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We will continue with solid propellant rockets. What is it we have done so far? Let us 

take a quick review; we know that the propellant could be composite, it could be double 

base or it could be nitramine or it could be composite modified double base propellant.  
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We can write the burn rate as a linear regression rate, r = a pn. We also said that if we 

have a rocket in which the burning surface area is Sb, the equilibrium value of pressure 

can be derived as the burning surface area into this particular constant a in the burn rate 

law into ρp into C* divided At  to the power 1 /(1 – n). How did this come?  
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We said if we had a rocket and we considered a simple scheme where in we had 

propellant, which was enclosed in a case, we have something like a nozzle attached to it, 

we said the rate at which the mass leaves through the nozzle m°n can be written as p 

At/C*, where p is the pressure.  

And we said the nozzle is always choked at the throat. Therefore, this is the mass being 

generated and this is the mass, which is leaving through the nozzle. And the rate at which 

the mass is getting generated from the burning of propellants, we got from the regression 

rate is r and that was equal to Sb × the propellant density × the burn rate r, which is equal 

to a pn so much kilograms per second. We equated the two viz., mass generation and 

mass leaving rates and got the value of equilibrium pressure p1−n = Sb × a × ρp × C* / At.  

What does this tell us? Let us take a relook at this equation. We looked at it from the 

point of view of n and found that n cannot be anywhere near 1, because then what 

happens for any small change in the parameters, there is a large magnification here. And 

therefore, n should very much less than 1, because if n is near 1, I get a very large 

exponent and a small change can magnify into a large value o pressure. Therefore, we 

say from stable considerations, n must be very much less than 1, but we also learnt to 

look at it graphically.  
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When we have n in the burn rate equation r = a pn, if n > 1, how does the burn rate law 

change as pressure changes. Let us make a plot: as burn rate increases, if you have a 

given burning surface area and a given density of propellant we can plot the rate at which 

mass is generated due to burning. In other words, the rate at which mass flow gets 

generated depends on the burning surface area into the density of the propellant into the 

burn rate law; we want to plot it as a function of pressure.  

Then if n > 1; well it keeps increasing higher than a linear value i.e., concave 

upwards.and the mass generation rate rapidly increases rather exponentially. If however, 

n < 1, then the mass generation rate will have something like a drooping characteristic 

i.e., convex upwards. This is for n less than 1 with variation of pressure; this is for n 

greater than 1. How does the mass flow rate, which leaves the nozzle change with change 

in pressure? We have been writing this on and off as m° nozzle is equal to (1/C*) p×At. 

The mass flow rate through the nozzle with respect to pressure will increase as a straight 

line. 

Therefore, let us now plot the mass which leaves a nozzle and the mass generation rate 

for ‘n’ is greater than 1 and ‘n’ is less than 1 and see whether we can conclude on the 

type of exponent ‘n’ which we require.  
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Let me now plot all the three together in a single figure. Y axis which is mass generation 

or let us say mass which is leaving the nozzle while pressure on the X axis. Let me put 

the value first for n less than 1 we get a curve like this drooping one. If we have n greater 

than 1, the curve exponentially increases. And what is the rate at which mass leaving the 

nozzle? I show it by a white line - a straight line like this with respect to pressure. Now 

we find the point at which the mass rate of generation for n > 1, and the mass, which is 

leaving through the nozzle are the same at this point of intersection. Therefore this will 

correspond to let us say equilibrium pressure for the case of n > 1. The red line is for n > 

1 therefore p equilibrium corresponding to let us say case 1.  

Let me also say tell that may be for n < 1 this is the p equilibrium value. We would like 

to examine whether are these two equilibrium pressures are possible? Well theoretically, 

this is the rate at which mass is leaving the nozzle, the rate at which mass is getting 

produced in the chamber and therefore this is equilibrium pressure. Similarly, for n < 1 

this is the pressure for mass balance. Let us try to get some idea whether these two points 

are possible and if so are there some problems with the equilibrium pressures?  

When n > 1, let us say we have a small perturbation in pressure. A small perturbation can 

always come and let say that the pressure reaches this higher value. That means the 

pressure is slightly higher than the equilibrium value. Since the pressure is slightly 

higher, what we find at this point the mass generation rate is higher than the mass which 



is leaving the nozzle. Therefore, the pressure will increase further; when pressure further 

increases, the mass generation made is further increased. Therefore, this point cannot be 

a stable equilibrium pressure as any small perturbation will make the pressure increase 

further and further till the rocket explodes. 

