k E k, but also we need 



to derive this expression, P k P k plus 1 minus and P k plus because, k E k is a function of 

this. So, we need to derive expressions for that actually, and we cannot really start with the 

definitions, because this is expected value means we have to we should have I mean infinite 

number of this I mean values available to us. 

And then we have to take average value of that and all, so from definition it will not be it is 

not advisable, it is not possible also. We need a kind of precise information like; separate 

expressions to derive this actually, so let us do let us see whether we can do that. Now, 

expressions for P k plus 1 minus, so remember P k plus 1 minus is is given like this, so we 

need to derive an expression for that one first, and then type the expected value of this outer 

product and all that. 
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So, what is this, this is by definition is this two and then this this X k plus 1 is like this, then 

this this part is given like that from the definition, this is coming from this actually. So, this 

this part can from that, and then this part is nothing but, the system dynamic remember, 

estimated 1 is the known wise, but the true one is given with noise anyway. So, now we see 

that these two are are cancelled out, and this this B k U k, will go from B k U k and you are 

left out with only the rest of the terms; and that is given something like this, so if I see X 

tilde k plus 1 minus it turns out to be like that. 



(Refer Slide Time: 28:01) 

 

So, now, I can take P k plus 1 minus which is expected value of this this times the transpose, 

and this one I have just derived, this is like this, so I will take a transpose of that also, then I 

will I will expand this transpose and then multiply to the do the algebra and all that actually. 

And remember, these are all like cross correlation is 0, so expected value of this W k and X 

tilde k this is 0, and this is also 0 anywhere, we see a across correlation term, these are all 0 

by assumption in Kalman filter theory. 

So, it take (()) out those and we are left out with these, and these values remember whatever 

you have here this is nothing but, definition if you go back to definition this turns out to be 

like that, so this is nothing but, P k plus actually right. So, this this one what you see here is 

nothing but, P k plus, so what you what you have here A k times P k plus times A k 

transpose (()). 

(()) simply like good book keeping basically, if you know what you are doing substitute, 

expand and then cancel out put something, I mean C wise all times 0 and deal with rest of 

the term that are left out actually. Similarly, if you see this one, expected value of W k times 

W k transpose, that happens to be Q k by definition, and then it turns out to be like that 

actually. 



So, if you really want P k plus 1 minus, then it is a function of P k plus and think like that 

actually. So, this happens to be because, this W k and X k these are like what is called as an 

orthogonal, orthogonal means this expected value of that happens to be 0. So, this process 

will start start from P P 0 minus, and P 0 minus is like initial covariance matrix of this error 

vector and all that, and that is supposed to be a selected by the design basically. That is how 

you start with along with your X tilde information, like guess for the initial condition for the 

estimated state; you also start with a guess for your covariance matrix actually. 
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So, this expression is derived like that, what about the other one that P k plus remember P k 

plus is required here, so we need that, so P k plus is by definition is expected value of X k I 

mean, X tilde k plus times X tilde k plus transpose. So, we need to have X tilde k plus first, 

so this one is given like this by definition, and actually that k plus is given by this, this is the 

predictor corrector form, so this is this expression comes there. 

So, if you put this this expression this, this part here and then try to simplify this it turns out, 

that I can probably simplify that way actually, so I will combine this X k term is here this X 

k term is here, so this is I minus K E times C k times X k (Refer Slide Time: 30:36). And 

similarly, I have this X k hat minus here and X k hat minus here, so I will put it there 

actually that way. So, I will try to simplify this, and I got some sort of a formula like that, so 



P k plus is expected value of this expression times that, so I will put this one times that that 

transpose. 

And then again do the same thing, it will expand this this bracketed term, and then multiply 

and see, what all in equation then I can do. So, it turns out that again this expected value of 

this, these are constant mean these are like expected value is not a function that, so I will be 

able to take out and these are orthogonal to each other, so they will go. So, what are left out, 

these two expressions see this (()) told here is this two expressions will not be required, so 

first and last will be there actually (Refer Slide Time: 31:31). And first and last by definition 

will will turn out to this part, by definition is P k minus and this part by definition is 

actually, R k anyway, so P k plus happens to be like this. 
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So, now we need to derive A k, E k like that estimated problem remember, what is our 

power problem actually, I mean the problem here is the P k plus which by definition, will go 

back to P k plus is error times, the error basically, the transpose of course. And this is after 

update that means, this this if you see X k tilde plus, this is after this X hat k plus that 

means, after I correct this using this innovation terms and all that whatever, I get is that and 

then error term happens to be true minus that. 



