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Review of Numerical Methods 

We will continue further in our lecture series. 

(Refer Slide Time: 00:24) 

 

And, many times in our control theory as well, we will need a lot of a numerical methods on 

the way. Especially, with respect to non-linear systems theory, the things are not available in 

closed form. We have to go either to that. And, in linear systems also, remember, that we 

need some operating point first. Before we talk about a deviation dynamics, which we 

linearize and then interpret that as linear systems, we will talk about linearization in one of 

those lectures later – about the linearization method in a CS pool. And then, we will see 

some of these other concepts also; like root finding and other things are useful in lot of 

applications. So, let us quickly review some of these numerical methods that are frequently 

kind of required in our analysis and synthesis. 



(Refer Slide Time: 01:17) 

 

The first concept that comes to mind is – first problem is linear equation solution. Suppose 

you have AX equal to b. And, remember we know for sure that if A is some rectangular and 

things like that, A is a square matrix for which a determinant of A is not 0; that means A is 

nonsingular and b is not equal to 0; then, X equal to A inverse B; we know for sure. But, A 

inverse is adjoint of it divided by determinant of A. And, that requires a lot of computation. 

We do not want to go to that definition all the time whenever that is required. 

Now, the question is where do we require this kind of solution in our control theory? And, 

one of that is you can see some of these motivation part of it. Suppose we want to find out 

something like this. This is (Refer Slide Time: 02:12) a typical equation X dot equal to AX 

plus BU. And, let us say we divide this X into like controlled state and uncontrolled state; 

like X c is controlled state, X n is uncontrolled state. And, we divide it in such a way that it 

is like dimension of X c is equal to dimension of U. So, if I just consider the upper portion 

of the equation; that means X c dot is equal to A 1 X plus B 1 U; then, I will tell this B 1… 

Remember the dimension of X c is equal to dimension of U; that means B 1 is the square 

matrix now. 

Then, I will probably try to find out what is my equilibrium condition; that means this X c 

dot is 0 (Refer Slide Time: 02:49); if I take about the controlled state equilibrium and I want 



to interpret that as a forced equilibrium point; that means the controlled accessibility is not 0 

for that. So I want to maintain that particular equilibrium point. And then, what is my 

control required for that? It is also like what is called as trim control in aircraft. Like if your 

aircraft flies steady and level, you really require some sort of a trim moment, because 

remember, c g and c p are not at the same point; that means continuously there is this 

aerodynamic lift-related moment, which will act on the vehicle actually. 

If I just tell that in a little small diagram. This is (Refer Slide Time: 03:32) something like 

there; and, c g will be somewhere here and c p is somewhere there. So, that means this 

particular thing will give us some sort of a moment about that. There is a turning moment 

sort of a thing. So, you want to cancel that by using something like an equivalent moment; 

so that means you really require some sort of a small elevator deflection. So, the trim 

condition is actually a forced equilibrium point in an aircraft plane. And, those of you, who 

cannot relate that, we will see that a little later; that is very obvious also; it is not too much. 

You can see this problem from other example problems as well. 

(Refer Slide Time: 04:15) 

 

So, what I am looking at? I am looking at some solution for something like X c dot equal to 

0; that means the control states are operating on the steady state. If I really want to find out 

what is the control necessary for that particular situation, then I can find a control action that 



way, because remember, B 1 is actually nonsingular; and, square are nonsingular. So, I can 

take that way. So, if I apply this control action – speed by control, then I will assure that this 

happens to be 0, so that the aircraft continues to fly at steady and level basically. That 

particular control is actually necessary for maintaining X c dot – 0. If X c is X dot for 

example, and U is delta e – elevated deflection, then this elevated deflection I have to 

compute it that way. So, obviously, we require this type of solution. 

Now, this is (Refer Slide Time: 05:03) A 1 of X is nothing but B. If you are going back to 

that, that (Refer Slide Time: 05:06) is the B and this A y is nothing but B 1 in this case. So, 

we require this kind of solution (( )) efficient ways of getting solution and things like that. 

Remember, this control has to be applied online also; that means we cannot afford to have 

lot of computational time getting wasted for computing this B 1 inverse; we do not want that 

actually. We want to have an official way of controlling, finding out this B 1 inverse. 

(Refer Slide Time: 05:31) 

 

Coming back to that, this is the equation that we are asking. And then, we are observing that 

A inverse involves too many computations. And roughly, the computational complexity 

sense – it requires n square into n factorial computations; that means if A is large, larger and 

larger, you are getting trapped in this computational complexity. So, you want to do it in an 



efficient way. And, one of that efficient way happens to be like Gauss elimination, which we 

will see in this class actually. 

Now, this approach not just suffers from this computational headache; it also suffers from 

these other problems like what is one thing, is called ill-conditioning. Now, remember, A 

inverse is nothing but adjoint of A divided by determinant of A; A inverse is equal to adjoint 

of A divided by determinant of A. So, if determinant of A goes 0; that means if you have a 

singularity, is approaching – you are approaching singularity, then this is a serious problem. 

You cannot just talk about division by that and things like that. And, also remember, there 

will be like so many computations and lot of computations – all of these computations will 

have a small round of errors. If there are too many computations, then round off errors can 

be large. So, you do not want to do too many computations in any situation basically. The 

computers are always like finite length you can take; I mean the number and all that – you 

will have finite digits only. So, there will be round off errors all the time actually. So, given 

a choice, you do not want to do too many computations. 

