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Good morning! In today’s class, we will look at the following. We will look at the theory 

of rocket propulsion again. We derived the rocket equation in the last class. We also 

looked at staging; we looked at clustering of rockets and also the strap on rockets and 

what function they do. But, we did not really calculate what is the type of acceleration 

what we can get from a rocket at takeoff; We will illustrate this in a better way; why we 

need additional straps or additional clustering for a rocket.    
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Let us consider this example. Let us say I have a rocket, whose initial mass is Mi. And, 

let us say it allows mass efflux at the rate m° kg/s. Let us also assume that the rate at 

which the efflux leaves the rocket (nozzle) is at velocity VJ m/s. Let us put the units 

together; m°, so much kilogram per second; VJ, so much meter per second. I want to be 

able to calculate, what is the initial acceleration of this rocket. How do we do it?  

 In the last class, we told that the force or the thrust with which a rocket is pushed up is 

equal to rate of change of momentum or d/dt of mv. And, here it is the momentum mVJ. 

And, therefore the force or thrust is equal to  m°VJ.  

Now, can you tell me what will be the initial acceleration of this rocket? Therefore, the 

initial acceleration should be equal to the initial mass of the rocket into the acceleration 

a. That means, force is equal to mass into acceleration or rather acceleration is equal to 

m°VJ divided by the value of the initial mass. And, what did we tell in the last class? As I 

keep on adding more and more mass to the rocket, the initial mass increases and it 

becomes impossible for the rocket to accelerate.  

We will work out an example, a numerical example to be able to figure out how we 

calculate the acceleration and how we decide what must be the level of acceleration; this 

is because acceleration is also important. Suppose some human beings are sitting in a 

rocket; it cannot take off at a very high acceleration. The human beings will be adversely 



influenced by the large acceleration. Therefore, there has to be some control on 

acceleration.  

The ΔV or incremental velocity is equal to summation of; we now use simplified 

nomenclature. VJ depends on the particular stage and we have natural logarithm ln of the 

ratio of the initial to the final mass of the corresponding stage. That is i=1,2,3…as i goes 

from first stage to the second stage and so on. And, this is how we calculate. 
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 We can try to simplify and get the terms together. And to simplify, we write the 

summation as: ΔV is equal to VJ1 1n of (1 over the mass ratio of stage one). Does it make 

sense? We said mass ratio of a rocket Rm is equal to the final mass divided by the initial 

mass. Therefore it is Rm1. For the second stage we get ΔV2 is VJ2 ln of the second stage 

into 1 over the mass ratio of the second plus and so on. Supposing we have rockets in 

which the jet velocities are the same for all the stages, VJ1 is equal to VJ2 is equal to VJ3 

and so on.  

And, further we could have the mass ratios of each stage to be also the same for all the 

rocket stages. Supposing, if each stage has a same mass ratio and we say Rm1 is equal to 

Rm2 is equal to Rm3 and so on. Then, what do we get for ΔV. And this expression would 

be true only when the jet velocity and mass ratio are all the same. Then, we get ΔV is 

equal to n times the value of VJ ln of 1 over the mass ratio viz., ΔV = n VJ ln (1/Rm).   



That means, by increasing the number of stages we are able to increase the delta V 

corresponding to the number of stages used. But, this is not possible in practice because 

the mass ratios of the individual stages may not be the same and the jet velocity of all 

these stages may also not be the same. You could relax these things by considering VJ to 

be different, you could consider Rm to be different, and we can keep on getting different 

ideal velocities. May be we will do a homework problem a little later and try to find out 

how to calculate the jet velocity taking into consideration a number of stages of rocket 

together. Well, this is all about the rocket equation and the number of stages, clustering 

of rockets, and adding a strap-on in a rocket.  
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We will look at some examples. But, before looking at examples, I thought can we 

extend the rocket principle to say a toy rocket used as fire crackers during Deepavali 

festival. How do we launch this toy rocket? We have a bottle which is used as for 

launching rockets; we put that stabilizer which is the wooden stick to the fire cracker 

which is filled with some black powder. We will look at its composition later on. And, 

you have a small squib over here and you light it and zoom it goes up in a particular 

direction, if not vertically up. Supposing I want to write the equation for this fire cracker 

rocket. It should basically be same as the rocket equation?  