So, obviously, if I take a kind of a covariance matrix for that, I want that to be minimum 

actually, as minimum as possible ideally 0. So, what I formulated problem is let me go back 

and try to see, whether I can minimize this this operator, I mean this P k plus and 

minimizing this P k plus means, I one of that is like trace operator remember this is a P k 

plus is a matrix. 

So, trace is nothing but, kind of a norm operator and the trace is like, if you I mean if you 

see that a little bit that is individual terms, so will happen to be in diagonal, and trace is 

nothing but, summation of diagonals actually. So, if I just take this expression P k plus 

happens to be like this this one, and (()) if I take second norm square of this this X tilde plus 

X tilde k plus second norm square and that is nothing but, trace of P k plus actually. 

So, the I want to minimize this expression half of trace of P k plus, so whatever happens, 

whatever the solution I will get is K e k basically. So, how do I how do I do that, if I really 

want to minimize this J, the necessary condition is J remember, this J happens to be the 

function of K e k; where P k plus there is a K e k expression and all (Refer Slide Time: 

33:35). So, I consider this as a function of K e k, and then try to minimize that actually. 
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So, how do I mean do that, the necessary condition turns out to be like that, and J is this, 

where P k plus is this expression anyway. So, I substitute that, and then try to I mean take 

this also do this algebra, I turns out to be like this, and K e k happens to be left hand side of 

both , so I will be able to take common out of that. And then I will solve for K e k is like 

this. If I write multiply with this inverse, this this side we will get K e k this side we will 

happen like that.  

So, K e k which is Kalman gain in discrete time formulation turn out to be like this actually; 

we have also an idea that K e k as what we derived here, one it seems slightly complicated, 

one does not have to live with that, you can actually simplify this expression, you can 

expand this with thing, and then cancel out a few terms and it turn out to be as simple as 

that. But later we will see that this form is advisable because of numerical condition is 

conditioning is used and all that. 

Now, this is like a quadratic form what you see here, so the symmatricity of P k will not be 

compromise even for even, because of numerical inaccuracy, same computation and all that. 

So, even though it is a slightly little more kind of computation, we still I mean we still 

advisable to use the (()) expression anyway. 
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So, as the summary summary is problem is like this, I have a have a discrete time 

formulation, where X k plus 1 is like this Y k is like that, where W and V k W k and V k are 

uncorrelated, white noise 0 mean orthogonal to state vector all that is there. And then we 

start this process by initializing this two, we initialize the estimated value of the state as well 

as, a guess value for the error covariance matrix. 
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Then the gain computation can be done this way, where V k minus can be computed I mean 

using this this propagation equation and all that actually. This is this is what you see here is 

nothing but, propagation equation, basically what you see here that means, if I know P k 

minus I will I will be able to compute P k plus provided I know K e k. So, this is the I mean, 

if I have an initial condition I will be able to propagate this covariance matrix anyway, so 

this is what is going on here. 

So, we are initialization which is done, then gain can be computed like this and update 

equations will proceed that way, so this is after get a measurement, and I will update the 

state vector that way. So, it is my propagated thing, that the prediction part of it plus the 

correction term which is coming from the measurement multiplied with a Kalman gain term 

actually. 



And then there are covariance matrix can be propagated this way or that way, but this is 

preferable anyway, so we propagate that and get ready for the next time state actually. So, 

after we are done with this, then we predict it again one more time state, so both state as well 

as covariance matrix. So, this is because of this easy of implementation is logical flow of the 

equations and all that, this discrete form is kind of very popular actually, predictor corrector 

form is is a natural way of implementation actually. 

