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Pole Placement Control Design 

Hello everyone, we have completed this analysis tools so far, like stability, controllability 

observability all that. Now, the question is can we make use of some of those designs and 

some of those tools for control design? So, it is also called as control synthesis actually. 

So, analysis part being over we will continue with synthesis part next couple of classes. So, 

first one in the series we will see this pole placement control design in this lecture 21. So, let 

us start with the concept. We are given a kind of plant for which the dynamics are known to 

us and it is a linear system of course. X dot equals to X plus B U and then can we design a 

control system U, I mean that is what we are interested to ask in this lecture. 
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So, the assumptions behind this particular design, first thing is the system is completely state 

controllable. So, if it is not controllable obviously, you cannot do anything and hence we 

cannot do pole placement design either. 



And the second one is the state variables are measureable and are available for feedback. So, 

in other words you can actually implement this control. So, if you design a formula for U in 

terms of X, then X would be available for computing U. I mean that is the if part of the X is 

not available, then you can have your mathematics ready, but you cannot implement the 

controller. Because information is not available otherwise. 

We also assume that the control input is unconstrained. That means when normally the 

control inputs are typically constraint that means the magnitude of control, and the rate of 

control all that are not really infinite. They have to be constraint by physical constraints, 

they have to be constraint like energy input all sort of things. 

But here we will assume, as far as the theory development is concerned, that the control 

input is unconstrained. So, these are the primarily three assumptions that we will rely on 

actually. First is system is controllable. Second is its states are available for computing the 

controller. And the third is the control is unconstrained actually. So, let us see what is the 

philosophy here. The objective here is we, the original system that we are talking right. So, 

that is the X dot equal to A X plus B U. Original system what we are talking here, is 

something like X dot equal to A X plus B U.  

Remember this system is controllable, but it is by no means it is need not be stable. So, the 

system can be unstable or even if the system is stable, the poles of the A matrix that means 

the Eigen values of the A matrix need not be at the desired location. That means even if you 

ignore this control input for a second, and even if the system is stable you may not be, the 

system may not be performing the way we want it to perform actually.  

So, we want to enhance the response sometime. We want to increase dumping sometimes 

like that actually. So, that just because the system is stable does not necessarily mean, that 

we do not need a control system design you may still need that. 

So, that is what you are telling. So, what you are telling here I mean unlike our classical 

control system. Typically in classical control system we will be bothered about dominant 

poles, that means N P R design we will worry about only two dominant poles and try to 

locate them. 
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Now, we need not worry about only two, but we can talk about all the pole locations. So, we 

would lie at our choice the locations should be dictated by our choice, which will eventually 

come from either time domain specifications, most of the time or sometimes partly from 

frequency domain specification also. 

So this mu 1 to mu n are the desired location remember that. So, in other words the original 

system poles need not be at those locations it can be at somewhere else. But we want to 

design a controller in such that, the close loop system pole should be located here. 

So, as I told the difference from classical approach is not only the dominant poles, but all 

poles are forced to lie at specified desired location that is the difference. I already told 

necessary and sufficient condition turns out to be the system needs to be state controllable, 

completely controllable. So, by assumption this is controllable anyways, so we satisfy this 

actually. 
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Now philosophy of loop what is the idea there? What is the philosophy of pole placement 

control design? We have this plant which is I mean X dot equal to A X plus B U linear 

system dynamics. And we want to design a control vector U, in the state feedback form. 

That means U equal to minus K X.  

So if you design that U equal to minus K X and then the close loop system dynamics 

becomes X dot equal to A minus B K into X. And we typically tell that this is nothing but 

the close loop system matrix A minus B K. 

So, we have an idea that, suppose somebody kind of gives us this K, then this is our close 

loop system matrix. But the problem here is this is the reverse we want to design a K. The 

formula is given to us. U equal to minus K that is the formula we want to kind of use for the 

control design. 

So the control freedom of control is actually works down to freedom of designing this K 

matrix. So the gain matrix needs to be designed. So, after designing that the close loop 

matrix becomes A minus B K. And the philosophy is like we want to design this gain matrix 

K in such a way, that the close loop poles or the close loop characteristic polynomial rather, 

which is dictated by the s I minus of close loop A matrix determinant of that.  



So left hand side is close loop characteristic polynomial is nothing but the desired 

characteristic polynomial. Because of the pole locations are known to us. So, it is this right 

side is nothing but the desired characteristic polynomial. So, if these two becomes equal 

then obviously the close loop system matrix will have these poles. That is the whole idea. 

So, once again this mu 1 to mu n is known to us. So, obviously our desired poles are known 

to us, the desired characteristic polynomial is known to us. Hence, all that we are doing is 

the closed loop system matrix which is A minus B K and the characteristic polynomial is 

given by that s I minus this A minus B K determinant. So, we are just making them equal. 

Once we make it equal, then obviously our job is done. Another question is how do we make 

it equal? There are various ways of doing that, we will study method one two three here. 

Method one is first, but before we go there, before we would develop further things, first we 

will study single input system. Pole placement design has unique solution if you consider 

single input system, states can be many, but the control is just single in that situation pole 

placement technique design is unique and there is no confusion for that. So let us study 

about that particular thing. I remember one u is scalar then B is a vector, it is no more a 

matrix. 
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So method one: That is what we talk about so far. The very first step of any control design, 

not necessarily pole placement is check controllability. Once the controllability condition is 

satisfied, then there are further is hope that you can actually design a controller otherwise 

no. 