(Refer Slide Time: 07:11) 

 

Now, Gaussian elimination is a substitute to that. And, instead of general things, we will just 

take it as a small example and try to see what is going on here. We have this kind of an 

equation let us say – 3 by 3. And then, all these… I think there is a small mistake again – all 



these are small x 1; this is small x 2; this is small x 3. They are all elements. So, this 

equation – what we want to do? We want to reduce this equation – whatever equation you 

have. In this A matrix, to be a upper triangular matrix. And, we take advantage of the fact 

that if we multiply any row by any constant, then take add and subtract to other row; then, 

the equation have not changed; equation remains same. So, then we take advantage of that 

thing and then tell we want to reduce this matrix to an upper triangular form by taking 

advantage of this row transform – I mean row properties like row multiplication, addition, 

things like that. So, what you do? 

We will try to see these elements – whatever you see here – 1 1 0. This has to be all zeros 

(Refer Slide Time: 08:29). Now, 1 0 is already there. So I want to make sure that this 0 also 

happens here or this 0 happens here, either way. So, now, I see how we can do. I multiply 

this particular thing by minus half – one half and then add it up; that means I want to make 

sure that this becomes 0. If I do that, then 2 by 2 is 1; then, 1 minus 1 is 0 basically. So, that 

will pop up there. And, corresponding to that like say 2 minus 1 half; 2 minus 1 half is 3 by 

2 like that. And, 0 will not change this. So, that is the equation that I live with. Again, 2 

minus one half is 3 by 2 here. Now, you see that this is already 0 0, but I have to make sure 

that is also 0. So, I will multiply this element, this row by 2 by 3 this time; and then, subtract 

it. 

(Refer Slide Time: 09:20) 

 



If I do that, then I will end up with something like this. Now, this is an upper triangular 

matrix. So, I start looking at the equation from down to top. So, then it turns out that minus 

one-third is nothing but… Minus one-third of x 3 is equal to 3. And hence, x 3 is 9. Once I 

get x 3 value, then I put that this particular thing as a function of x 3; and, this particular… 

Remember this – let us do that – this particular thing has given me x 3 equal to 9. Now, if I 

go this equation rather, the second thing, then I get 3 by 2 x 2 plus 9, because x 3 is 9 is 

equal to 3 by 2. So, I try to solve this. And, if I try to solve this, then x 2 happens to be 

minus 5. 

Now, if I go back to the first one equation now – this equation (Refer Slide Time: 10:17) 

now and tell this is 2 x 1 plus x 2; x 2 is already minus 5. So, this is minus 5 equal to 1. 

Then, 2 x 1 turns out to be 6 and x 1 equal to 3. That is why you get x 1 equal to 3, 

 x 2 equal to minus 5, and x 3 equal to 9; that is easy now. So, what we are you doing here? 

We are somehow trying to eliminate this so-called pivotal elements and make it 0 0. And 

then, once you get an upper triangular matrix sort of thing here, you try to look the equations 

from bottom to top, because then they try to solve these equations in straight forward 

manner. So, that is Gaussian elimination. 

(Refer Slide Time: 11:07) 

 



Now, gauss elimination suddenly makes this n square into n factorial operations. This 

reduces to just this much operation. Remember – this is actually something like a very high 

computational thing to a very low computational thing. Remember – n cube is nothing but 

simply n not n factorial here. And, that will get multiplied with n square, which is a lot of 

computation really. So, obviously, it leads to far lesser computation; and then, hence, it is 

kind of preferred. Especially in matlab command window, some of you use that, then you 

have a choice of using inv function – inv into b, which is like x; or, the same thing you can 

do that using A – these slashes – A slash b; that will give you Gaussian elimination. So, 

instead of using the first one, I will suggest that you use this one – A slash b. All is well 

here. But, see some problems. 

What first problem is Gauss elimination method will also encounter problems if the pivotal 

element happens to be 0; one of the diagonal becomes… Suppose if you do this exercise and 

this happens to be 0 (Refer Slide Time: 12:35). Now, no matter how much you multiply and 

hence try to add and subtract, nothing will happen to this one; you will not be able to do that. 

So, in those situations, one easy way to that is just to exchange the rows. Suppose if this one 

happens to be 0 here, then you take the entire equation; you put a third equation. And, this 

one you substitute for second equation. You exchange the equations; then, proceed further. 

That is the idea there. So, this Gaussian elimination is a very standard practice now and lot 

of people make use of that. Again, in matlab window – matlab command, matlab 

environment, I suggest that you use this one. 



(Refer Slide Time: 13:27) 

 

Now, going back to the next concept; what we saw there is an algebraic equation solution 

for linear systems; that means we are talking about this is a linear sort of equation; A X 

equal to b, what you have (Refer Slide Time: 13:41) is actually a linear equation. Now, what 

if we have a non-linear equation? Remember – the numerical methods are more powerful for 

non-linear cases and all that. 

Now, let us see something like this – F of X equal to 0 (Refer Slide Time: 13:58). And, you 

want to find out what is X equal to. And again, the similar motivation there – like I can 

partition the states, whatever X dot equal to f of X, U into two parts. I still maintain that 

condition – dimension of X is equal to dimension of U. Then, in this case, you will end up 

with like X c dot equal to 0 if I want to attach that question. Then, I have this non-linear 

equation now. So, f c of X 0, U 0 is equal to 0. That is the condition that I want to find out; 

that means can I find out some U 0, which will satisfy this equation; U 0 can be a function of 

X 0; that is ok; that means if I know a particular number for X, that is, X 0, what is the 

particular number for U, which will give me that? That is why this 0 0 notations are there. 