Now, we will move further, and then tell we have obviously, we have seen continuous time 

Kalman filter we have seen discrete time Kalman filter; neither of that is actually a very 

good reality, because what happens is in pure continuous time Kalman filter the assumption 

is the sensor noise, I mean sensor measurement is is available in a continuous time manner, 

which is not realistic. And may appear discrete form the system dynamic needs to be written 

in a discrete form, which is approximation to reality. So, I do not know I mean this given a 

choice will like to work with a continuous time state equation, but discrete time 

measurement equation; and that is where it will lead to continuous discrete gamma filter. 
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So, let us see that in brief, so what you are talking here is the state equation is is given in the 

in terms of continuous time, still it is linear, but now let us talk about time varying system 

dynamics and all. And the measurement equation is given in terms of discrete time, that is in 



W T is continue versus, and V k is discrete sensor noise actually. So, they also satisfies this 

similar properties, and then remember one will say satisfy (()) the delta sin, and other one is 

derived delta, this is derived delta this is kind of delta. 

So, that means, as long as your T is not equal to tau this is this is 0, if T equal to tau this is 1, 

and similarly if you k is not equal to 0, then it is 0 and if it is equal to 0 this is 1, that is that 

way (Refer Slide Time: 38:29). So, this is done because, it is a discrete I mean, this is a 

continuous time formulation and this is done, because it is a discrete time formulation. So, 

probably this, there is a small mistake out this k is not equal to (()). 
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And this is what I was talking earlier, this is the discrete I mean, this prediction correction 

mechanism is what is popular here, and so assuming some values are T 0, we will be able to 

predict in a fairly continuous time manner, using any numerical scheme not necessarily 0 out 

of think like that; you can you can just use any continuous time propagation iterations and 

all to predict this. So, once you predicted, then the sensor information is available I will I 

will be able to correct it, I will I mean, because the sensor will give you assuming that that 

is, that will give me correct information and all that. 



I will be able to make take the advantage of that, and then tell I have already given here 

what let me not operate further on that, and let me correct myself a little there and then 

operate further. So, this is prediction, this is correction, again prediction, because in between 

I do not have any sensor information, I have to simply rely on what I have, so starting with 

this initial condition, I will be able to predict (Refer Slide Time: 39:43). (()) sensor 

information again, so let me correct again from here, so like that it will proceed actually. 
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So, in principle, it is similar to what you have seen before, so what it tells is propagate the 

state estimate model forward from T k to T k plus 1 using the initial condition, and correct 

the information at one of the measurement is available as far I told you before. So, what it 

runs out is that, unlike this continuous time Kalman filter for expressions and all, because 

the measurement is not available in between in between measurement is simply not this. It 

turns out that the covariance matrix which is actually a continuous time expression, this time 

is given in a simplified form that that non-linear term, what you had earlier is not there 

basically. 
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So, this can we derive fairly rather easily, actually if you see this expression for P dot this X 

dot is given like that, X hat is given like that, X hat dot is a prediction part and remember 

that there is no noise in that actually. So, now, if I see that the error definition, and error 

dynamics and think like that X tilde are X minus X hat, so X tilde dot is X dot minus X hat 

dot. Because, I just take difference between that to B U B U goes and I left I am left out with 

A times X minus X hat which is X tilde plus G W actually. So, I will be able to operate 

based on this X tilde dot is A X tilde plus G W. 

So, remember this time varying system dynamics and time varying system dynamics with W 

being the input matrix and think like that, I will be able to write the solution of that in a 

continuous time manner. Where this phi T 0 happens to be like a state transition matrix and 

think like that, and then R W X tilde, now is X tilde is available. So, covariance matrix for R 

W tilde will be given something like this, carryout the expression simplified by simplify that 

and between and thing like that we will left we will be left out with this this expression 

really. 
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Now, what you do now, P dot is is by definition like this this two terms, so we have one 

term and the same term transpose, and one term we have we need to derive. So, this one 

term is is can be derived simply by definition, with X tilde dot we just derive here, so you 

put it there, and X tilde is we keep it, then we proceed further like that way; and then at E 

times expected value of X, see E times expected value of X tilde times X tilde transpose this 

by definition is P matrix anyway. So, we will put P matrix here than this one we just derived 

it the half times Q C transpose and then G is already there here, so this is half time Q C 

transpose, so that will happen to be like that. So, P dot is this expression plus the same 

expression transpose, so this expression what you have here plus the same expression 

transpose. 

Now, you are simplify these two terms, and half half will be combined together think like 

that, so P dot happens to be like that basically, that is what I told you here P dot happens to 

be like that. So, what is the summary part of it again here, the model is given like this, the 

continuous time model measurement is like this discrete time, initialize the state vector as 

well as the covariance matrix, we will compute the gain which is actually discrete time 

manner k is like this (Refer Slide Time: 43:05). 