Therefore, here also we note that the initial mass of the rocket will include the stick, the 

paper which binds the black powder or gun powder together, and the mass of the gun 



powder or black powder used. This is initial mass. And, when the rocket is all consumed, 

we are left with this wood and left with paper which has still not got burnt. This will be 

the final mass. And therefore, what is the value of VJ? A small hole is provided here 

through which the gases are escaping and the velocity of gases is the value of VJ..   

But the mass of powder used as a propellant is very small. And rather, if I were to go 

back and write the equation what I wrote in the last class namely ΔV =  VJ ln 

[(α+β+γ)/(α+β)] where α was the payload mass fraction, β was structural mass fraction 

and γ the propellant mass fraction. The amount of gun powder or the amount of black 

powder which I keep is very small compared to the weight of the stick and the cracker 

assembly. And therefore, gamma tends to be negligibly small. And, in fact it is not only 

in the Deepavali rocket that it is small but also in a booster or first stage of a multistage 

rocket.  
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But, if I have to look at another example say that of the multi-stage rocket. We have one 

rocket stage after the other. I say let us have a four stage rocket. The initial mass of this 

rocket is going to be Mi summed over i = 1 to 4. This would be mass of first stage MI + 

the mass of the second stage MII + the mass of the third stage which is MIII + the mass of 

the fourth stage which is MIV. Now, we have some propellant in the first stage and 

propellant in the successive stages. Whatever be the propellant we have for the first 



stage, since the total mass of the rocket is large, the mass ratio of the propellant of the 

first stage divided by the initial mass of the rocket Mi would be small.  

So, also in these cases of multi stage rockets, the first stage, which we sometimes call as 

“Booster”; what is the “Booster”? It boosts the rocket; it allows the rocket to takeoff 

from the ground. It boosts the acceleration of the rocket. Therefore, it is known as 

“Booster stage”. And in a Booster stage, the mass of the propellant divided by the initial 

mass is the small number. If it is a small number can we find out whether I can simplify 

the rocket equation.  
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Let us go back and see what happens? Let us write that equation again. ΔV =VJ ln [1 + 

γ/(α+β)]. This was the general rocket equation, which holds good for each of the stages.  

Now, I come back to the Booster stage or to the case of a Deepavali rocket. For that, I 

say the propellant mass fraction γ divided by α+β should be small. It is small because 

there is so much of mass above it. The mass of the propellant is going to be small over 

here. Therefore, let us say this γ/(α+β) is equal to x, which is small. Therefore, now I get 

the equation; ΔV = VJ ln (1 + x), where x is a small number. And, what is ln of (1 + x)? x 

– x2/2 + x3/3 + …. .But, x is a small number. Therefore, I can as well forget about 

square, cube etc., of x and write ΔV for a rocket, like a booster rocket or the bottle rocket 

which we used for Deepavali time as VJ × x or VJ ×γ / (α+β).  
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This is something like ΔV = VJ × mass of the propellant divided by mass of the useful 

part plus mass of the structure. I am just writing these terms here. And, what is the mass 

of the propellant? Mass of the propellant is equal to the volume of the propellant into 

density of the propellant. And therefore, this becomes equal to density of the propellant 

into jet velocity into the volume of the first stage rocket divided by Mu plus Ms. In other 

words, we find that in comparison with the rocket equation wherein ΔV was VJ ×ln 

(Mi/Mf), we now get it as density of propellant into VJ into volume divided by the 

masses. Rather, instead of VJ, density of propellant into VJ becomes influential.   

Therefore, for a Deepavali cracker or for a booster stage rocket, instead of VJ being a 

figure of merit, it works out that the density of propellant into VJ becomes a figure of 

merit and that is the difference. And, of course this becomes the volume proportional to 

mass of the propellant and Mu by Ms. This must be kept in mind when we design the 

boosters. I will come back to this point when I show some slides. But, this is something 

which is important, which comes very simply by looking at the expansion of this 

particular expression containing the terms within logarithm.  
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When we want to make a rocket, there are two important parameters that we must 

consider as we have discussed. One is VJ. It must be very high. The ratio of Mi by Mf 

must also be large. But, when we make a booster rocket or when we are making a fire 

cracker rocket, then in that case what is going to be different? Instead of VJ, I would like 

the density of the propellant into the value of VJ to be large. And in fact, as we go along 

we will see, since the density of hydrogen is small, the use of hydrogen and oxygen as in 

cryogenic rockets is not that advantageous for boosters. Whereas if we use solid 

propellant, which is a dense material, may be it is better for the booster stages. Let us 

keep this in our minds. 