So, I will go back to this equation now – f c of U equal to 0 and try to find out what is U for 

that. That is the motivation why we want to address this particular problem. This is just one 

of the examples. Why you need that? You may need it for many different cases also. 



(Refer Slide Time: 15:17) 

 

Now, we will start with a simple solution sort of idea. First, we will see what is a scalar case. 

By the way, this is many numerical methods available. One of that, which is popularly 

known is bisection method; that means if you talk about a scalar expression here for 

example, and you tell I have two guess values now; then, there is something called a 

bisection method. And, there are very other ideas as well. So, this is not… What I am talking 

here is not an exact review of methods available. So, what I am really doing here is rather 

talking about what is called as Newton-Raphson method, which is very neat. It has its own 

beauty basically. And, that is what is mostly used in practice. That is why we want to review 

this particular method of getting the solution. 

What you really want to find out in this case? Remember – non-linear equation solution will 

require some sort of iterative solution; that means in one go you will not be able to find out. 

But, you may need some couple of iterations before you arrive at the final solution. So, what 

is the idea here? Now, let us say that we are having some x k value. Some value for x k is 

already available and k can be 0 also; that means you can start with some initial guess. Then, 

if k is 1, 2, 3, 4, then you have already some iterated values available to you. Obviously, that 

is not the solution. That is why you want to do iteration; that means f of x k is not really 0. 

However, you want to find out a delta x k such that if I make x k plus delta x k, then f of x k 



plus delta x k is equal to 0. That is what that mean; that means if my delta x k is proper, then 

x k plus delta x k will be a root of this equation; that is the whole idea there. 

Now, I’ll interpret this (Refer Slide Time: 17:11) f of x k plus delta x k in Taylor series 

expansion and tell these are all higher order terms and all that; I am not be interested in that; 

I will just suppress that and I will just take the first order term – up to first order term. And, 

this is what the equation. Remember this entire expression is 0, because that is supposed to 

be a root. That is what you want to find the delta x k such that f of x k plus delta x k is equal 

to 0 basically. So, that is the aim. That is how you want to find the delta x k; that means this 

is equal to 0 up to that – up to this term. Then, I can relate that delta x k – this particular 

term is 0. Hence, this d f by d x evaluated at x k times delta x k – this term – whatever term 

is there, is nothing but minus f of x k. 

And, assuming that this is (Refer Slide Time: 18:10) f dash of x, remember that evaluated at 

x k. So, assuming that is nonzero, I can do that. Delta x k is nothing but this term. Whatever 

term you see here, that is nothing but delta x k. This particular term is nothing but delta x k. 

So, if this is delta x k, then what I really wanted is x k plus delta x k; that is x k plus 1. So, 

this particular term, what you see here is x k plus 1. That is why f of x k plus 1 is 0 basically; 

that is what you wanted. So, this is why you will get x k plus 1 is x k plus delta x k. And, 

delta x k is nothing but that. So, x k plus 1 is equal to x k minus f of x k divided by f dash of 

x k. That is the algorithm. And, you keep on doing that until you get some convergence; that 

means you do not get too much of improvement afterwards. Up to that you have to do that 

and stop. 



(Refer Slide Time: 19:31) 

 

Now, pictorially, let us see what is going on here. Here you have some f of x. Some f of x – 

arbitrarily, it is plotted something like that. f of x equal to 0. And, assuming that is the 0 

axis; starts with 0, 0 probably; and then, obviously, what you want? You want this particular 

value. This is the root. This is what you really want ultimately; what you do not know the 

value to start with. So, you start with some sort of a guess value. So, this is the guess value; I 

will start with some guess value let us say. And then, f of x is that much; that is f of x. Then, 

f dash of x; f dash of x is nothing but the slope evaluated at x i. So, that is the slope, what is 

given. So, if I compute this delta x i sort of thing and if you see this is actually a linear 

equation, what you are doing here? x i plus 1 is x i minus this term. 

And, if you just carefully look at it, it is a kind of a… If you start with a this (Refer Slide 

Time: 20:42) equation – straight line equation and try to find out the interpretation – the 

meaning of that, all that it tells me that I have a guess value; I go to that particular point, 

where it intersects this particular function; then, evaluate the slope; and, with that extension 

of the slope, I will cut this x-axis somewhere. And, that is going to be my next iteration 

value. So, again, I evaluate the function there; I again take the local derivative, extend that. 

And, wherever it cuts, it is my x i plus 2. Again, I go there and then I will proceed further 

like that. Then, ultimately, I will converge there actually. So, that is the interpretation of 

that. 



(Refer Slide Time: 21:24) 

 

Multi variable case – there is a similar extension you can do. Now, if you want this F of X is 

equal to 0 you tell, I will do the same exercise; that means I will take multi variable Taylor 

series expansion. And then, higher order terms I will neglect. And, I want to find out delta X 

k in such a way that X k plus 1… This is X k plus 1 anyway; this is X k plus 1. That is going 

to be a root; that means F of X k plus 1 is going to be 0. So, this entire thing what I see here, 

I interpret that I will find delta X k in such a way that this is equal to 0. Now, if that 

happens, then I define this fellow as X k plus 1. I define this del F by del X, evaluated at k is 

nothing but A k, something like that. 