If we considered points to the left of the equilibrium point by saying that by some chance 

there is a small pressure perturbation and the pressure in the motor falls to a value less 

than the equilibrium pressure pe1, then what happens? The mass generation rate is lower 

than mass, which is flowing out through the nozzle. In other words mass flowing out 

through the nozzle is more than what is generated. Therefore, the pressure further falls, 

the pressure continues to fall till the rocket is extinguished.  

Therefore, we tell that in case n > 1, we cannot really get an equilibrium pressure since 

with small changes in it due to perturbations, the chamber will either explode or pressure 

will become zero. Therefore, we tell that n greater than 1 is not desirable or not possible.  

Let us examine the case, when n in the burn rate law, what was the burn rate law? r = a 

pn . We would like to know if the equilibrium pressure obtained when n < 1 is possible. 

Let us have the same set of arguments again. If the pressure falls slightly less than the 

equilibrium value; we now find that the mass generation rate is higher than the mass 

which is leaving the nozzle.  Therefore the pressure will go back to the equilibrium 

value.  

If by chance the pressure exceeds the equilibrium value i.e., moves to the right of the 

equilibrium point. Here again we find the mass leaving the nozzle is higher than the mass 

generation rate and pushes the back to the equilibrium value. Therefore this point 

becomes a stable point. The value of n < 1 is therefore possible and it gives to rise to 

what we say is a stable situation for equilibrium pressure. Therefore, in the burn rate law 

r  = a pn ; ‘n’ must be less than 1. This is what we have found.  
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We need to put everything together and design a solid propellant rocket. What is meant 

by design of a rocket? We must be able to generate a given thrust from the rocket, and 

what is the thrust? We said it is equal to CF × p × At. We drop the subscript c in pC. We 

can express in terms of the nozzle effectiveness into chamber pressure and At and this is 

the thrust which is developed.  Therefore, if we want a rocket to develop a particular 

thrust, we know that p equilibrium goes as Sb × the constant a × the propellant density × 

C* /  throat area to the power 1/(1 – n). All what we need to do is to configure the 

burning surface area Sb such that we obtain the desired value of thrust. But it is not that 

easy as we shall see in the in the subsequent class. We can write the thrust as CF × the 

value of p equilibrium from here × throat area; so we get the thrust as as Sb1/(1−n) .  

We take p equilibrium as Sb1/(1−n) . Then we write the other terms together namely and 

get At. Now At is in the denominator here to the power 1 /(1 – n). And then we solve the 

other parameters namely a value of ρp into C* to the power 1 / (1 – n). Therefore, we 

find for a given constant throat area, if we know the evolution of burning surface area as 

the surface regresses, we can find out the value of thrust varying with time. This is how a 

solid rocket is designed. It is a simple geometric problem of evolution of the burning 

surface area Sb. And how Sb, the burning the surface area in meter squared, evolves with 

time would be dealt with in the class today.  
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But before we do that, let us recall that the burn rate law r = a constant ‘a’ into p to the 

power ‘n’. We considered explicitly the effect of pressure alone. But we said ‘a’ includes 

the effect of the initial temperature of the propellant. Let us take an example. We can 

consider a temperature of the propellant to be ambient that is a rocket motor is tested 

today. The temperature is quite hot today may be 32o C. Well, you all would read about a 

solid propellant rocket, which misbehaved in one of the space shuttle flight. It was a 

challenger rocket, which was launched on a very cold day, when the temperature was 

around 0oC. And we will look at the failure after completing the portion on solid 

propellant rockets. Well, we could have a missile, which is operated from mountains in 

the Himalayan ranges where the temperature could be as low as minus 50oC. 

What is the effect of burn rate on temperature that is the initial temperature of the 

propellant itself? We are not looking at the flame temperature all. What we say is that we 

have a propellant block, the initial temperature of this block before it burns or just begins 

to burn is what we call as initial temperature of the propellant. We would like to know 

the effect of initial temperature of the propellant on the regression rate of the particular 

propellant.  
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We define a term known as temperature sensitivity factor for the propellant. Let us see, 

what it is. We would like to know how sensitive the burn rate is to the propellant 

temperature changes. Therefore, we were interested in finding out the change in burn rate 

with temperature dr/dT. And we are considering the effect of temperature alone. This 

implies that the pressure is fixed; we are considering at constant ambient pressure or 

otherwise. But then instead of just saying burn rate variations with temperature or the 

variations in burn rate due to unit change of temperature, we now say fractional variation 

in burn rate. This is known as temperature sensitivity factor for burn factor r. In other 

words, we define a term πr as equal to this dr/r i.e., d ln r divided by dT at constant 

pressure. This is defined as the temperature sensitivity factor for a solid propellant. 