So first thing we need to do for any control design even if it is not told to us explicitly, is to 

check controllability. Now we are telling method one is very straight forward just derived 

from this condition that we just discussed here. So, this particular method is not very neatly 

kind of suitable for higher order system. It is easy to follow for low order systems in general. 

So if n is less that equal to 3 then probably you can do it manually. This is the manual 

method basically. So, what you are telling that we have a single input system. That means 

you have this X dot equal to A X plus B u and u is scalar. And u you are telling minus K X 

so, X dot equal to A minus B K times X that is what we are interested here. That means the 

dimension of this A minus B K, A minus B K incase that is the dimension has to be n by n. 

And remember B dimension is nothing but n by 1. So K dimension has to be 1 by n.  

So, that is what you are telling here, that we select a matrix of let us say, that is n equal to 

three here. That is what we are talking. So we select a gain matrix k 1 k 2 k 3 one by three 

here. It is just a row vector actually. And then we substitute that in to the formula that we 

just talked about. This is the left hand side of characteristic polynomial that is what we 

substitute here. So s I minus A plus B K determinant, that should be equal to s minus mu 1 

into s minus mu 2 into s minus mu 3 really, I mean you do not have to continue up to n you 

have 3 poles only. 

So in n principle, this is third order system then this has to be three basically. s minus mu 1 

into s minus mu 2 s minus mu 3. So we have a third order polynomial in the left hand side, 

and we have the third order polynomial in the right hand side. So just equate the coefficients 

and solve for k 1 k 2 k 3. So, the third order polynomial will give three coefficients and this, 

well four coefficients in general. But s q plus that I mean zeroth order term taken into 

account. You just take this first order coefficient is s q which does not give us anything it is 

just an identity. But, afterwards s square though will have a coefficient s will have a 



coefficient and we have a constant term. That is also kind of coefficient for zeroth power of 

s. 

So, if you equate these two from these three coefficients, we will get three equations. And 

our entire equations had freedom of three the k 1 k 2 k 3. So, we can actually solve this. So 

you see I mean I am not giving an example here, but if rather fairly easy to do that all that 

you are doing here is just equating the coefficients and solving for k 1 k 2 k 3. Once you 

solve for k 1 k 2 k 3 your gain matrix is ready. Hence your control formula is also ready u 

equal to minus K X so, that is how it is. 

Now method two so, method one is in general it is for n equal to 1 2 3. But if it is more than 

3 4 5 and all that, it becomes very cumbersome to do that manually. And even if you are 

able to write the coefficient equations manually, then probably you need to do symbolic 

computation anyway, for solving this in a computer manner or may be by numerical 

methods  

So, if this not a very neat way to design pole placement controller for higher order system. 

So, obviously people have thought about how to circumvent that by various other alternative 

approaches. 
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So let us study that method two which is little more general. So, what you are having here is 

X dot equal to A X plus B u in general this is not third order system, it can be any order 

system. But, u is still a scalar. So, you have u equal to minus K X, and K is nothing but 1 by 

n row vector. 

So, once you have that then the obviously A is that and B is that, what we are assuming here 

is the system is in first companion form or controllable canonical form that is the first I 

mean we will also see if it is not in this form what to do later. Or let us assume that the 

system is in controllable canonical or first companion form for which the A matrix is given 

like that. We have studied that before, all that n minus 1 rows will have this particular 

structure, B will have all 0 0 0(s), last entry is 1 and the last column last row here is some 

numbers, that is the first companion form. 

Once you have that then and the K is that way. So, what we have X dot equal to A minus B 

K into X or A C L X. Where A C L can be computed that way. Remember B times k when 

you put K, B is this and then K you put it here, B times k you multiply k 1 k 2 up to k n this 

is a row vector. So, this one has n by 1 and this is 1 by n so, will result in n by n matrix. So, 

what you would I mean is rather easy to see, that this is like if you multiply first I mean first 

0 to k 1 is 0 0 to k 2 is 0 everything else will be 0. 

So, the first n minus 1 rows will be typically 0, and the last row will have some numbers 

which is nothing but minus k 1 minus k 2 and all that, minus B K term we will have result 

like that. 
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So this is A matrix minus B times k is nothing but simply that actually. First entries are all 0 

and the then the last entries are k 1 k 2 up to k n actually. And the need part is the because 

these are all 0, these first columns are I mean first n minus 1 rows are not disturbed at all, 

they are just remaining as it is. So, we will have A minus c I mean that A minus B K or A C 

L which is like this also in the first companion form, that is the 0 1 0 0 all sort of things. So 

first n minus 1 rows will not be perturbed, and then only the last row will be disturbed. So, 

that is what we will get here. 
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Now if we have the close loop pole locations known to us and that is s minus mu 1 multiply 

s by s minus mu 2 all that up to s minus mu n. Then, it will result in a characteristic 

polynomial and this characteristic polynomial will lead to a closed loop system matrix in 

this form. 

Suppose you take any output by input sort of thing I mean if you want to convert it to state 

space form, then this will be the resulting A matrix in the control level canonical form. And 

that primarily comes from this characteristic polynomial being this way.  

So, what you have here instead of equating the characteristic polynomial coefficient by 

coefficient we are formulating a system closed loop system matrix. And then we are 

equating the matrix as such. This is the matrix for the closed loop system matrix and that is 

the closed loop system matrix which will result from closed loop system poles.  