And then, the equation tells me that A k times delta X k is nothing but negative of this 

particular thing (Refer Slide Time: 22:26) F of X k. And hence, delta X k is nothing but A k 

inverse F k. And remember, whenever you see this kind of a thing, you can use Gaussian 

elimination. You can use Gaussian elimination to compute that in a faster way. Then, you 

can update. Then, you get X k plus 1 is X k plus delta X k. So, very similar to what you have 

here (Refer Slide Time: 23:02). Instead of divided by 1 by f dash of x k in the matrix theory, 

you cannot talk that 1 over matrix; that is not defined. So, I will tell, it is a negative of A k 

inverse multiplied by that; that is the only difference; otherwise, it will continue. And, all 

numerical methods – most of them, will always rely on Taylor series expansion; whether it 

is root finding, whether it is Euler equation or whether it is many things, we will all rely on 



Taylor series expansion. So, all these numerical methods derive the strength from Taylor 

series expansion. 

The algorithm is again same. You start with some guess value and then compute delta X k 

like that and then proceed the algorithm like that (Refer Slide Time: 23:52). And remember, 

in matlab, those of you will be using that; for scalar thing, you do not have to do all these 

yourself. If you want, you can do it; otherwise, in matlab, there is a function called f 0. If 

you use this f 0 function, it will try to find out a solution around the guess value that you 

have to give. This function of demand – a function, which will return; and then, there is a 

guess value it will demand. So, it will find out a solution around this guess value. Similarly, 

this multi dimensional root I think to my knowledge is not available directly. But, from 

optimization tool box, something is available; otherwise, you can write your own function 

also. This I think that you need to write anyway. 

(Refer Slide Time: 24:40) 

 

The Newton-Raphson method algorithm sense – you start with some guess value – either 

you take that as x 0 or x 1, whatever it is; and the matlab will start with x 1; index 0 is not 

defined in matlab anyway. So, you start with some guess value x 1 and then solve for delta x 

k; and then, update x k plus 1, is like this. And then, you continue until convergence. And, 

convergence – typically, it is given either in terms of relative error or in terms of absolute 



error. Given a choice, relative error is my first preference – first recommendation, because 

the problem relate that… the tolerance value that you select whether here or there – it should 

not be problem dependent; it should be fairly independent. 

If you talk about 1 percent error, 1 percent error – whether you have a nano science problem 

or have a rocket science problem, either way. So, in other words, the units can be very 

different, but still the relative sense is still 1 percent early. So, that is why most of the time, I 

will recommend relative error. And, absolute errors are sometimes necessary, because 

suppose you have this particular x k plus 1, what you see (Refer Slide Time: 25:55) here is 

0, then there is a problem of division. So, then tell, I will continue with absolute error, 

because I already have a physical idea of what these values are. That will help me in 

selecting a proper value for this absolute error. That will be always my second 

recommendation. First recommendation is this one. 

(Refer Slide Time: 26:15) 

 

Now, let us see in Newton-Raphson method, how do you find that – find the root of the 

following let us say. Then, you will start with some x 0 value as 0.02; that you can start with 

that. And then, you tell this is x 1; x 1 nothing but x 0 minus this. And then, x 2 is that and x 

3 is that; you can continue. And, you can see that there is some improvement here – 

0.08205; 08205 is 0.03 sort of improvement here. And then, suddenly, it is 0.01 



improvement. And, you do one or two more iterations; it will converge. That is the method; 

that is the thing. 

(Refer Slide Time: 26:53) 

 

What is the beauty about this particular method? Why do you emphasize so much on this? Is 

primarily because of this property. What it tells is this particular method has something 

called quadratic convergence property; it means that actually; that means e k plus 1, 

whatever e k I get, at every instant, these are all iteration values. But, correspondingly, I can 

calculate e 1. And, e 1 is nothing but x 1 minus x 0 here; e 2 is x 2 minus x 1, like that; e 3 is 

x 3 minus x 2 like that. So, if I calculate that way, and then it will turn out that e k plus 1 is 

something like c times e k square. 

And normally, this (Refer Slide Time: 27:34) e k – if it is relative error typically, these are 

all less than 1. e k s are typically less than 1. And then, if it less than 1, e k square is still 

further less than 1; I mean it is very small value. And, e k plus 1 is proportional to e k 

square; that means it will converge very fast. That is called quadratic convergence property. 

However, there are several problems here. And, one of the problems is, it requires a good 

initial guess value in general. And, that too if you give a wrong guess value, it will converge 

to a wrong value. There is a possibility of doing that. 



(Refer Slide Time: 28:16) 

 

What are the problems of this method? First of all, we will see couple of issues here. And, 

first thing is this Newton-Raphson method does not converge at inflection points in general. 

What is inflection point? All powers if you have something like that. If you have x minus 1 

whole cube for example, it goes through. Remember it is a solution x equal to 1. You are 

looking for the solution. But, it will never converge at this point of time; if you just do 

iteration starting from some guess value, you will see that this has some convergences. And, 

it turns out that if it is point of inflection, something like that, if it cuts nicely and go, it is 

fine. Point of inflection – normally, it has some convergences as you see. It will go close to 

that, but around that, it will not converge. 