And just like how we determined ‘n’ by conducting two experiments on burn rates at 

pressures p1 and p2 and measured the burn rate r1 and r2 and n =  (ln r1 − ln r2) / (ln p1 − 

ln p2), in the same way the temperature sensitivity of burn rate is measured at different 

temperatures at the specified pressure. The factor πr, which defines the sensitivity to 

temperature is determined. The value is around 3 × 10−3. What should be units?  

Well ln r has no units; dr by r; the units cancelled and it is only dT. Therefore oC inverse 

are the units. Typically for most composite problems the value is around 3×10−3 oC−1 and 

about 5 ×10−3 oC−1 for double base propellants. And for HMX based propellants, it is 

even lower; it is 2 ×10−3 oC−1 . This is one of the reasons for the choice of HMX 

propellants for missiles.  



We can integrate this equation for temperature sensitivity and find out explicitly, how the 

burn rate changes with temperature. Let us do it. We take the expression for πr. We write 

d ln r = πr × dT at constant pressure. We have taken the change in the logarithmic burn 

rate is equal to πr × dT. Let us solve this equation. If we have at temperature T1 the burn 

rate as r1 and at temperature T2 the burn rate is r2 and we are interested in finding out the 

burn rate at a temperature T2; and therefore, we just integrate out this to get ln r2 − ln r1 = 

πr (T2 − T1). 

(Refer Slide Time: 15:53) 

 

Therefore ln (r2 / r1 ) = πr (T2 − T1) or rather we get r2 / r1 = exponential of πr (T2 − T1). 

Therefore, if I know the burn rate at temperature T1, using the value of the temperature 

sensitivity factor we can find out the burn rate at a temperature T2 and this is how the 

effect of the variations of temperature are taken into account.  

We are now in a position to design solid rockets. This means essentially we find out how 

much burning surface area is required and how it should evolve with time. However, let 

us ensure whether there any concerns about the burn rate equation which is needed for 

the design. 
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The burn rate is expressed in millimeters per second or meters per second and is given by 

a×pn. What is the unit for r? We say meters per second, millimeter per second or 

centimeters per second. The burn rate is the rate of regression of the propellant surface. 

What is the unit of pressure? Could be Pascal. It may be mega Pascal, could be 

atmosphere also.  Then what is the unit for a? The constant ‘a’; it may be noted, depends 

on temperature and on composition of the propellant including the AP particle size. 

The unit of a is clumsy; it becomes meter per second divided by let us say Pascal raised 

to the power n. This is not a correct way of expressing a constant. We have a constant, 

which is a function of the parameters and the units of pressure. We cannot say that the 

constant is so much meter per second to the power of pressure to the exponent ‘n’. How 

do we get over this problem? The form of equation is, however, correct. If we can find 

the burn rate let us say at pressure, which we call as reference pressure, and we evaluate 

the burn rate r with reference to this particular value p reference to the power n, the 

problem can be overcome.  
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But we are interested in burn rate r at any pressure p as a into pressure the power n. We 

can write the value of r  as equal r reference × p by p reference to the power n and this is 

one way we get over the units of pressure in the constant ‘a’. In other words, the constant 

‘a’ is the burn rate at the given reference pressure provided the reference pressure is used 

for non dimensionalising the value of pressure. This is how the burn rate is expressed 

through a non-dimensional pressure, which is based on the reference pressure. The 

reference pressure is normally taken as 70 atmospheres, which is about 1000 psi.  

You may recall that when we studied nozzle we said under sea level conditions and 

vacuum conditions for evaluation of the specific impulse; we took the chamber pressure 

as 70 atmosphere. This is about the pressure at which a solid rocket or a good performing 

solid rocket works. This is equal to 7 MPa. And therefore, the burn rate law can now be 

written as r at a reference pressure 70 atmospheres or 7 MPa into pressure divided by 70 

or 7 provided p is in atmosphere or MPa to a power n. This is at 7 Mega Pascal pressure. 