Well then once you once you compute the gain, you will be able to correct the state vector, 

starting from the predicted value you can get the updated value, using this innovation term. 

Then we need to get ready with the next time step, next time step you can propagate that 

way, the state equation can be propagated using this this part of a system dynamic; not 

including noise. And this covariance matrix can also be propagated actually again this this 

symmetric form is preferable. 

So, propagation sense we will make use of this propagation as I told and we will also make 

use of this propagation term, and I mean this continuous time covariance matrix to propagate 

actually alright. So, this is what I mean is this this covariance matrix can can also be updated 

there, let me (()) not only updating this state equation state information here with the 

measurement, we will also update the covariance matrix here. Then we will propagate the 

covariance matrix using the continuous time expression that is available, so this is update 

stage (Refer Slide Time: 43:52). 

Both the both the state vector as well as covariance matrix will be updated, then they will be 

propagated by one more time state actually, remember the way it is mechanized it does not 

really require uniform delta t that means, the propagation time state and updated time state 

need not be same actually. You keep on propagating as long as the sensor information is not 

available, the moment sensor information is available, you update the information that you 

have actually, so that is a where you need to have mechanization actually. 

And so this what I already told, and then this is what you told is like P dot expression is a 

continuous time (()) equation, if you see this there is no more Riccati equation basically, it is 

in a discrete, I mean continuous discrete framework, it terms out to be nothing but, a (()) 

equations sort of thing. Now, finally, with this information we will be able to touch up on 

this this this external command filter, which is very popular in industry, and most of the time 

people use that, that extended Kalman filter. 
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So, first you remember, first is non-linear estimation problems are are considerably more 

difficult, than the linear problems in general, and EKF turn out to be an idea, but not a cure 

for everything that means, that you just cannot have, because I know EKF, I will I will be 

able to solve everything. What surprisingly turns out that EKF actually, works for a variety 

of problems, actually large number of problems EKF does work, but some cases it may not 

work also because, EKF is not a very rigid precise, theory it is it is an extensive idea really. 

So, what the problem, problem is like if the non-linear system, even if you take Gaussian 

input, it really does not translate, it does not retain in the Gaussian nature actually, if it is a 

linear system the nature of the Gaussian nature remains in that what the non-linear case does 

not actually. What is the assumption, fundamental assumption, what you are assuming in in 

external Kalman filter, is that the true state is sufficiently close to the estimated state 

actually already; an implementation, it may not be actually initially you will not be able to 

guess a very close state information and all that; that is one of the most one of the 

difficulties of course. Because, universal stability like linear system theory is not available, 

guess will play a role and if your guess is too far away you will have a problem actually. 

But, it turns out that you can have a fairly large amount of error in the initial guess, you can 

go through a large amount of transient, what it will ultimately settles out nicely actually. 



Anyway, coming back what it assumes that true state is sufficiently, close to the estimated 

state, and hence we can actually linearize the non-linear system, about the estimated set and 

then use the linear theory that we have used discussed before actually, that is what the idea. 

So, let us talk about the most popular form continuous discrete EKF and that is most natural 

form also system dynamics is continuous, but measurement is discrete again. 
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So, what you do here, so similar idea, like we will be able to, like with without the 

availability of measurement, we will be able to propagate the state information as well as the 

covariance information for to the next time state. And as long as the system dynamics is 

available will be able to correct it actually sorry, as long as the measurement information is 

available, we can update this this predicted values to corrected values really, so that is that is 

the way it will really precede actually. Now, so what is the summary of this the entire 

derivation, we will not go through probably, but the summary part is something like this, we 

have the system dynamics like this, where f of X is T U this is the non-linear system 

dynamics remember that. But, we still assume that the noise part is additive and noise part 

appears linearly rather, and this output is is again a non-linear expression plus V k. 

Remember, the system dynamics is continuous, but like measurement is actually discrete 

probably you can put here k. 