Well, this is all about the theory of rocket propulsion, rocket equations, staging, etc. Let 

us go back and refresh ourselves on what we have learnt through some slides. And then, 

we will come back and see what we mean by propulsion efficiency and then we will 

solve one or two problems.  
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We go through a few slides. You know, here we see a two stage rocket. May be the first 

stage gives you a velocity ΔV1, the second stage gives you a velocity ΔV2. The total 

velocity of this combination of the first and second stage is ΔV = ΔV1 + ΔV2. This is a 

two stage rocket.  
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Let us go to the next one. This is the first rocket which was designed in ISRO at 

Trivandrum. This was in the period, may be nineteen seventy to seventy eight. And, the 

first successful launch was in 1980. It was a simple rocket, you know. It consists of four 



stages. And, the all the stages used solid propellants. I will give you a problem involving 

this rocket, and we will do it today. This is the second stage, this is the third stage, this is 

the fourth stage. The total velocity, which the rocket gives is ΔV1 for the first one; ΔV2 

for the second one; ΔV3 for the third one; ΔV4 for this fourth stage.  

We had four stages here. You know it is very deceptive to think that you can make a 

good rocket to give the desired incremental velocity by increasing the number of its 

stages. You know sometimes we feel we can keep on increasing number of stages, looks 

very straight-forward. The more stages we have, the more commands we have to give to 

the rocket. We have to ignite this second stage and the subsequent stages, we have to 

separate it out; it becomes more complicated. The reliability of the rocket comes down. 

And therefore, the trend today is to go only for two stage to orbit (TSTO) or three stage 

to orbit. People are still working on a single stage to orbit.    
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We go on to the next slide. The SLV 3 rocket, what I showed you here, it can only take a 

payload of something like 40 kilogram. It is very small. Therefore, it was necessary to go 

to higher payloads. With higher payload, you cannot have the vehicle to accelerate 

adequately and provide the incremental velocity required; you need to increase the 

propellant weight. It was necessary to put two straps. Therefore, we have a strap on 

either side. The straps are same as the first stage  in this vehicle( you have two strap on) 



and then the second stage, the third stage, fourth stage. This is known as Augmented 

SLV or “ASLV”. 
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 And, now I show some more examples. These are the current rockets which fly; 

“ARIANE V”, by which we launched several INSAT satellites. We have two straps; first 

stage and the second stage  
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This is the “SPACE SHUTTLE”. You know, it has been work a workhorse for US Space 

program though it has been decommissioned now. The last flight of “SPACE 



SHUTTLE” is over. In this we have the space plane, which comes back. It has something 

like three liquid engines, all clustered together so that, you get the high thrust. And, you 

also have two straps. One strap here, the other strap over here; that means two straps for 

giving the initial acceleration. It starts off with the three liquid engines and straps 

burning and it pushes itself up. The brown thing what you see is the hydrogen tank, 

which stores hydrogen which is required for the liquid propellant rockets in the space 

plane.  
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This shows the Space Shuttle taking off. These are the two boosters. Solid rocket straps 

as I said and you have three engines which generate the thrust.  
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Another work horse of US is the DELTA vehicle. Again you have a number of straps 

over here or cluster of engines. 
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This slide shows “SOYUZ”, a Russian rocket. Here you have straps here or a cluster of 

engines here and the main engine is firing. The exhaust from the several rockets is 

interacting to give the shape of something like a ball. And, “SOYUZ” was used for 

launching our first experimental satellite namely “Aryabhatta”. This was in nineteen 



seventy five to seventy six time period. The slide below shows a powerful Russian rocket 

by name “Proton”. The multiple stages and cluster of stages are seen clearly. 
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All what I want to communicate is that, most of the vehicles have a number of rockets 

which are clustered along with a number of stages. This is why I showed these examples.   
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We told had said that a rocket can be launched from the sea viz., from a submarine it 

takes off and you see the water droplets splashing over here.   
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The slide above shows Saturn rocket for which I will give a problem which we will try to 

solve. This was one of the very powerful rockets; which was used to take men to the 

moon. It was known as Saturn V. And, here again and you have a number of stages. I 

think it is almost like a five stage vehicle; the ground having straps, then one after the 

other. Then, you have the spaceship module on top which carry the astronauts and which 

comes back. Maybe we will take a re-look when we are solving the problem.   
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This is our PSLV; Polar Satellite Launch Vehicle of India again. And here, again you 

find straps around the first stage - you have straps. Six straps or four straps could be put. 