(Refer Slide Time: 29:08) 

 

Root jumping can also happen. For example, if you take sin x; you know several solutions 

are there, whatever solutions are there. Now, suppose you start with this guess value 

somewhere, then obviously, what you intended? You intended to find out some solution 

here; you did not intend to find somewhere else. But, remember if you just take the local 

slope, it will push somewhere here; again, you take the local slope, it will push somewhere 

here; again, you take the local slope, it will push you somewhere here. And ultimately, you 

will be able to locate sin x is equal to 0; that is also a solution. That is not the right solution, 

because you started with this guess value with the hope that you will find out the solution. 

And, one of these issues can be avoided by taking this something like what is called a 

learning rate. For example, x k plus 1 (Refer Slide Time: 30:02) is equal to x k minus f of x 

k divided by f dash of x k; that is what we discussed. Instead of doing that, you tell, there is 

alpha; I will multiply, where alpha is a number, which is less than 1. If I select a small value, 

obviously, I will not jump here; I will not take this much step. I will take another small step 

in this direction. So, I will be going here. So instead of going over there, I will not go here, 

but I will go here rather, because I will not take this particular jump. This entire thing – I 

will not take. But, this alpha will give me this much only. Many of these numerical 

algorithms will have this alpha as a term (( )) with that including optimization routines and 

all. This is called learning rate. And, we can probably select a particular appropriate value, 



which will help us eliminating some of these problems. So, first thing is, it (Refer Slide 

Time: 31:05) does not converge around inflection point; there is a (Refer Slide Time: 31:08) 

root jumping problem. 

(Refer Slide Time: 31:10) 

 

Third is there is oscillation problem. Remember this particular f of x has no real roots, 

because it does not touch the x-axis. It just goes away from 2. There is no solution. But, you 

are blind to that and you still wanted a solution. If you start with some guess value, it will try 

to go there and then it will try to come somewhere in this… This entire thing will go 

somewhere here. You started with let us say something like 1 here; I do not know whatever 

this one. And then, it will try to kind of oscillate. It will just keep on doing; one will lead to 

other and other will lead to there and things like that. And obviously, that is a very clear 

example here, because in such situation, you see that there is no root. So, you are posing a 

wrong problem to the system. Anyway, it is also like a local minimum or maximum. 



(Refer Slide Time: 32:15) 

 

There is another issue that even if it really touches the axis let us say; then, there is a 

problem also. Why? Because the derivative turns out to be 0 at some times. If you have this 

function; rather, let us say touch this axis somewhere around 0; that means this plus 2 is not 

there. In that situation also, what will happen is as you approach closer and closer and 

closer, it will approach to that solution anyway; or, once you approach closer to the solution, 

the slope becomes 0, so that f dash of x – this particular thing that you see here (Refer Slide 

Time: 32:44) – that will turn out to be 0. And hence, you will jump in (( )). It will come very 

close and then go back. That is where again this alpha term will help. If you have an alpha 

term, it will not force you to go there. So, sometimes, this adaptible learning rates are also 

nice. You start with a high learning rate; after couple of iterations, you reduce this value to a 

smaller value, smaller value, like that. So, that way, initially, you will not merge slow; you 

will merge rather relatively first. But, towards convergence, you will also not diverge; you 

will stay there. Now again, division by zero is very apparent, because whenever there is a 

slope zero, then there is a division by zero problem, which will not be nice either. 



(Refer Slide Time: 33:33) 

 

There is another problem that at the solution point is f dash of x is not 0, but it is unbounded; 

that means infinity. Then also, there is a problem. It is very counter intuitive. But, actually 

there is a problem. You can verify that with this example. Square root of x – if you see that, 

then this f dash of x star… f dash of x – remember what is f dash of x? f dash of x is actually 

1 by 2 square root of x. So, if the solution turns out to be 0, that around 0 is actually infinity. 

Then, there is a problem there. There are many issues there for Newton-Raphson method. 

But, if none of these issues are actually there or you find some solution like Loranger fixing 

and things like that, then actually converges very fast. That is the beauty part of it. 



(Refer Slide Time: 34:33) 

 

We will go to the next concept. Many times we need a numerical differentiation. Numerical 

differentiation we know. This is the definition. I can either define it that way. Forward 

difference way – that limit delta x tends to 0 f of x plus delta x minus f of x divided by delta 

x; or, in a backward difference, that means f of x minus f of x minus delta x divided by delta 

x; or, you can find it in a central difference way. You can take positive; you can evaluate the 

function little positive and little negative; take the difference; divide by 2 delta x rather. So, 

numerically, if you want to really approximate that, you have an x 0 value. So, you can 

evaluate the function around x 0 either in a positive side or in negative side or both ways. 

Then, it simply comes from definition. As long as you take delta x as small values, if I 

eliminate this limit condition; that is all you are doing here – numerical approximation. 

And, the limiting sense – delta x has to be very close to 0. But, instead of that, you will put a 

small finite value and still evaluate that derivative. That is called numerical approximation. 

So, forward difference is like that; backward difference is like that; and central difference is 

like that. And, it turns out that if you use either (Refer Slide Time: 35:51) forward difference 

or backward difference, the error is of order delta x. But, if you use central difference, the 

error will be of this order of delta square. So, obviously, central difference is better in 

accuracy sense point of view. But, sometimes, you will be required to use forward difference 

or backward difference. Like for example, if you start with grid 0.1, then the numbers are 



available only at grid 0.2; then, grid point minus 1 is not available, then you have to take 

forward difference anyway like that. But, wherever it is possible to take the central 

difference, my suggestion is to kind of opt for that, because the error is lesser in that. 