So by equating the element by element matrix form the task become much simpler. Because 

you do not have polynomial expressions to equate as a simple simple expressions to express, 

to equate in the last row only. So, because the first n minus 1 rows are identically same so 

they are just identities actually. Only equations are formed only from the last row of this 

matrix, and last row of that matrix.  



So you will just element by element we will equate and then that will result in this. For 

example, this first one minus alpha n minus k 1 will result that is equal to minus alpha n. 

Similarly, the second element minus A minus 1 minus k 2 is nothing but, all minus alpha n 

minus 1 like that. 
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So then you result this set of equations will pop up and from which we will be able to 

compute k 1 to k n very easily rather. So in a vectorial notation K is nothing but alpha minus 

a where, alpha is a row vector containing alpha 1 to alpha n and then a is a row vector 

containing a 1 to a n actually.  

So, but remember it is a reverse order. So, this you have to be slightly careful while using 

this actually. What we are getting here is k 1 is equal to alpha n minus a n and k 2 is alpha n 

minus 1 minus a minus 1. Whereas, k n is nothing but alpha 1 minus a 1 so, it is kind of a 

reverse order. 

So this vector alpha and n is to be defined properly. So, do not just start defining alpha 1 to 

alpha alpha n rather it is, alpha n first and then alpha n minus 1, then alpha a alpha 1 at the 

end. 



Similarly a vector is also defined that way. Now, what after you remember that that is very 

easy because you have these coefficients ready any way right. So it is just a formula. So, 

what is the design procedure then, design procedure is like let us say alpha these are the 

closed loop pole locations.  

So we just expand and collect these alpha 1 alpha 2 up to alpha n, that is where you will 

collect. And then we already have this matrix this this coefficients a n a n minus 1 all that 

already known to us from the system matrix. So, then you just use the formula and get the 

answers sort of thing. This is just whatever these gain coefficients are given like that and 

you are done. The design is u is equal to minus k X anyway. 
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Now the question is what if it is not in the first companion form. See these are all valid this 

system matrix nicely popped up because it is a first companion form that is also first 

companion form. So, we are kind of lucky to get all that. Now the question is obviously life 

is not in first companion form. So, what you do in general basically. Then what you I mean 

then people have thought about that is the probably one of the great contributions, what 

people thought about it instead of starting directly which will lead me to complicated 

expressions and all that. Is there a transformation which will take me to first companion 

form?  



So starting from any general form can I take it to first companion form? So that is what the 

idea here is. So, let us define a transformation X equal to T times X hat obviously, T is to 

have a is a it is a full rank matrix otherwise, the inverse will not exist. 

So T needs to be full rank this a transformation so, that means if I know X hat I can get X ,if 

I know X I can also get X hat that way. So then we want to kind of visualize the problem in 

terms of X hat variable let us say. So X hat is that way, I mean X hat is nothing but T 

inverse X so, X hat dot is also T inverse X dot right. So this expression gives like X hat is 

nothing but T inverse X, and T is a constant matrix so, this will give us this X hat dot is 

equal to T inverse X X dot.  

So then this X dot is nothing but A X plus B u that we know, and again we want to convert 

X so, X is nothing but, t X hat actually. So what expression you are getting is like T inverse 

A T times X hat plus T inverse B u. That is very similar to what you get in similarity 

transformation. Similarity transformation for A matrix is given by P inverse A P and P is 

nothing but, Eigen vector I mean the matrix consisting of Eigen vectors and all that. 

Here it need not be Eigen vector, it can be I mean there will be some other matrix T but, it is 

T inverse A T that is like kind of I mean similarity transformation basically. So, what is that 

I mean the philosophy here is design a T of the transformation, see you have to pick up a T 

such that, this T inverse A T now, will have first companion form. 

So if this is first companion form then we are ready to start our problem basically. Earlier 

we started with the assumption that this is in first companion form. Now, we are interested 

in transforming the system into X hat variable. So, that in X hat coordinate system, the 

system matrix is in fact in first companion form. The question is can we do that? is it 

possible to do that? And that I mean the great thing is it is certainly possible. And T takes 

this form M into W, where M is nothing but controllability matrix, and w is something given 

like that which is nothing but coefficients of the open loop characteristic polynomial. I mean 

that is what the a matrix coefficients basically. 
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Initially you have a matrix I mean coefficients which are nothing but, coefficients of this 

characteristic polynomial if it is in the kind of first companion form, or the in general 

otherwise it will have this a 1 a 2 all this a n will come from the open loop a matrix actually. 

We will see an example to see, how do we select this and all that actually.  

So, open loop characteristic polynomial will give us these coefficients and this M, I mean is 

nothing but the controllability matrix. So you have the T T is nothing but M time W and 

once you apply this then you are run actually the T inverse A T will be ready now. So, this 

will be in first companion form and hence you can compute your gain matrix in terms of X 

hat variable remember that. 

So u will be in terms of X hat, what X hat and X you can again use that X hat equal to that 

and then you can write it in terms of X actually so that is not a problem. So, that is what I 

mean written here u equal to minus K hat X hat. But, K X hat is nothing but, T inverse X so 

K what you ultimately you are interested in K. So this K is nothing but K hat times T inverse 

that is your gain matrix. 