Then, you have the second stage, third stage.  
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And, of course this is the GSLV. The movie shows GSLV going up. Let us watch it 

closely. First see the configuration. The configuration consists of, as you see it has four 

straps or cluster of four engines; one, two, three, four. Then, there is a central engine. 

First, the four straps fire. It generates thrust, the vehicle takes off. Then, the core also 

fires and then you have a huge thrust that keeps accelerating it. And, once the four stages 

clustered to the first stage have finished their operation, they are separated and falls 

down to the ground. So also the first booster stage. Then, the second stage fires. This is 

the inter stage. Then, it keeps going further. Then the third stage fires and the rocket 

keeps accelerating. After all stages have fired the payload which is a spacecraft gets 

separated and proceeds forward. And, once it reaches the particular orbit, it sort of 

deploys. This is how we get the rocket goes up. Therefore, staging and clustering are 

very important in the configuring a rocket.  
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And, this is the GSLV. As we just now saw, these were the four straps. This is the first 

stage, second stage and the third stage. First, these four stages are ignited. Four straps are 

ignited, gives you the thrust to take off. Immediately after takeoff, the core is also 

burning. Therefore, you have the huge thrust which pushes it. Then the second stage 

fires, then the third stage fires. And, this is how a rocket functions.  
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Well, we also talked in terms of a water rocket; wherein we could have water and I could 

pressurize it and launch it. Maybe we will solve this problem in class a little later.  
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Well, I think by now we should be very clear about what is the principle of rocket, what 

is the rocket equation as it were, what will be the rocket equation modified for a booster, 

in which case rho VJ becomes more important than VJ itself. And then, we talked in 

terms of staging, clustering or and also straps. 

If the above is clear, let us go to the next part. We will address efficiencies.  
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We would like to know what is the efficiency of a rocket. What do you understand by 

efficiency? We are looking at the rocket flying up; therefore I want to find out how 



effectively or efficiently it is being propelled or pushed. Therefore, we talk in terms of 

propulsive efficiency. How do I define it? It has to do something about the forces, how it 

is moving up or the power which you are giving, the power which is being used. 

Therefore, I say, well, propulsion efficiency is something like what part of the power 

generated by a rocket is converted to useful work done by the rocket per unit time.  What 

would it be? What is your guess? Useful work that a rocket does while it goes up. And, 

what should it be? The actual work done by rocket. Work done by rocket per unit time 

plus the work wasted by rocket is the power generated. That is the total work which is 

done by the rocket per unit time. How to put these aspects together as an efficiency?  
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The work done by the rocket is equal to force into distance.  The force of the rocket, we 

found is equal to m° × VJ × distance, let say L. Therefore, I say work done by the rocket 

per unit time is equal to m° × VJ × the velocity of the rocket. And, therefore we say so 

much joules per second or so much watts is the useful work done by the rocket. Is it all 

right? Useful work; or the useful power. 
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Let us try to sketch the factors involved. We have a rocket going up. It goes with the 

velocity V. It is pushed up by a force. Therefore, the useful work which is done by the 

rocket is the force into the velocity per unit time. In the process is anything getting 

wasted? What is the waste? How do we get the waste energy or work?  

As the rocket is getting pushed, the plume from the rocket is going down. Again, we 

picture the rocket going up. I am in the inertial frame of reference. I am standing here, 

watching the fun of the rocket going up. What do I see? I see that this plume is now 

going down with the velocity VJ with respect to the rocket or rather if V is the velocity of 

the rocket is going up, the plume is going up with a velocity V minus VJ as I see it from 

the inertial frame of reference.  
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I will give you an example to illustrate. See, on some days, maybe early morning say 5: 

30 or 6: 00AM you watch a jet aircraft up in skies. May be some of these jets skip 

Chennai and you will see the trail behind it as the aircraft is moving. You see the aircraft 

is going and the trail follows it. 

Let us try to picture it out. Let us picture the trail. Aircraft is moving. You see the aircraft 

going, and then you will find the whitish trail behind. The trail is also following at a 

slower speed. Why does it have to happen? Maybe because this fellow is leaving the 

aircraft with the velocity VJ; the aircraft is moving with the velocity and therefore you 

see this particular jet or plume as it were following it a velocity V − VJ.  