(Refer Slide Time: 36:31) 

 

Next concept is obviously numerical integration. This is all about numerical differentiation. 

Now, numerical integration sense – suppose you have a curve like this; whatever curve is 

there, I want to evaluate this integral; that means area under the curve. And, one popular 

way of doing that is using trapezoidal rule. One more way of doing that is also there. For 

example, if somebody wants to do that, they can evaluate this integral – this area and this 

area like that; then, this area like that. So, that means you can simply hold the values of the 

grid point and then try to find out whatever f 1 value at point x 1, you can just simply hold 

that and find out this I 1 under that. Forget this inaccuracy here, whatever happens here. 

And similarly, you can try to evaluate this entire area even if you add some little more area. 

That is one way of doing that. But, little better way of doing that is I have these two points. 

This (Refer Slide Time: 37:27) function value is anyway available to me. These grid point 

values are also available to me. So, why do not I evaluate using this trapezoid formula, 

which is there. Instead of doing that, I am interpreting as something like… I will not do this; 



I will just take out and I evaluate this area rather – whatever I 1. Similarly, I will carry on 

with I 2 and things like that. So, that happens to be better obviously; and, that is doable. 
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The formula sense – I want to have this entire integration. So, I have to take summation of 

all these – I 1, I 2 up to I n minus 1 and I n. All these areas, whatever stripes I get (Refer 

Slide Time: 38:10) – little stripes I get – those stripes I have to evaluate and then take 

summation of that. So, that is what I am doing. Here I am assuming a uniform grid; that 

means delta x remains same. You can probably do that. Delta x I 1 is nothing but f 0 plus f 

1. This is the trapezoidal formula for I 1. And similarly, for I 2, that is the trapezoidal 

formula. And, you carry on with that. Then, it interestingly turns out that if I take delta x by 

2 common, then it is f 0 by 2 at the beginning and f n by 2 at the end. And, all other things 

are simply summations. So, if I take this 2 inside and then take delta x common here, then 

area by trapezoidal rule is given like this. And also, remember, there is a small comment out 

here that if you do numerical differentiation, it is always error amplifying; whereas, 

numerical integration is always error smoothing, because see if you do this numerical 

differentiation – these formulas (Refer Slide Time: 39:17), suppose you have a little… 
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Let us say the function has not nicely this way; but, the function has something like small 

error; that means the function is something like not this way, but something like this. So, 

now, what we will be telling? If I evaluate a slope here… I will evaluate a slope here; it will 

be like this. And, I will evaluate the very next time; it will be like this. Remember – the 

values are quite different. One is almost like plus infinity; other is minus infinity. So, that 

way, even the values of the functions are very small. The value at the slope at here, what I 

am evaluating and value of the slope here are very different; that means the differentiation 

operator is highly error amplifying. So, if you really have a noisy data or directly 

experimental data, things like that, never ever do numerical differentiation directly on those 

data. That is a strong recommendation rather. 

However, if you do numerical integration with respect to (Refer Slide Time: 40:24) this and 

with respect to an average curve – let us say that is an average curve, there will be some 

area, which is getting added and some area which is getting subtracted. So, you do not have 

to really know what is the exact area value under those noisy data. But, if you do the 

integration, which it is rather ok; instead, it will try to smooth out the error. So, if you 

generate a raw data set using your experiment and things like that; if you do either 

differentiation or integration; do not do numerical differentiation. You can probably fit a 

polynomial and then take differentiation on that polynomial. That is actually a 



recommendation instead of directly taking numerical derivatives like this. So, these are 

numerical integrations. 
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Then, the next concept that is needed for our kind of thing is ordinary differential equation 

solution. You may remember, many times we will do x dot equal to f of x 0. And, if you 

want to integrate those equations, and then find out what is the solution given a U basically. 

Now, some of these concepts were before you do that. The ordinary differential equations in 

general can be written in some equation like that. It is called ordinary, because it has only 

one independent variable, namely time here. If it is more than that, you can talk about PDEs 

– partial differential equations. We will not be worried about those things here; we are 

worried about ordinary differential equations here. 

And, these are concepts called order and degree. Order of the differential equation (Refer 

Slide Time: 42:01) is the highest order derivative in x – highest order derivative of x of t. 

What you see here is the order of that. And, the degree is the exponent of the highest order 

derivative; that means if you have d square x square by d t square to the power cube, then it 

is the degree 3 basically. So, this in general is a non-linear equation. So, the non-linearity 

can come in higher order derivatives as well. So, you take the highest order derivative and 

then see what is the power of that. And, most of our problem, the highest order derivative 



will contain degree 1. So, that way, most of the time, we will work with degree 1. But, order 

can be arbitrary; that means you can talk of second order systems, third order systems, nth 

order system like that. So, for a small example, you can see this kind of thing. The degree is 

4, because this the… First order – order is the highest of derivative, which is 3. And, this 

particular term has exponent 4. So, that is degree 4. So, we have a simple concept here. 
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What is the solution of ODE then? Problem involving ODE is not completely specified by 

the equation alone. You have to talk about some boundary condition, namely the initial 

condition. And typically, you do not call that as initial condition, because the condition can 

be given at any point of time; you can still integrate either forward or backward. So, it need 

not be only given at t 0; it can be given at t f also. But, it can be given at any point of time. It 

can integrate the equations both forward as well as backward using negative delta t; that is 

also ok. 