So, again the with mechanize, we need some initial condition and then that initial condition 

we have to guess, and so except k sorry, except minus T 0 is X 0, that is a guess, and P 0 

minus expected value of that, and that also value of this matrix needs to be guessed, most of 

the time these values are guessed as diagonal matrices anyway. So, this is this is what is 

required, then we will have again computation like fairly similar to what we discussed in the 

continuous discrete form of regular Kalman filter for linear systems, we will do that, but 

remember these are matrices now. 

So, matrices are this C k minus what you are using here is to be estimated this way actually 

that means, you take linearization of this output equation. So, C k minus is linearized form 

of this equation actually, so that is what we will go here. And similarly, we will need, I 

mean once you compute this Kalman gain, you will be able to use that for the update 

equations, and this expressions and all we have derived before. So, that is exactly same thing 

that we will be using, and then the after we are done with this we need to have propagation 

thing, and propagation happens to be like that. 

So, we have a state equation which can be propagated without noise part of course, and then 

it is a covariance matrix, I mean differential equation which will need to integrate each 

other. So, that using that will be able to propagate, and here this a matrix is again a Jacobean 

matrix this is derived del f by del X, and which is evaluated about the current estimate X hat 

T. So, A T and C T will be required here, C k minus and all that, and these are actually a 

nothing but, the linearization of the system dynamics and output equation what you have, 

about the current estimate what you have actually. 

So, once you are ready with these matrices, you can keep that as a that point of time that is 

my time varying system dynamics matrix that I have, and for that I already know how to 

deal with actually, because continuous discrete Kalman filter for linear system is available to 

be, so this is how how you operate actually. So, every point of time you generate A and C 

matrices about it something like a time varying linear matrix sort of thing, and then using 

your like regular linear system Kalman theory Kalman filter theory you will be able to 

compute the necessity matrices and all, so so again this operates based on this prediction 

correction, prediction correction like that actually. So, we also have an idea of this 



something called iterated EKF, that is the fundamental EKF anyway, but you will see that, 

the plenty of ideas of various extensions. And then various arts and all like how do you 

implement, what do you do depends on your system dynamics, depends on your experience, 

depends on your insight to the problem, many many many things will happen around that 

actually. 

So, one of that happens to be this iterated EKF however, that tell once I update this 

equations here, let me again go back and tell can I can I update one more time, can I update 

one more time like that (()); you get the system matrix if this is talking about some sort of a 

linearization here, and linearization is about my predicted value. So, let me do the 

linearization again the I mean with respect to the corrected value also, and operate the 

filtering equation one more time actually. So, that one you can keep on doing that, because 

you keep on updating your state in covariance matrix anyway. 

So, I will just update it and go back and tell I will reevaluate this this C k X k minus matrix 

about this except k plus norm and then I will use that one actually norm, so you keep on 

updating several times. So, before you proceed, I mean talk somewhere preferably after 

some conversions happen, and then you start your propagation equations actually, you start 

using a propagation equation. 
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This is the whole idea of iterated EKF and one can proceed with a fixed number of 

iterations, does not have to really wait for convergence and all, we can simply use some (()) 

and all that, before you proceed further; this is remember, these are all like like real time 

computation is should be addressed also, because without that this (()) also we will see. So, 

we can use it based on fixed number of iteration then go to the next step, go to the next step 

like that way actually alright. 
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So, there are various recommendations and issues in EKF, so before talking I mean before 

stopping this lecture, and winding up this course let me talk, several small small 

recommendation that are given for successful implementation of EKF, and again I will talk 

in a very generic sense basically. So, first thing is the design choice and all that, so design 

parameters lot of times you will see in a literature, that they are the recommendations that 

will perform. 

So, remember there is the tuning sense, what we really need is a initial condition guess for 

the state vector, and other than that we need values for this matrices R P naught and Q right, 

P Q and I mean what they call P naught Q and R sort of thing, but you can think of that. So, 

what they tell is like first thing is you fix your R matrix, because R is nothing but, sensor 

providence matrix. So, depending on what type of sensors that you have, that will that will 



be fixed from there, because you study the nature of your sensors and then find out the 

covariance matrix from that, and that is the reality, so do not try to that actually. 

So, keep your R matrix fixed based on the sensors that you are using, then you select a P 

naught with sufficiently high, that the lot of times you will see that P naught value is 

recommended to be very high, and that actually helps in some sort of a stability behaviour 

actually. That means, even though your initial condition guess is large enough, (()) if your P 

naught is sufficiently high in terms of the filter thus converge, after some initial transient of 

course. 