Therefore, what is being wasted in the rocket? The energy content of this is getting 

wasted because it is getting lost. And, what do I see from the inertial frame of reference? 

In the inertial frame of reference, we look at the work done by the rocket per unit time. 

But, we also see that this work of the plume is getting wasted. And, what is my waste? 

That kinetic energy is getting wasted or ½  mass of this into (V − VJ)2 squared or what is 

the rate at which I am seeing is: ½ m° × (V − VJ )2. That is the waste. That means the 

rocket is going up; this plume is still following it up like this. And therefore, this is 

waste. It need not have got wasted.  
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And therefore, how will I put the expression for propulsive efficiency together? I will 

now write the efficiency as ηp (propulsive efficiency) is equal to the useful work done 

equal to m°×VJ×V. This is divided by useful work m°×VJ×V + the kinetic energy per  

unit time viz., ½ m° × (V − VJ )2 .  

Please let us be very clear. You know, we will have to define the efficiency of the scram 

jet. We will have to define the propulsive efficiency of an airplane. We will find that 

there are some optimum values of efficiencies. And, I find some research work going on. 

I will refer you to a paper in today’s class itself. The way people tend to think; can we 

improve the rocket by looking the propulsive efficiency?  

Let us first simplify this equation. This is equal to m° VJ V divided by the term.  We 

bring 2 on top. In the denominator, we get 2 m° VJ V + m°V2 + m° VJ
2 − 2 m° V VJ. Is it  

all right? V2 − 2 V VJ + VJ
2. You find that this 2 m°VVJ gets cancelled; m dot gets 

cancelled in the numerator and denominator. And, what is the propulsive efficiency 

therefore equal to?  

Propulsive efficiency is therefore equal to 2V VJ / (V2 + VJ
2 ). Is it alright? V2 + VJ

2 in 

the denominator. Let us simplify it. Let us divide the numerator and denominator by VJ
2 

square and we get ηp = 2 V/VJ ÷ 1 + (V/VJ)2 .  
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Now I want to ask you, when will the propulsive efficiency be a maximum. Just look at 

this expression. Just be unbiased and tell me whether I can identify a condition for the 

propulsive efficiency to be a maximum. We will anyway solve for the maximum. We 

will find out the maxima and get the condition. But, by looking at this expression can 

you tell me when should the efficiency become maxima?  

Let us substitute V/VJ  by x. All what we are saying is ηp = 2 x/ ( 1 + x2 ). What should 

be the value of x which for which eta p is the maximum? Efficiency cannot be greater 

than 1. It has to be 1. And, we find that the moment x is 1 or V by VJ is 1. It becomes 2 

by 1 plus 1; 2. Therefore, by inspection itself I can say when V by VJ is equal to 1, then 

the propulsive efficiency will be a maximum of 1. And, how do we do it? Normally, we 

find the maxima. 



(Refer Slide Time: 36:02) 

 

Let us differentiate it. Let us determine the condition for dηp by d(V/VJ) must be equal to 

0 to give the maxima. And for that, you would say: denominator into differential of 

numerator minus numerator into differential of denominator divided by denominator 

square must be zero. Therefore 1 + (V/VJ)2 × differential of numerator which is 2  − 

numerator which is  2 V/VJ × differential of denominator which is 2 V/VJ. And, this must 

be equal to zero. Therefore, I am not really bothered about the denominator of the 

differential and I need write 1 + (V/VJ)2 over here. And therefore, what does it give me? 

It gives me 2 × (1 +(V/VJ)2)  − 4 (V/VJ)2 = 0. What does this give you? 1 + 2 V/VJ + 

(V/VJ)2 −  2 (V/VJ)2 or rather it gives 1 – (V/VJ)2 = 0. This means V/VJ must be equal to 

1 to get the maximum.  



(Refer Slide Time: 37:57) 

 

Therefore, if we were to plot the propulsive efficiency of a rocket ηp as a function of its 

flying velocity divided by the jet velocity, the efficiency becomes a maximum when the 

velocity ratio is 1. It increases initially till the ratio is one and thereafter it begins to 

decrease. Therefore, this gives us some suggestion viz., that if I can have the exhaust 

velocity equal to the velocity of the rocket which is high then the rocket flight will have 

maximum efficiency when the rocket speed is also at this high value. Or rather, as the 

velocity of the rocket changes, if I can somehow keep on changing my exhaustive 

velocity, I operate the rocket at its maximum efficiency.  