If you talk about an initial value problem especially, then the boundary conditions are given 

at initial time t i; otherwise, and if all the conditions are given at any point of time either 

including t f, that is still called as initial value problem only; otherwise, it is something like 

split boundary conditions like part of the boundary conditions given at one point of time and 

another part of the conditions given at some other point of time. And, these problems are 



still possible to solve, but these are complex to solve; that means it will require some 

algorithms to solve two point boundary value problems. And, optimal control theory will 

rely some of these things. In optimal control, you will invariably be required to solve two 

point boundary value problems. But, in this particular class, we will talk about initial value 

problems only; that means all the conditions are given at one point of time. Then, how do 

you get that? 
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Numerical solution to initial value problem – this is the problem eventually. dx by dt is t x of 

t; x of t 0 is x 0. And, remember this can be in general; this x is actually a vector x; that 

means it is actually x 1, x 2, x 3 – all these components are there for (( )) So, this is not 

necessarily a scalar equation; this is a vector equation. All these n equations are there – x 1 

dot, x 2 dot up to x n dot – with all initial conditions available. Then, how do you get a 

solution? That means what do you mean by a solution? I want to find out what is… I know x 

of t 0 – I know that. I want to find out x of t 1, x of t 2 and things like that, whatever time – x 

of t n – I can still continue further. And, remember t 1 is nothing but t 0 plus delta t; and, t 2 

is equal to t 1 plus delta t, like that. So, if I… Let us do that… delta t like that. And, these 

delta t’s may not be same; it can be different also – delta t 1, delta t 2 – like that you can also 

do that. Most of the time, delta t is taken as same. 
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The first approach, what is very simple rather, is called a Euler integration in fact. What do 

we do here? Quickly, we will go through that. All those numerical integration methods will 

rely on what is called as tangent slope method. Normally, it will try to approximate the 

curve. Remember x dot is equal to f of t x. So, that means this is actually a function for 

which you can evaluate the slope at any point of that x 0 value. Suppose you know x 0, x 1 

value, whatever it is and corresponding t’s are known to you, then the function is completely 

known to you, is a function of t and x. So, you can eventually take… If you can take 

derivatives of that function and then take the slope of that line and things like that, and you 

have to exploit that. Using that the equation of the line, slope of the line and things like that, 

you use that information to predict the next value of the solution. So, that is what you will 

do. 
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And, very quickly you see that Euler method. If you have dx by dt equal to f of t, x; again 

this x is vector here; that means with x of 0 equal to b, then at any start point of time, 

whatever point it says… Suppose I know the solution for t n already; I want to find out for t 

n plus 1. So, t equal to t n d x by d t, I can go back to the differentiation formula and use this 

(Refer Slide Time: 48:08) forward difference approximation; that is d x by d t. So, I can use 

that. x n plus 1 minus x n by delta t – that is forward difference. And, this is nothing but f of 

t n, x n. So, using forward difference formula, you can do that. 

And then, you simply solve this x n plus 1 (Refer Slide Time: 48:26). This x plus n plus 1 

turn out to be like that. And, remember f n plus 1, what you have here is nothing but x n dot. 

So, that means x n plus 1 is equal to x n plus delta t into x n dot also you can say. Sometimes 

people write that way. With that thing, that x n dot is nothing but f of t n, x n. So, if I know t 

n, x n value, I can calculate this f of x n; that is because this f is known to me; I can calculate 

that. And then, plug-in in this formula to get what is x n plus 1. So, it is very easy rather. 

Euler method is extremely easy compared to all of the methods. And, we used that in 

systems theories many times. But, then with the conscious information, that Euler 

integration is not very accurate. For getting good accuracy, you have to use delta t very 

small. 



If you do Taylor series expansion, that is, that (Refer Slide Time: 49:27) tangent slope 

approach and things like that; in Taylor series expansion of this particular function (Refer 

Slide Time: 49:33) f of t, x – you are only retaining first order derivatives; all other terms 

you are throwing out. And, because of that, the accuracy is more and more better and better 

provided delta t is very small. And, if delta t is very small, you are going to take very baby 

steps – very small steps, which is typically not good in control theory either, because 

sometimes you may be caught with the trivial delta t. For example, delta t is 10 to the power 

minus 6, is 1 microsecond. And, within that 1 microsecond control of the time is extremely 

small. And, in my knowledge, I have never seen a control update frequency of that small. 

Delta t being 1 microsecond, I have never seen; it is all like millisecond level I have seen. 

So, you cannot do that if that problem demands that. 

Now, second issue is suppose you want to do it in a faster way, tell that you can argue that 

all other numerical method; we are going to see one more by the way. It will demand little 

more computation for every iteration. This is the (Refer Slide Time: 50:35) smallest amount 

of computation by the way. So, computational advantage I will have. However, suppose the 

other method gives me relatively larger delta t, I can use that, because accuracy will be high. 

And, here the accuracy is being less, I have to use lot of these grid points. So, I have to 

repeat this computation so many times before I go from here to (Refer Slide Time: 50:55) 

here; whereas, in other method, I can go directly there; that means even if I am using little 

more computation for every step, I have to work with less number of steps. So, these are all 

kind of advantage, drawbacks, things like that. 