Some books write the value of ‘a’ as r at 7 MPa or 70 atmospheres into p divided by 7 or 

70 to the power n.   

The constant ‘a’ is therefore denoted by a7 or a70, which is the burn rate at the reference 

pressure of 7 MPa or 70 atmospheres. This is all about burn rates, effect of temperature 

on burn rates, etc., but there are many more problems which would be considered later 



like for instance in a rocket chamber; there could be velocity at the propellant surface, 

there could be thermal radiation in the chamber, there could be external heating.  

We now return to the design of a solid propellant rocket for which, we wanted to find out 

the burning surface area and the evolution of the burning surface area. Let us do a simple 

problem, and then go to the evolution of the burning surface area to give a certain thrust 

and thrust profile. Let us consider a propellant block, which is contained in the rocket 

case and we put insulation and connect a nozzle here. Well I have a solid propellant 

rocket. 

If this propellant block is ignited over here towards the nozzle, and it burns from the 

exposed end, that means the end of the propellant is ignited. We call it as end burning, 

because it burns from one end to the other; it does not burn from the sides here, because 

it is prevented from burning from the sides. The burning or the flame can go normally in 

this particular direction. Now supposing the throat area of the nozzle is At. What is the 

value of pressure in the cavity? We have already done it as equilibrium pressure. It is 

equal to let us write it down:  (ρp × a × C* × Sb / At)1/(1−n). The burning surface area is 

known, and we determine the pressure in the cavity. The value of burn rate r is equal to a 

pn and knowing the pressure, we can find the burn rate. And therefore, if the propellant 

grain has a length L, the time taken for the propellant to be consumed can be determined 

as L / burn rate. The burning surface area Sb is a constant and therefore the pressure p 

remains the same.  
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And therefore, the burning time tb is equal to the value of L, the length of the grain 

divided by the burn rate r and is equal to L divided by a pn. The thrust developed by this 

particular end burning is CF into pressure into At. We know the value of pressure, the 

throat area and the burning surface area and the thrust developed can be determined.  

We said that solid rockets are generally used when we want large thrust as in booster 

stage. Suppose we want a thrust of several 1000 tones. Then in that case, the burning 

surface area and hence the diameter of the solid propellant rocket is going to be 

extremely large.  
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Therefore to be able to get some meaningful values of large burning surface area, we 

need some innovations. We have the propellant block; the same propellant block as in 

the end burning solid propellant rocket. But instead of burning it from the end, we burn it 

radially. We make a cylindrical hole along the axis in the propellant and again put it in a 

motor case with the nozzle. The propellant block now looks as shown with a central hole 

and we coat the propellant block at the nozzle edge with some material, which is an 

insulator. This will prevent it from burning on this side. We call this insulator, which 

prevents or inhibits the burning viz., an inhibitor. We coat it with the inhibitor, which 

will prevent the propellant from burning on the nozzle face of the propellant. We ignite 

this inner cylindrical surface, which now becomes the burning surface area. 

If we take a cross section, what is it we get? We get this outer surface, we have the case 

over here, and then we have the inner diameter over here, and this is my propellant in 

between. We ignite this internal surface of the propellant, and the propellant burns 

normal to the surface; it therefore burns radially outward, and this type of burning is 

known as radial burning. The propellant block is in the form of a cylindrical annulus 

between the outer and inner diameters, and now we ignite the inner surface area of this 

particular annulus of propellant. And then what happens is the burning will progress, let 

us say normal the inner cylindrical surface towards the outer cylindrical surface.  
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And therefore, now we have the initial burning surface area. If we were to write an 

expression for this burning surface area; this is the length L of the grain; the annulus is 

between the inner and the outer diameters. We take inner diameter as Di, outer diameter 

is Do, and the length of the propellant grain is L. So, how does the burning take place? It 

takes place radial, normal in other words to the surface as burning proceeds the burning 

surface area changes. We need to determine the pressure. 

The initial burning surface area is equal to the perimeter into length. It is equal to πDi 

which is the perimeter × L. And what is the final burning surface area? It is equal to π Do 

the perimeter × length L. And therefore the equilibrium pressure to begin with 

corresponds to  (πDi L ×a × C* / At)1 /(1 − n).  