But then, you know that this is just not possible; a rocket is rapidly accelerating and the 

condition is very difficult to meet this. But, there is some very interesting work on this 

topic. And, one paper which deals with this and which is very exciting to read is this one. 

I will give you the reference. May be you should take a look at it. It is by “King Jr MK”. 

The title of the paper is “Rocket Propulsion Strategy based On Kinetic Energy 

Management”. It appeared in “Journal of Propulsion and Power”. I just write it down 

here; “Journal of propulsion and power” of AIAA. The volume number is 14. It is in the 

year 1998 and the page number is 272-273. I would request each of you to take a look at 

it.  



(Refer Slide Time: 40:39) 

 

See, we know it is not possible to meet the condition of V = VJ.. But can you somehow 

get something to do with VJ and try to see whether you can get a better propulsive 

efficiency. Such ideas are useful. You know, because later on we will get into electrical 

propulsion and nuclear propulsion. We will try to see, whether we can somehow make a 

rocket more efficient by tailoring the jet velocity to be near to its speed of the rocket; 

because as of today even to go to Jupiter, we saw it takes something like five years. If we 

have to go to the Kuiper belt it takes something like ten years. Whether for galactic 

missions - going to different galaxies- we can progressively change the exhaust 

velocities. Therefore, this article by King is something which is useful. It says it is a blue 

eyed tutorial.  
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But having said that, I want to ask you one question; Why is it when V = VJ  the 

propulsive efficiency is a maximum? We had said that the rocket is going up and we see 

the trail following it. What is the condition of the trail or the plume when V by VJ is 1? 

That means the kinetic energy of the plume is what? Zero. What happens to the trail? I 

see a rocket going up; the plume is also going up, what will happen to that plume when 

propulsive efficiency is one or maximum? That means V minus VJ is 0; that means it will 

be static; that means it has no energy at all.  

In other words we are saying is, the plume as seen from the inertial frame of reference 

does not follow the rocket. It just stays put at the given location. And in other words, we 

have made use of the total kinetic energy for pushing the rocket up. And this is the 

reason for the propulsive efficiency to be a maximum.  

I shall now go through two or three case studies. I will start with the SLV 3 rocket on 

how we calculate the masses, payloads, etc., in the first part. And then we shall do a 

simple problem of the water rocket. But, since this water rocket is here on this particular 

slide itself, maybe I get started with this water rocket.  
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Let us try to solve this problem of trying to figure out the size of the neck or vent through 

which water should leave the rocket in order to achieve a given value of acceleration.  

We have the bottle which contains water; we have high pressure gases above it. I want to 

push out the water out through the neck (vent) using compressed air. The compressed air 

pressure is told to be something like 0.35 Mega Pascal. That is, 3.5 atmospheres. I want 

to find out the size of the neck such that the rocket leaves the ground at a given 

acceleration. The volume of the bottle is given, but I need to know the size of the vent or  

hole such that the rocket can leave with the given acceleration. Let us do this problem.   
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Therefore, let me write this problem on the board. You have in a bottle, 0.5 kilogram of 

water. The air is relatively massless which is above the water and the pressure of air is 

3.5 ×100 kilo Pascal. That is the 0.35 mega Pascal. You know, it is also told that the 

mass of the bottle that is the structure containing the water is also 0.5 kilogram. And, all 

what we are interested to know is, we would like this rocket to leave with a given value 

of acceleration.  

The level of acceleration is to be 0.5 g where g is the gravitational field due to the Earth. 

The g value is 9.81 meter per second square. With respect to ‘g’, it is half. That is the 

value of acceleration with which it must get pushed up. Now the question asked is, what 

must be the size of the diameter of the vent or the hole by which the water should escape 

from the bottle? 

 You have the mass of water 0.5 kilogram. Let us say the mass of water is mass of 

propellant which is used for pushing up 0.5kg of the bottle. The mass of the structure is 

equal to 0.5 kilogram. There is no payload in this problem. Just the bottle is moving up. 

Therefore, the useful payload Mu is equal to 0 kilogram. Now, you can find out what 

must be the rate at which water is getting pushed out and if you determine the velocity at 

which water is getting pushed out, we can find out the diameter of this hole.  