Now, once you fix R from the sensors and fix P naught sufficiently high, the only flexibility 

that you are left out with Q basically. So, you have to tune Q until I mean until you obtain 

satisfactory result basically, so that is the standard recommendation that that is there in in 

much literature actually. So, you can be say, if you see that, as I told this EKF and all, you it 

will go through initial large transient actually. So, initially it will got through large transient, 

and then ultimately it will try to settle and after that the error will be small actually. 

So, obviously, do not want to use this transients values, which are error nears any way, so 

what you what you have to do is probably you should you should run the filter sufficiently 

ahead of time prior to its usage. So, that the error stabilizes before it is usage actually. So, 

especially when you want to close in that means that may you want to operate the estimation 

into the control design and think like that. So, recommendation is used, you use the filter for 

a, I mean you start operating your filter in the background for some time, and then after 

sometime only you close the loop for the controller actually. So, that means, by that time the 

error is stabilized error is small, and then it will operate as if it will like to estimate the state 

and all that (()). So, anyway we will see that there is some sort of an initial time log given to 

the filter to stabilize, before it is actually usage actually. 

There is another recommendation, I have seen many times, that we lot of people are in favor 

of the idea of that measurement equation is to be linear as much as possible, for example, I 

mean the theory tells that I can linearize the measurement equation as well and obtain a C 

matrix. But, in general what lot of practicing engineers actually work, but observe that if you 

if you keep the measurement equation linear wherever possible, then it leads to better 



stability for produce of the filter, that is just some sort of an experienced recommendation 

sort of thing, there is no no theory reasoning to make it off actually. 

So, one example is for example, if you are talking about something like a (()) gradient 

problem (()) rather just information in polar coordinate, then the system dynamic associated 

with that is you should also use in polar coordinate; estimate the states in polar coordinate, 

and then transform it to Cartesian coordinate if you need actually. But, if you start with a 

Cartesian coordinate itself, and use polar coordinate information as of sensor output, then it 

will the measurement equation becomes non-linear, once you start linearizing it you are 

truncating the information. So, these are some of the issues that you want to avoid actually, 

so that is another recommendation. 

(()) should be taken to avoid numerically conditioning actually, that you can see some of this 

accommodation in this crass dies, and book these are all of my discussion from this book, 

and you can see that one of the recommendation, as I told is you need to use this expression 

for for this P k plus instead of that simplified expression. If you use this this will have better 

numerical property, even though both these expressions are identical, mathematical, so that 

is another care, that you need to take actually. 
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One more big recommendation is we need to eliminate out layers actually, so sometimes this 

this sensor information are not really good, and we and this EKF, actually gives us a 

platform, because we have a predicted state, we have a measurement equation actually. 

Which is like Y and Y hat sort of thing, and if the innovation term is really very big, then I 

do not want to come for that, if it is reasonably small and all I will assume the sensor is 

correct I will update. 

If it is too high too big, then probably momentarily I need to ignore that, I will consider that 

some sort of an out layer and just taken out that actually. Also remember that, EKF in 

general is fragile that that means, the only a narrow brand of design variables will be very 

good for for successful operation; if you do not lose your presence what I mean, keep on 

tuning this and ultimately, you will see that EKF actually works wonderfully for a for a 

number of problem. 

But, you need to have presence for making it operation or (()) actually and there are 

ultimately, there are consistency checks of the Kalman filter, there are various checks 

actually, one is sigma bound test, normalized error square test, normalized mean square test, 

for autocorrelation test and all that, (()) inequality test and all that. So, there are various test 

available, and at least where few of them needs to be done to have confidence in your 

estimation and all that, that is a really recommended and they were need to do that actually 

(()). 

There are limitations where linearization is not good general convergence guarantee 

convergence guarantee is not there and many issues, because of that there are other ideas 

available beyond EKF actually. And I will not discuss too many on that, if you are interested 

you can see EKF you can see particular filter, you can say actually kind of filtering lot and 

lot, lot things etcetera. 

So, with that probably I will stop here but, then the reference books are available the first 

book is my most favorite book and that is what I have taken from; second one is also good, 

and you can see some other books available or very good application, book there are theory 

books like that actually, so with that I will stop here thanks a lot. 