The throat area of the nozzle is equal to At. What is the change we are made as compared 

to the end burning grain? We now have the entire length of the inner perimeter πDi as the 

burning surface area to begin with. Therefore, we could have a longer grain to give a 

much greater burning surface area. And in radial burning grain, which burns in the radial 

direction, we can get Sb to be much larger than in an end burning grain of the same 

diameter. And therefore, we can get a large value of thrust. This is the modification that 

could be done; but you know there is some limit to the burning surface area. We still 

need to explore if for a particular diameter and length it is possible to increase this 



surface area even further. In other words all what we are asking is whether for a radial 

burning grain is it possible to increase this surface area by some means? 

How can we do it? If we can wrinkle the surface; we can wrinkle it in some form, and 

how do I wrinkle it? I show in this small model, this was the original circular perimeter 

over here. We wrinkle this surface i.e., we make stars or some other shapes in the inner 

surface. In other words instead of having something like a cylinder over here, I make the 

inner surface in the form of a few star. Now I find that this surface has something like  5 

vertices; 5 vertex star. And therefore, now I find my surface area has increased 

enormously, and therefore now I must be able to evaluate how the burning surface 

comprising the wrinkled surface will evolve as it continues to burn. 

In other words this my outer diameter; the outer diameter will come over here, and the 

burning surface will evolve along these surfaces, and this is the problem which we must 

do. However, before doing this problem, let us do the simple problem of may be a radial 

burning grain burning from inside to outside in a cylindrical configuration. What is the 

value of pressure and what is the time required for burning this cylindrical grain. In the 

case of end burning grain, we got the burn time tb = length ÷ a pn; we knew how to 

calculate the pressure and hence the duration of burning. We wish to follow a similar 

procedure for radial burning.  
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Let us also find out how the pressure will change since the burning surface area is 

changing. We have the initial value of pressure is equal to whatever we have written 

here, let us rewrite it : ( πDi which is the initial perimeter × L  and this gives the initial 

burning surface area × ‘a’ × ρp × C* / At ) to the power 1/(1 – n). Now, what is the final 

value of pressure when the burning has progressed? In other words the burning progress 

from the inner cylinder and reaches the outer cylinder. What is the value the final value 

of burning surface area: πDo is the perimeter into L is the final surface area. This 

multiplied by a × ρp × C* / At to the power of 1/ (1 – n) gives the final value of pressure.  

Now, is the pressure constant like as in the end burning rocket grain? It is a variable. Di 

has increased to Do and so the pressure also increases. If we were to plot the pressure, 

the pressure initially corresponds to diameter Di, while when the rocket burns out, the 

diameter is Do. When the diameter is Di, the pressure is pi and when the diameter is Do 

the pressure is po. The value of po > pi. 

We know that Di < Do; therefore, initially the pressure is less, let us say when it reaches 

the final value the pressure is higher, therefore the pressure increases. In the end burning 

grain we had the same pressure throughout.  



If instead of having the grain start burning at the inner diameter and progressively burn 

to the outer diameter, we somehow put the case over here and ignite the outer surface, 

and then the flame propagates inward.  

Then what is going to happen? We will get just the opposite evolution of pressure. We 

start with a value of po of pressure; that means the initial value is now higher and the 

pressure drops to the value pi. In other words while the end burning grain gave us a 

constant pressure; and therefore a constant value of thrust, a cylindrical grain burning 

from inside to outside gave a progressive increase in pressure or a progressive increase in 

thrust. A cylindrical grain burning from outside to inside gives a progressive decrease of 

pressure and thrust.  

This means that a cylindrical propellant grain burning from outside to inside gave us a 

falling pressure; and therefore, a decreasing thrust. We could have three types of thrust 

evolution in such rockets. When the pressure is constant, we call as neutral burning. 

What should be the name for this progressive increase of thrust? This is progressive 

burning. If the pressure and thrust keeps decreasing; that is regressive burning. 

If we have a propellant, which burns from end to end viz., end burning, the type of 

burning is neutral and we get constant pressure constant thrust. If the burning is radial 

from inside to the outside the pressure keeps increasing and the burning is progressive. 

While if the radial burning is from outside to inside, the burning could be regressive.  

Therefore, we could think in terms of three types of burning; neutral burning rockets, 

progressive burning rockets and regressive burning rockets. If this is clear, the question 

is what type of burning is required for solid propellant rockets? We cannot think of a 

rocket, which is progressive burning as when the rocket takes off the thrust must be high 

and as it goes up the thrust can come down.  