So just a comment here. Because of this role in control design, I mean you can very clearly 

see that there is a need for controllability matrix something like that. The first companion 



form is also known as controllable canonical form I mean this is just a comment sort of 

thing. First companion form is heavily used in the control design really So, that is why the 

term comes from there itself.  
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So, what is the pole placement design steps in general? This method two is also called as 

Bass Gura approach for their contribution. So first thing to do is controllability condition 

check, you have to check controllability condition. Then you can form the characteristic 

polynomial of the open loop A matrix. So s I minus A characteristic polynomial is one third 

of polynomial. So this is given in this form so, you can collect this a 1 a 2 up to a n which 

will be necessary for forming this W matrix, that is where these coefficients will come from. 

So you can collect these coefficients. And then the transformation matrix is ready where T is 

nothing but, M times W where M is controllability and then W is also ready now. Now we 

can write the desired characteristic polynomial which is in this form. And then this will give 

us a method of selecting this alpha 1 to alpha n now. These are the coefficients of the desired 

characteristic polynomial.  

So a 1 to a n are ready from open loop characteristic polynomial, alpha 1 to alpha n are 

ready from desired characteristic polynomial. And the desired gain matrix is nothing but this 



one right, K hat times T inverse and K is nothing but that what we discussed before, this 

time this will be k hats now basically. 

So once you substitute all that then this is nothing but that actually. So you have a gain 

matrix which is ready for you now. So, u will be ultimately minus K times X, after 

multiplying with T inverse this K will act with X actually. So that is the method to approach. 

So method one is just equating the coefficients of the two polynomials. These two 

polynomials whatever, one polynomial is here one more polynomial here, you will directly 

assuming a gain matrix form k 1 k 2 k 3. And then if this characteristic polynomial for the 

closed loop will contain k 1 k 2 up to k n all that and then equate the coefficients solve for 

those equation. Method two is little more systematic and hence simpler, and then this 

procedure once you follow this procedure the gain matrix will naturally pop up. 
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Now there is a method three which is personally I like the most actually, because it is a 

direct formula that is my personal preference probably. Which is called as Ackermann’s 

formula it is in fact, it will lead to a formula ultimately.So let us try to understand that. So, 

we instead of A C L for notational simplicity, we will just write it as A tilde here, I mean 

both are same anyway. 



So the close loop A matrix A tilde is nothing but A minus B K. And the desired 

characteristic equation is like that this already we know. So, suppose you want to expand 

that and all .So the characteristic equation will turn out to be like that. So, this part is 

polynomial if we equate it to 0, it is characteristic equation. 

Now, this characteristic equation we will call it as phi of A tilde. I mean phi not A tilde 

really but it is phi of s sort of thing. Because it is a scalar equation. Now there is a great 

theorem in matrix theory which is Caley Hamilton theorem. Probably you might have not 

seen its usage so extensively but here is a direct usage actually. 

So what it tells this Caley Hamilton theorem is that every matrix will satisfy its own 

characteristic equation in matrix equation sense basically. See characteristic equation is 

typically a scalar equation. But once you apply Caley Hamilton theorem the scalar 

expression that you have, if it is coming from some matrix say, then the same matrix will 

also satisfy its own characteristic equation which is a very very great theorem.  

Because, we have information about only a one equation one scalar equation information. 

And you are able to conclude a matrix equation directly from there. The n by n matrix 

equation that is the beauty. So, if you see this usage of Caley Hamilton theorem let us say, 

try to we want to apply. This is nothing but the characteristic equation for the close loop 

matrix A tilde. So obviously this A tilde will satisfy a matrix equation that way. So, if you 

just see this equation, whatever s to the power n plus alpha minus to the power n minus 1 all 

that. And the exactly similar equation you can write it here. 

Probably there is a small print mistake basically, probably. So, alpha n times I basically so 

you cannot write a scalar equation there actually. So alpha n times I will happen there 

actually that is equal to 0. Anyway, so without complicating the matter we can also take n 

equal to 3 for understanding the concept and it will be valid for n equal to 4 5 any order 

basically by the way 

So without loss of generality we will consider n equal to 3 here. And we will also let us 

before applying this Caley Hamilton theorem and proceeding further, we also note that these 

powers of A tilde will be necessary for us. So we will also see that I equal to I that is a 



identity anyway. But, A tilde is nothing but, A minus B K and A tilde square is A minus B K 

into A minus B K. So, if you expand then that will turn out to be like that. 

So partly I am not expanding everything, I mean what we are telling, we are expanding only 

the terms that are necessary and leaving out with A tilde expressions that will that is all right 

with us actually. We do not have to write all this in terms of A B and all that. Similarly, A 

tilde cube will be A tilde square into A tilde. So, A tilde square U already we have, into A 

tilde is A minus B K. So we expand whatever we have and then leave out the polynomials in 

terms of A tilde for simplicity. 

So A tilde is that, A tilde square is that, and A tilde cube is that. So, what you observe here 

nicely see A tilde 1 A matrix pops ups with some other matrices. A tilde square 1 A square 

matrix pops up with some other polynomial. A tilde cube A cube pops up with some other 

things actually. 

That is the fact that is going to be used later actually. Now the Caley Hamilton theorem will 

excite and tell, okay this is nothing but, this phi of A is A tilde is 0. Remember this is valid 

for phi of A tilde not for A, because A tilde is the closed loop characteristic polynomial, I 

mean close loop system matrix. And this is what we want A tilde to satisfy the characteristic 

polynomial ultimately we want it to satisfy this equation, that is why we started with. 