And, another advantage of Euler method is because the formula turns out to be rather easy; 

you can do further algebra rather easily. For example, if you discretize this equation this way 

– this is the discretized form of this (Refer Slide Time: 51:25) continuous equation, then you 

can talk various derivatives of this. For example, you can talk about let us say del… 

Sometimes we require to take derivatives like del x n plus 1 divided by del x n. Suppose you 

want to take that, then using this formula, it is rather easy, because f n is this way (Refer 

Slide Time: 51:49) and you can take out all the derivatives in a long-end formula – close 

form formula. That will not be difficult. So, there are advantages, drawbacks with this Euler 

method. My suggestion is just use it cautiously; do not jump into that unnecessarily. 
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Some useful comments – I have already told some of those. Euler integration has this error 

is order of delta t square, is not very highly accurate. So, small step size is necessary. And, 

this can come in conflict with computational load advantage. Every grid point you are doing 

less computation; but, you have to take several grid points, because delta t – you will be 

required to select much lesser. So, that way it is not that advantageous. But, in general, it has 

computational load; it has also like close form; further algebra is possible in close form like 

that. 
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Now, another thing that comes to method is Runge-Kutta method. And then, Runge-Kutta 

methods are of various orders. It can talk about second order Runge-Kutta, third order, 

fourth order, like that, which is very popular in systems theory. And, most of the differential 

equation numerical solution is fourth order. And, fourth order solution essentially the 

concept is like that; derivation I will not give here. I will talk about some function that f of t 

n, x n, is something like this let us say. And, you have some value like that here. Then, it 

attempts to find some approximate slopes here. Point number 1 – you already have the 

slope; it predicts what is the slope at point number 2, point number 3, point number 4 and 

then tries to kind of fit a polynomial in between that. And then, evaluates that (( )) using this 

polynomial, you will be able to kind of march ahead with the solution here with much more 

accuracy. That is the philosophy. 

Algebra part and all – you can see numerical methods book. So, ultimately, what it tells me 

is I start with this (Refer Slide Time: 53:50) series of computation; I start with k 1 rather, 

which is simply the function evaluation there, whatever function I have. Then, using that 

function value, whatever function value k 1, I will be able to calculate k 2. And then, using 

this k 2, I will calculate this k 3; using this k 3, I will calculate this k 4. And, using all these 

k 1 to k 4, I will just try to kind of get delta t over 6 and then average out all these – k 1 plus 



2 k 2 plus 2 k 3 plus k 4. So, 1 plus 2 plus 2 plus 1, that is, 6 divided by 6 sort of thing. So, 

this entire formula – the final formula – x i plus 1 is given something like this. 
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And, essentially turns out that fourth order Runge-Kutta algorithm has error – delta t to the 

power fifth; that means it is highly accurate compared to that. Remember Euler integration 

had accuracy of the order of delta t square only. Now, that square has gone to power fifth. 

That is why it is much more accurate. And, the second comment is this method essentially 

uses a fourth order power series approximation. Remember that Euler integration uses only 

linear term. Now, this one uses up to fourth order power series approximation in Taylor 

series to come up with this algorithm. Again, details of that is not here; you can see some 

numerical methods book. And, this particular algorithm is popularly called as RK-4 method 

– fourth order Runge-Kutta method. This is very popular in matlab; you can use all these. 

And, probably for Euler, you do not need an integration formula; it is just that, that formula 

is so simple that you do not need any routine for that primarily, because this integration 

formula (Refer Slide Time: 55:45) you can simply write it longhand. Once you evaluate this 

f of x, then it is easy to just plug in there. So. they do not need formula per se. Or, this 

algorithm (Refer Slide Time: 55:56) requires little bit of sequential computation. So, the 

formula is available there. And, in matlab, you can see some of these. This is something 



(Refer Slide Time: 56:09) called ODE 23; that is the function. And, there is another 

function, which is called ODE 45. And, ODE 23 – it is this what is called as a RK-2 method 

– second order Runge-Kutta method. And, this will give you RK-4 method – fourth order 

Runge-Kutta method. Essentially, both are similar functions, but with difference that these 

are there. 

And, by default, whatever is there in matlab, it is what is called as (Refer Slide Time: 56:37) 

adaptible step size; that means delta t that you are using does not necessarily remain 

constant. And, it is adopted provided suppose you have function something like these, and 

then, for here the slopes are not changing fast; here the slopes are not rather changing that 

fast; but, here in this segment, it is changing rapidly. So, it will try to see this – where the 

slope changes happen in a rapid way; and, if the change of slope is high, then 

correspondingly, it will adjust delta t small. Remember – this is delta t. This delta t is small 

here; this delta t can be large here. So, this adaptation of delta t happens in an implicit way 

inside the algorithm in these ODE 45 routines and all that. Most of our type of applications 

we do not… We are ok with constant step size. So, we can probably write (Refer Slide 

Time: 57:41) these functions ourselves also many times. And then, see what is the delta t 

that we can select. And, (( )) size is also very good for implementation concern; you do not 

have to monitor what is the delta t. Every control cycle update, gradient cycle update, like 

that – that is fixed by some number. So, you start using that particular number in a constant 

step size way. So, that is, some of these numerical methods are useful here. 

With that, I will probably stop here this particular class. And, you see that root finding both 

in linear equation and non-linear equation, numerical derivative and integration as well as 

numerical integration or differential equation. That is all we discussed in this class. These 

are all useful in our control theory. And, many of these practical uses implementation will 

come from your experience as you work with different different problems. I hope this will 

be useful in your further exercise. Thank you. 

 