Therefore, may be something like this with higher initial thrust may be better than 

progressive or regressive, because when the rocket goes up it is mass is higher and it flies 

in the atmosphere where there is drag. We cannot expect it to go up with a higher 

acceleration in the beginning itself. Therefore, we have to somehow get a thrust pattern, 

which is desirable. We also require higher thrust to begin with and for which we just 

took the inner surface and wrinkled it. The wrinkled shape was in the form of a star. We 

could have wrinkled into some other shape instead of giving the shape of a star. We 



could have given a different shape something like this. We could have given any shape 

and we want to calculate, how does the burning rate evolve around this surface. We find 

out how the burning surface Sb changes with time. And once we know how the Sb 

changes, we know how the pressure changes with time. We can find out how the force or 

the thrust which the rocket will develop with time, and that is all what we need to do in 

the design of propellant grains in solid propellant rockets.  Therefore to be able to pursue 

on this, let us start with a simple example.   
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Let us find out the time taken for a cylindrical grain to burn. What do we mean by a 

cylindrical grain; the first example; we have an end as shown.  We make a hole here I 

have radial burning from inside to outside. It burns through from inner surface to outer 

surface. The inner diameter is let us say Di, the outer diameter is Do, the length is L. We 

are repeating this figure. The question is can we predict how the pressure will change 

with time and the time for burning. And how do we do it? It is a simple problem. 

Let us consider a small part of the propellant between Di and Do gets burnt; and let the 

small part of thickness δ over a time; let us say small time dt. At the beginning of dt let 

the pressure be p corresponding to the initial burning surface area which is πDL. At the 

end of dt, we will calculate the pressure again. The value of diameter at the burn out of 

this element will be the original diameter plus twice delta. In this way we can 



progressively calculate the pressure for each time step and the new value of the burning 

surface.  

We know the pressure to begin with. It is this value at the burning surface given by the 

surface at Di. What is the pressure when the diameter is Di plus 2δ. We know the new 

value of perimeter and the length and hence the new value of the burning surface area. 

We can determine the value of p at Di+2δ. What is the value of p delta. The value is Di 

plus 2 delta into these terms viz., ‘a’ burn rate constant, rho p, C star divided by throat 

area to the power 1 by 1 minus n. We know the value of pressure this point. We want to 

know the time taken for consuming delta of the propellant.   

(Refer Slide Time: 43:53) 

 

Therefore, the mean pressure between this and the earlier value pi which is (pi + p 

delta)/2. And therefore, the mean burn rate between the initial at Di and Di plus 2 delta is 

determined equal to r bar, the mean value. And what is the mean value of burn rate equal 

to?  a pin + a pdeltan / 2.  

When the burning has progressed by a distance delta from the initial diameter Di, we 

find that the pressure has increased. The burn rate has also gone up. The time taken to 

burn the small quantity between Di and Di plus 2 delta is t delta and is equal to delta 

divided by r bar.  We continue with the same process further. We now take this as initial 

condition and go to the next step of delta and find the value the value of pressure and the 

time taken to consume the element. In this way we march ahead till we reach the outer 



diameter. We can also determine by summation the total time required for the evolution 

of pressure starting from pi to pf.  

In an inner burning rocket we can follow this procedure, but this is numerical way of 

doing the problem. There is no other way of doing when we have complex configuration 

with wrinkled inner surface. We can find out how the surface should evolve with time. 

And this is the method to calculate the variation of pressure with time. Once we know 

the variation in pressure with time, we can readily go ahead and determine the thrust 

variations with time. This is how a solid propellant rocket propellant grain is analyzed.  
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Let us do one small problem. Suppose we are asked to find the time taken to burn a 

propellant that burns radially outward. Now we are using radial grain between diameter 

Di and Do, the length of the grain being L. What we consider is the initial diameter of 

the cylindrical grain is Di; the final diameter or the outer diameter is Do and the length is 

L. We want to find the time of burn time when a nozzle of throat diameter At is 

connected to it. We can follow the procedure outlined earlier. But in this case a simple 

analytical solution is possible. 

Let us consider any diameter D between Di and Do. Let us find out the time taken for the 

this diameter D in between Di and Do to increase from the value D to a value D plus a 

small change over here say dD, and this we say the diameter has increased to D plus dD. 