So the close loop A tilde matrix will satisfy this equation, not phi of A. So that is what we 

tell here. So, we want to formulate this phi of A tilde first. So phi of A tilde for n equal to 

three, we have only three terms actually, three terms from that side remember, that not from 

that side or that it turns from that side right hand side.  
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So the three terms from right hand side are like that alpha 3 into I plus alpha 2 A tilde plus I 

mean alpha 1 A tilde square plus A tilde cube. And all these expressions we have just 

derived. So we substitute all that whatever expressions we had, and it I mean we can collect 

the first coefficients, where first co efficient is from here and first coefficient from here first 

coefficient from here like that. And it turns out that this particular thing that you are talking 

about, this particular thing that you are looking at is nothing but phi of A matrix, right then 

we have a bunch of other things actually. 

So that is what we want to excite and then tell if, the phi of A tilde is nothing but 0. But phi 

of A what we have here is certainly not equal to 0, phi of A A is not equal to 0. 



(Refer Slide Time: 31:01) 

 

So let us use this property and tell, what we have ultimately this equation tells us that phi of 

A tilde is nothing but phi of A minus, all these actually whatever terms we have. 

So but, what we know is this is 0. Because that is Caley Hamilton theorem, phi of A tilde is 

0. So what we are left out actually we can actually get an expression, solution for phi of A 

basically. Phi of A is nothing but all that, and in a partition matrix sense I can write it that 

way. Where the beauty is it is again this controllability matrix is popping up very neatly 

actually. 

So what you are having here ultimately is I if I want to write it. So the system is kind of 

completely controllable we understand. So, this matrix this controllability matrix is a non 

singular. And hence this is a well I think this is a small print mistake again here, times phi of 

A here. I will right that actually. So here this phi of A will multiply here. So if I take the 

though I just want to solve it for this particular matrix or kind of a whatever I see here is a 

matrix right .So this matrix into this matrix is nothing but phi of A. So, we want to solve for 

this matrix and this matrix is nothing but, this inverse times phi of A. I pre multiply both 

sides with this inverse actually. 



So what I am getting here, I am getting so this particular matrix consists of several rows and 

all that. But what I am interested in I am certainly not interested in first two rows actually. I 

am interested in only the last row, that is my gain matrix actually. 
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So if I want to extract my last row then what I do is I simple multiply, pre multiply by 0 0 1. 

If I multiply 0 0 1 it will give me the first row basically. So my ultimately what you see here 

K gain is nothing but a formula, directly it is a formula. So 0 0 I mean 0 0 1 with a 

controllability matrix inverse times phi of A. So that is the formula that you are talking 

about is Ackermann’s formula actually. 

So in general if it is of n states like n number of rows, I mean n number of states. Then you 

have to have a little general formula for this which will tell us that this is 0 0 0 all the way 

up to n minus 1 then last one is 0.Then, you have a controllability matrix inverse then phi of 

A actually. Where phi of A is nothing but, the same expression is phi of A tilde where A 

tilde substituted by A basically. We started with phi of A tilde right, Caley Hamilton 

theorem. We started with all that actually phi of A tilde. 

So this is like that actually. So, this is of the method one two three that we discussed 

actually, method one is just equating the coefficients, method two is Bass Gura formula. We 



have steps to follow and method is just direct is just have a one single formula for designing 

the K matrix actually. 
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So let us talk about little more things. So, all this method one two three that we discussed it 

only gives us some mathematical formulas, provided we know the closed loop poles. 

Nobody has told us how to design closed loop poles and all that and nobody will ever tell us 

like that these are all problem dependent anyway. But, there are guidelines available and the 

first guideline tells that do not choose the closed loop poles far away from the open loop 

poles, and change only those poles to a different location whenever, it is badly necessary 

otherwise do not actually. 

Changing the pole location is not free. We can change the pole locations only by using 

control. So that means the difference of this open loop and close loop pole locations is done 

by control effort. So the moment you change these poles different I mean far away to each 

other, then the control demand suits off actually, control effort suits off actually.  

The second is do not choose the close loop poles very negative, that means you are telling if 

your negative side is stabilizing. So, I will go negative negative far away from the negative 

half actually in this plane, that is also not good because you remember if you have a 



negative I mean negative pole location then there is a exponential A to the power minus 

sigma t term actually, sigma is the real part of the pole location.  

So if the sigma is large then that term is very large that means it excites fast decay and 

things like that. That means in frequency thing, in frequency domain it leads to large 

bandwidth sort of thing, the response becomes very very very fast. That means for a little 

input system will try to respond very fast. 

So that means if you see it in a negative point perspective, then it tells us okay what about 

noise input, noise is also an input. It is a low magnitude high frequency input but, even if it 

is a low magnitude the system reacts for every little thing. So that means it will also try to 

react to noise actually. So, the noise amplification property becomes, I mean predominant if 

once you have this far away poles being there. 

So unnecessarily do not get too much kind of ambitious to put the I mean closed loop poles 

far away from the imaginary axis. That is not good either. So, looking at a little more in 

depth, suppose the open loop pole one of the pole is located far away in the left hand side. 