Therefore, how should I do this problem? What are the things that I should do? Let us 

say I first want to find out what is the velocity with which the water will leave this 

particular hole. In other words, I am interested in finding out the jet velocity VJ. How do 

I get VJ? The gas pressure is 350 kPa; the ambient pressure is 100 kilo Pascal. That is, 

the air pressure pa is equal to 100 kilo Pascal. Water is incompressible. Let us neglect the 

height of water. May be from Bernoulli’s equation, we can say p for the compressed air 

by rho plus what?  

The pressure differential driving the water is p-pa which is 350 minus 100 which equals 

250 kPa. From Bernoulli equation velocity square by the 2 is equal to delta p divided by 

rho. And, that would have given us 3.5 minus 1 i.e., 2.5 into 10 to the power 5 divided by 

the density of water; 1000 kilogram per meter cube. Then, what is the value coming out 

to be? If you calculate, you get it to be equal to 22.36 meters per second.  



We have neglected the height of water in the bottle because the height is small and  

because you have the pressure which is so high, then the height will not really matter. 

But in a real problem, yes, I would like the height of water to be considered.  

Now, we would like to make use of this jet velocity and find out what must be the 

diameter of the hole. But, what is given to me? Something important is given to me. It is 

told that the rocket should leave with an acceleration of 0.5 g or rather with an 

acceleration of 4.905 m/s2. How do I get this?  That means I must be able to calculate the 

force. And, that force I have to convert it to acceleration and make sure I get this 

acceleration. Let us revise what we have just now done and do this problem.  
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I would like to find out what is the force, which is generated by the particular rocket 

divided by the initial mass of the rocket, which is the acceleration of the rocket. And, the 

rocket is going up. Therefore, what is the acceleration with which it is going up? It is 

equal to F minus the gravitational force of the mass divided by mi (weight of water); is 

the acceleration with which it is going up. See, this differentiation is important. I say 

force; force is what it is pushing it up. As it is pushing up; the gravitational field is also 

exerting a force is equal to mi × g on the mass of the body. Therefore, F minus mi g 

divided by mi must be acceleration and not Force/mi shown here. This later one is what 

would be the acceleration when we have no gravitational field.  



Therefore, let us get back to the problem. The acceleration a is given to be as 0.5 g. Let 

me erase this portion and write VJ is equal to 22.36 meter per second.  
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What is the value of F? Let us assume, let water flow at the rate of m° kilogram per 

second; because if I know the water flow rate, I can calculate this diameter. Therefore, F 

is equal to m° kilogram per second into what? How do you calculate the force? We have 

done it. Change of momentum, m VJ is momentum; force is equal to d/d t of m VJ which 

is equal to m°VJ. And, VJ we have already calculated. It is equal 22.36 into m° is equal to 

the force.  

Now, what is the force? I go back to the equation what I wrote here. I get (F − mi×g) 

divided by mi is equal to 0.5 g. Here g is 9.81. What is the value of initial mass of the 

rocket? 0.5 kg plus the structural mass is 0.5 kg, which is one kg. Therefore, F is equal to 

0.5 g plus mi into g.  mi is 0.5 plus 0.5 is 1. It becomes 1.5 g; that is 9.81 and mi was 1. 

Therefore, force is equal to 1.5 into 9.81.  I put it over here.  
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And, what I get is the value of m dot. And, if I know m dot, how do I calculate the hole 

diameter or diameter of the vent? m dot is equal to; we get the value, the density of water 

into the velocity of water into the area. Area is equal to pi by 4 into the hole diameter 

square. You have already calculated the mass flow rate; density of water is 1000 

kilogram per meter cube. You have calculated the VJ. This is the velocity with which the 

liquid is leaving; VJ square pi by 4. Therefore, the only unknown is the diameter of the 

hole or vent.  

I think I leave it as carryover homework for you to complete. All what I want to tell you 

is that it is possible to calculate the thrust. You need the value of VJ; VJ we find through 

simple calculation involving Bernoulli’s equation. And, once you know this, I can 

always relate it to the acceleration. 

I would like to do a problem on the masses; structural mass, may be the propellant mass 

and the acceleration for a multi stage rocket vehicle. May be in the next class, I will just 

go through one or two small examples on it and then we go to the next topic, which is on 

nozzles.  

      . 

 