If we can find the time taken to burn this part we can integrate out between the initial Di 

and the outer Do and find the time taken. And that is what we are going to do. 

Let the time required to burn the grain between diameter D and diameter D plus dD be 

dt. Since the distance dD is very small, the variation in pressure while burning between 

D and D plus dD will be very small. . Therefore, the pressure could be assumed to be the 

value at D; and therefore, the pressure is equal to. Sb is equal to pi×D, the perimeter × 

length L is the burning surface area × ρp × ‘a’ × C* / At to the power 1/(1 – n). 
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Therefore, what is the burning rate r given by the expression? It is to a pn. We substitute 

the value of p as a function of D in the burn rate law to give ‘a’ into the factor pi into D 

into L into rho p into a into C star by At to the power n by 1 minus n. The time taken to 

burn a small distance dD by 2  at the diameter D i.e., time taken for diameter to burn 

from D to D plus dD is therefore this small thickness is equal to dD /2 divided by r which 

is the time taken dt. And what does is this come out to be.  

We find π is a constant, length L is a constant, D is variable, ρp is a constant, C* and At 

are also constants and we can write this as equal to (dD/2) /constant A × D to the power 

n /(1−n). We have this a in the denominator. And then we write it as D to the power n by 

1 minus n. We first check, if what we are expressing has units of length say meters 

divided by meter per second and this is the time taken. Here you have dD by 2 is the 

distance propagated divided by a into all the factors equal to π L C* / A  to the power 



n/(1 – n) that is p to the power n. Let us say the time taken to burn is dt. The total time to 

burn from diameter Di to Do is denoted by tb 
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We get dt as it goes from start to the end, which is the burn time from zero to tb which 

must be now equal to the diameter going from initial diameter Di to the outer diameter 

Do. This equals dD/2 divided by D n/(n−1) and we can take A since these are constants. 

The limits of integration are that the diameter varies from Di to Do. What do we get on 

integration, tb minus 0; therefore, tb is equal to 1 over 2 (A ×  a the exponent of the 

burning rate law). Now we integrate D−n/(1−n). This becomes 1 – n/(1−n). We have 

D1−n/(1−n) and divided by 1 − n / (1 – n). 

What is the final value? Therefore, this is equal to 1 / (2 A a ) ×(1 – n)/ (1 − 2 n) × Do (1 − 

2 n)/ (1 – n)  − Di(1 − 2 n ) /(1 – n). This is the time taken tb for the burning. 
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Therefore, we are able to find out the burn time of the cylindrical grain. If we have for 

the exponent ‘n’ in the burn rate law n = 0.5, what is the time for burning? We said that 

as long as n is less than 1, it is usable. If n equals 0.5 what would be the value of burning 

time? Lets do it 1 minus 2n is 0, so there is a problem. What is wrong? The expression is 

derived correctly. 

But it is not working at n = 0.5. Can somebody come out with an answer and sort out the 

problem. I think we should be able to analyze it. Let us write it as 1 / Aa × integral of Di 

to Do of  dD / 2 D to the power 0.5 divided by 0.5; and therefore this equal to dD/D. We 

take 2 outside, and get for n is equal to 0.5, tb is equal to 2aA ln of Do by Di. That means 

what happens for 0.5 is that we need to use a logarithmic form for n is equal to 0.5. The 

problem is not physical like for n equal to 1 but only mathematical.  



(Refer Slide Time: 55:37) 

 

We are able to find the time of burning and this is how a cylindrical grain will be 

analyzed and designed. What is it we have done in today’s class? We looked at the effect 

of temperature on burn rate, we also defined the value of the constant in burn rate law a 

as a70 at a reference pressure of 70 bar. Then we learnt how to develop an equation for 

thrust and pressure for an end burning grain. We also determined the pressures and burn 

times for radial burning. We found for radial burning grain, the pressure evolution had to 

be done by in increments as the burning progresses. 
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We could solve analytically for the cylindrical radial burning grain. We shall continue 

with this in the next class and look at the evolution of burning surface area from 

something like a star grain, which was wrinkled to give a large burning surface area. We 

will also look at the different forms of grain shapes, which are used in practice, and the 

reasons for it. After that we will summarize the solid propellant rockets by incorporating 

the igniter in it along with the other aspects.  