Probably we would like to bring it back closer to the imaginary axis. Some applications are 

like that. So just because it is far away from the imaginary axis in the left hand side does not 

mean the system properties are really good. It may be less robust to the noise. So with 

increased robustness and all we can infer bringing the pole locations little more closer to the 

imaginary axis. So these are just guidelines  
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And there is another guideline. How do we select? if you are kind of confuse, how do we 

select? how do we place the pole locations in a good way?  

And one suggestion is you can use whatever polynomial, which is given some form like this 

s by omega 0, where omega 0 is like natural frequency some design parameter constant. So 

you select some omega 0 and then s by omega 0 that is a close loop pole locations you kind 

of distribute, attempt to distribute this formula, where minus 1 we can use de moivre(s) 

formula sort of thing, we have to write expand in terms of complex exponential. 

So this complex exponential and n is nothing but system order basically. And this will churn 

out a bunch of poles. Because k is 0 1 2 3 it is an infinite series anyway basically. So you 

have to select only n of them because that is what we were interested in. And obviously you 

will we are not a fool to select unstable poles. So, we will certainly select only poles those 

are positive actually. 

So, for example if n equal to 1 we have only one pole so, you can use k equal to 1 here and 

then this will give in like this formula where sin pi is zero. So we are left again cos pi is 

minus actually minus 1 so, we are left out with S equal to minus omega 0. So, that is just one 



thing and we are ready with direct application equal to k equal to 1 actually it will give us 

that. 
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What about little more? Suppose, you have like second order thing actually how do you do 

that? This is for the first order system, what about second order system? So let n equal to 

two in that case so, first is like cos theta plus j sin theta to the power m is nothing but, cos m 

theta plus j sin m theta. 

So if you put n equal to 2 here, this is n plus 1 is 2 plus 1 3 divided by 2 into 2 which is 4 so, 

that is the fraction is 3 by 4. So n plus 1 divided by 2 n is 3 by 4. So you have a formula like 

this, and this is direct substitution of this formula whatever you have.I mean this complex 

exponential we expand it in terms of cos and sin basically, that is all we are doing there. So 

case 1 is like so we put start with k equal to 0 so, in this formula. Whatever, formula we 

have we start with k equal to 0,and then s 1 turns out to be like that which is somewhere here 

actually. And obviously this location is left hand side of the I mean this s plane  

So, we will buy it we will tell it is right we can accept. So this particular length omega 0 will 

dictate and that will design I mean we will select a omega 0 and then tell this is good or bad. 

That is again dependent on several factors like for example, your jumping ratio or our 



omega I mean what is that? The sigma partial part of it the percentage over showed like that. 

So these are this will give us s 1 which will we are ready to buy. Now when you put k equal 

to 1 because k equal to 0 is there, now next you put k equal to 1 this will give a pole location 

which is actually in the right hand side. Obviously it is destabilizing so we I mean obviously 

we do not want to take that. So this one we are accepting, this one we are rejecting. 
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Now the next one k equal to 2 it is again it will pop up in the fourth quadrant and hence it is 

rejection also. k equal to 3 it is in the third quadrant which is again positive I mean this is 

stabilizing. So, third anything that is second quadrant and third quadrant we are going to 

buy. So this is going to be third quadrant so, we accept it. 

So if you see this line, this line starts from here and nicely take some sort of a clockwise 

evaluation. So this attempts to kind of distribute the poles in a fairly kind of good manner 

basically. This because the arm length remains same it is just a rotation which happens so, it 

tries to place the poles in a good way rather. 

So this is whatever polynomial is all about. If in a higher order case you can also keep on 

doing that you can change your omega 0 and then again excite this one more time, and 



things like that. So these are just guidelines by the way, I mean these are not (( )) these are 

not design procedures, these are simply guidelines to start with actually. 
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So let us now take a little time to I mean apply all these to a example this example I taken 

from Ogata again. So we are talking about an inverted pendulum stoned on a cart sort of 

thing and then the dynamic equations derivation and all we are not interested that much. 

What you are telling is that part is done already and this linearization and other things have 

already been done. So we have a linearization equation that way about the inverted position 

basically. 

So we want to stabilize the valve I mean the inverted pendulum in its vertical equilibrium. 

Vertical top actually though that is what we want to do so, obviously unstable equilibrium 

point we want to stabilize that using control system. So if you see this and remember these y 

1 and y 2, we are taking x 1 and x 3 only.  

And it is also, this x 1 x 2 x 3 x 4 is just not the pendulum it is also the moment of the cart. 

So cart is moving and that is where your control input is acting. So by moving the cart 

forward and backward in a appropriate manner can you stabilize the pendulum on the 

vertical equilibrium position, that is the problem actually. 



So the movement, the control conditions are all related to not only this pendulum swing but, 

also the cart movement actually. So they are all propelling system that way. So what you are 

measuring here is x 1 and x 3 which is like position measurements only, x 1 is probably this 

theta and x 3 is this position movement of the cart actually. 

That one we are not that much interested here, because we are designing an observer for this 

I mean that is that probably next class we will see observer design and all. So this equation 

is not that relevant as of now. But, here we see this is our system matrix A matrix, this is our 

B matrix, this is our C matrix B is 0 obviously. 

So and then just to work with some numbers we select these numbers appropriately. 

Obviously so, these numbers A B and C will have numerical values now. So first thing is to 

check controllability design step one. 
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So we form a controllability matrix, it turns out to be like that and then determinant is not 

equal to 0 and hence rank is 4 is a full rank matrix. And hence the system is controllable and 

that is the reason why there is hope we can actually attempt to design a control system. 
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So next go to the step 2. This is what we are talking about, like a practical example of a 

using our theory what you know. So s I minus A is nothing but, the open loop characteristic 

polynomial A matrix is like that, A matrix is given like that. So s I minus A turns out to be 

like that. And s I minus A determinant turns out to be just these two terms s to the power 

fourth and s s square.  

So we want to write it in general s s 4 s q s q all sort of things and then equate the 

coefficients properly actually a 1 a 2 a 3 a 4. So obviously a 3 and a 4 are 0 0 a 2 a 1 a 1 is 

nothing but, this cube. Cube is not there in this polynomial. So a 1 is 0 and a 2 is s square s 

square is nothing but, minus 20.601. 

And normally the highest power coefficient is always 1 we do not require that. So we have 

collected these coefficients a 1 a 2 a 3 a 4 this exercise gives us that. And by the way in 

general, all this determinant evaluation can easily be done by using symbolic software. If it 

is too much, I mean high dimensional and all that actually that is not a problem. 
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Now find the transformation that is what we are interested. We are interested in applying 

method two here the Bass Gura thing. So T is nothing but, M times W where m is already 

known to us M we have already evaluated that is also dual purpose by the way. So it serves 

the controllability check as well as we will use it in the T matrix. So M times W where W is 

like this that is the form. So that is well that is again a small mistake probably, this is equal 

to that obviously. W is the substitute the coefficient say a 1 a 2 a 3 and you will get that one 

actually so, that is equal to that actually. 

So, now we can see that T equal to M W and we can very easily compute. W is already 

there, M is also there and so M times W we multiply and we get that. Once T is there T 

inverse can be computed, that is how it is. And then I can find we are not yet done because 

you have simply computed T and T inverse yet. 
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We have to find this; we have to also cater for this desired close loop like a poles and all. 

And desired close loop poles are given like that. Also remember for real characteristic 

equations are typically real polynomials. So the closed loop pole locations, the only 

restriction that to select is they have to be complex conjugate. If they are complex number 

they have to the conjugate pair it should exist actually. 

These two are real number double pole at minus 10 that is, or these two are complex 

conjugates of each other. So, thus the restriction how you want to select. By the way 

whatever polynomial naturally gives you that. Because whatever, we saw that second 

quadrant and third quadrant naturally gives you that actually. 

Anyway so it happens like this mu 1 mu 2 mu 3 mu 4 that way. So the desired characteristic 

polynomial happens to be like this all these four multiplications and you expand all that, and 

then it will give us that the coefficients alpha 1 alpha 2 alpha 3 alpha 4 that way. Once you 

expand, the good thing about complex conjugate polynomial is once you multiply them 

together, the resulting polynomial is real. 



So basically these two together will give us this real polynomial, and these two together will 

give us that polynomial. So again you multiply and then collect these coefficients alpha 1 to 

alpha 4 so, that is how what we do here. 
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So, then find the state feedback n matrix which is directly available. These are the this is the 

row vector times T inverse. T inverse we have already computed, this row is available now. 

So just compute it and then u equal to minus K X. this is what actually. 

So this is all about some examples and all that with single inputs systems. Now, what you do 

when the system is actually multi input system. So in general U is this, U is R m and where 

the problem here is this does not admit kind of a unique solution. Full placement technique 

is good only for single input systems in a very good way basically. But there are techniques, 

tricks and techniques to handle this issue to a limited extent. 
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So what I told here that is the same thing written here. The gain matrix is not unique even 

for fixed closed loop poles actually. Say essentially the gain matrix is not unique that is all 

actually. 

Then, the matrix where the mathematics becomes kind of involved but, it is traceable it is 

not becomes kind of untraceable mathematics, I mean they are linear systems. That is why 

they are kind of popular actually. 

So, it is traceable mathematics but, it becomes little more involvement and hence it is not 

that good. Oh again there is a small mistake (( )) this is certainly U. So X dot equal to A X 

plus B U and U equal to minus K X. So gain matrix is like that in general. 

Now the gain matrix is not a row matrix, I mean not a row vector but, it is a matrix in 

general. In that sense what you want to do?  
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So one idea is you can eliminate the need of measuring certain x certain states by 

purposefully selecting some sort of a combination. Appropriately, choosing the closed loop 

poles. For example, if your control formula in a symbolic sense is like this where, mu 1 and 

mu 2 are pole locations. Then purposefully I will select 1 mu 2 equal to beta. So this term 

equals to 0 and hence I do not need to use x 2 I do not I can eliminate sensor. 

Now this is all subject to the condition that beta is actually good. Beta is in the negative side 

and all that negative side of the plane basically. But, if it happens that way some polynomial, 

some coefficient if this one need not to be mu 1 it can be anything actually. But just a 

function of x 1 and this one, right term this one is to be certainly mu 2 minus beta. This need 

not be mu 1 actually it can be anything that is okay.  

But this is of importance; this has to be like that. Then certainly I can select mu 2 equal to 

beta provided beta is negative, that is the only condition. Then the beauty of it is I do not 

need to measure x 2 anymore. So I can eliminate sensor. But again you have to see whether 

that is the design is good only with x 1 information, this is this will excite this output 

feedback controls sort of ideas basically. 



Then the second thing is can you relate the gain matrix to proper physical quantities? That 

means suppose you have u x and u y. Now u x which is like let us say the position sort of 

ideas or u x is related to object x primarily, u y is related to object y primarily. They are 

coupled though the x and y systems are coupled is obviously but, you want to preserve that 

independent feedback sort of ideas.  

So the plant one will act on the measurements from plant one, and plot b controller will act 

on measurements from plot b itself. The information exchange from plot a and plot b, even 

though they are weakly coupled so, need not be considered actually. Sometimes this power 

plant separating a different location, power system control and all in electrical engineering, 

these kind of ideas are useful actually. 

So then you talk about these elements are purposefully, I mean enforced to be 0. So your 

entire freedom of 8 entries have reduced into 4 entries actually. So these are some of the 

ideas you can involve for even better simplicity. But these are more or less heuristics 

actually, they are more or less it is a kind of intuitive .But it is not mathematically rigorous 

actually. 

So, if you want to have mathematical rigorous thing then there are techniques available 

which is one of that is Eigen structure assignment control. Where we are not interested only 

in Eigen value placement but, we will also interested in Eigen vector directions. They have 

certain meanings and all that. So we are not going to discuss that particular thing here. But 

another alternative thing is we can introduce the idea of optimality, which will lead us to 

optimal control design for linear systems. Especially stabilizing controller design will fall in 

the frame work of linear quadratic regulator that we are going to do here. 

So that is and you can also visualize that optimal controller, the L Q R controller is kind of a 

Eigen structure assignment controller. And ultimately it will give us a formula for which it is 

valid from multi input system and all that. Rightly in general it is valid so, it implicitly it is 

doing some sort of a Eigen vectors shaping. But, you are not enforcing that to begin with, 

we will enforce it indirectly sort of thing. 
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So these are some other tricks and ideas that it can follow. Another idea that is I have taken 

from the website which say a very good company of course, dealing with control system 

estimation and all that. They have put that idea in a very neat way. So, this is like you may 

not be able to read here. So, I will let me explain this concept in a little detail way sort of 

thing. So, what you are telling here is like you have this number of inputs. So, we have this 

entire pole placement technique given in this diagram sort of thing. So, either you have a 

single control variable or you have a multiple control variable. Single control variable 

nothing too much I mean to worry about actually things are in order. 

When you have a multiple control variable all that we are doing is, you can define some sort 

of a linear combination of those variables. Suppose you have let us say u 1 and u 2 then you 

talk about the vector v which is like partly u 1. Let us say mu times u, mu is not a good 

variable probably because that is already taken. Let us say eta times u 1 plus 1 minus eta 

times u 2. Where, eta is a number between 0 and 1 actually. That means you are formulating 

some sort of a convex combination of u 1 and u 2. You are actually kind of distributing the 

load in a percentage sense. Let us say one eta is the 0.3 then it is 30 percent u 1 and 70 

percent u 2 like that actually. 



So you do that and then because you have reducing this way, you are not sure whatever B 

matrix pops of with v. So, ultimately you started with X dot equal to A X plus B U. So, this 

will we are interested in writing A X plus some sort of a B bar times v. So, the system was 

certainly controllable with respect to A B pair. We are not sure whether it is controllable 

with respect to A and B bar pair. So, that we need to kind of do that actually. So you want to 

verify whether A and B bar this pair is controllable or not. 

Now once this satisfies these, then you can transfer the system controllable (( )), I mean 

what essentially tells is once this condition is satisfied you design a v actually. Once you 

design a v then again you distribute that in terms of u 1 and u 2. That means in this particular 

case eta times kind of I mean you can this... Once you design this v you know what you are 

doing actually, that means this v consists of let us say 30 percent u 1 70 percent u 2. 

So you can kind of try to redistribute back and tell this v I will kind of partition that. And tell 

30 percent load will be taken by u 1 and 70 percent will be taken by u 2 I mean that is the 

idea there. Not a very neat approach but, certainly it does work in many cases especially for 

linear systems this because of the super position principle comes to your rescue. So, that 

way it becomes helpful in this particular thing. 

But, this method need not necessarily guarantee to work. Suppose, you select a different eta 

it may be controllable suddenly, for a different eta it may not be controllable like that. So 

you have to do some iterative design for making it work actually this particular approach. 

But then I mean for single input systems it is certainly a definite good tool though what we 

talk, this pole placement design.  

So, the in summary what you are telling here is, in this particular class we talked about pole 

placement control design for single input system in a good way. Multiple input systems you 

can do you can do a job but, it is not very straight forward exercise, because of non 

uniqueness of the solution. But forgetting that effect there are ways to handle that, there are I 

mean may not be very mathematically rigorous way but, there are ways to handle that. But, 

if you want to be mathematically rigorous then you have to use this either Eigen structure 

assignment or some sort of optimal control L Q R thing. 



But other than that, we discussed about like method 1 2 3 how do we make use of these 

ideas of civilizing a I mean stabilization and all that. To come up with a controller design, 

and primarily we have focused on state feedback controller of the form of U equal to minus 

K X.  

So, entire thing was boiled on to, how do you design a K matrix or K properly basically. So 

for that we discussed about three methods. And all these three methods, we also 

demonstrated I mean one of the methods we demonstrated using this inverted pendulum and 

then we will continue further with our discussion on like how to make use of that, these 

concepts that we discussed here for observer design in next class. With that I will stop 

probably, thank you. 


